IHPCSS 2016,
Ljubljana

Overview

David Henty
d.henty@epcc.ed.ac.uk
EPCC, University of Edinburgh

Timetable: Tuesday

11:45 OpenMP overview

e 12:15 Walkthrough of pi example

* 12:30 Lunch

e 13:30 Advanced worksharing and orphaning
* 14:15 Practical session: traffic model

* 15:00 Coffee

e 15:30 Hybrid MPI / OpenMP

e 16:15 Practical session

e 17:15 HPC Challenge example

e 17:30 Close
NSRS 4 MPI / OpenMP IHPCSS 2016

http://www.epcc.ed.ac.uk/

Shared Variables

Parallel Programming using Threads

S
<
Y ~7 €
~ = e
NV

CaY
6\01 NB“

Outline

- Shared-Variables Parallelism
- threads
- shared-memory architectures
- Practicalities
- operating systems
- usage on real HPC architectures

epCccC

&
> =
IS
o]

o

Shared Variables

Threads-based parallelism

ORLVE .
e (:(: Y NG A
I -
N =
7 &
TaY
6\0 I'N B“

Threads

- For many applications each process has a single thread...
- ... but a single process can contain multiple threads
- each thread is like a child process contained within parent process

Py

Po(To) I PolTa)
| 4 \ 4
¥ I 4

o

epCccC

Shared-memory concepts

- Have already covered basic concepts
- threads can all see data of parent process
- can run on different cores

- potential for parallel speedup
Po(To) Po(T))
[L
g a,
a, [|
a, N
a; a;

epCccC

<</
oo
Ia
@]
ey

5
Analogy

- One very large whiteboard in a two-person office
- the shared memory

- Two people working on the same problem
- the threads running on different cores attached to the memory

- How do they collaborate? shared
- working together
- but not interfering

- Also need private data

|epcc

<
T)
IS
o]
o

Threads

Thread 1

Thread 2

—

Thread 3

PC

—
Private data?tDC

Private data

UPC

Private data ’

r__/

Shared data

W

S

=)

epCccC

<</
oo
Ia
@]
ey

Thread Communication
Thread 1 Thread 2

Program

Private
data

Shared
data

Gnlve %
e CC i)i -
= -
o\ S z
‘ <)
b A
6\0 I'N BG

Thread Communication

Thread 1 Thread 2
Program MYa=23
Private
data
Shared
data

Gnlve %
e CC i)i -
= -
o\ S z
‘ <)
b A
6\0 I'N BG

Thread Communication

Thread 1 Thread 2
Program MYa=23
Private 53
data
Shared
data

Gnlve %
e CC i)i -
= -
o\ S z
‘ <)
b A
6\0 I'N BG

Thread Communication

Thread 1 Thread 2
Program MYa=23
a=mya
Private 53
data
Shared
data

Gnlve %
e CC i)i -
= -
o\ S z
‘ <)
b A
6\0 I'N BG

Thread Communication

Thread 1 Thread 2
Program MYa=23
a=mya
Private 53
data | — .
Shared 23
data

& <
Y N7 | ¢
=~ e
@]
ey

epCccC

Thread Communication

Thread 1 Thread 2
Program MYa=23

a=mvya mya=a-+1
Private 53
data | — .
Shared 23
data

& <
Y N7 | ¢
=~ e
@]
ey

epCccC

Thread Communication

Thread 1 Thread 2
Program MYa=23

a=mvya mya=a-+1
Private 53 54
data |— - | -
Shared 23 |
data

& <
Y N7 | ¢
=~ e
@]
ey

epCccC

L R
Synchronisation

- Synchronisation crucial for shared variables approach
- thread 2’s code must execute after thread 1

- Most commonly use global barrier synchronisation
- other mechanisms such as locks also available

- Writing parallel codes relatively straightforward
- access shared data as and when its needed

- Getting correct code can be difficult!

epCccC

<
<M
Ia
o
i

Specific example

- Computing asum = ay+ a; + .. a,
- shared: asum=0
- main array: a[8]
- result: asum

' : Po(To) Po(T2)
- private: ‘s °
- loop counter: i d a,
* loop limits: istart, istop a, loop: i =+ist?:_:]t,istop as
myasum += a[i
* local sum: myasum a end loop o

- synchronisation: i v | @
- threadO: asum += myasum

* barrier
- threadl: asum += myasum

asum

epcc

Hardware

- Needs support of a shared-memory architecture

Shared Bus

f’% i | "%
Processor Processor ‘ Processor Processor Processor

Hardware

Thread Placement. Shared Memory

NN
_ OS >
User

ONLVE
N pEeq &
‘_‘7{,’_‘,_,.7 gn
6\0 IN BG

Thread Placement. Shared Memory

7

GNIVE 5
Y N7 | %
= | -
o\ ;,‘ z
F)
ZH Y
6\0 I'N i

Thread Placement. Shared Memory

HiNNNNNINEEEI.

AN

_ 0S >

\\W

User

GNIVE 5
Y N7 | %
= | -
o\ ;,‘ z
F)
ZH Y
6\0 I'N i

Thread Placement. Shared Memory

T L

_ 0S >

\\W

User

<&
T o
Ia
o]
<

NiVe
VY 4’@/
%
s>
I

Thread Placement. Shared Memory

A EEEO R LIED

_ 0S >

\\W

User

<&
T o
Ia
o]
<

NiVe
VY 4’@/
%
s>
I

Thread Placement. Shared Memory

R R R LILIC

_ 0S >

\\W

User

<&
T o
Ia
o]
<

NIVE
O 4’@/
%
s>
!

Threads in HPC

- Threads existed before parallel computers
- designed for concurrency

- many more threads running than physical cores
- scheduled / descheduled as and when needed

- For parallel computing
- typically run a single thread per core
- want them all to run all the time

- OS optimisations
- place threads on selected cores

- stop them from migrating
epCcC

<
> \\.
IS
o]
o

Practicalities

- Threading can only operate within a single node
- each node is a shared-memory computer (e.g. 28 cores on Bridges)
- controlled by a single operating system

- Simple parallelisation
- speed up a serial program using threads
- run an independent program per node (e.g. a simple task farm)

- More complicated
- use multiple processes (e.g. message-passing — see later)
- on Bridges: could run one process per node, 28 threads per process

- or 2 procs per node / 14 threads per process
Dbt epCccC

Q‘% o N
2 5
c

o

Threads: Summary

- Shared blackboard a good analogy for thread parallelism

- Requires a shared-memory architecture
- iIn HPC terms, cannot scale beyond a single node

- Threads operate independently on the shared data
- also have private data for local variables
- need to ensure they don'’t interfere; synchronisation is crucial

- Threading in HPC usually uses OpenMP directives
- supports common parallel patterns such as reductions
- e.g. loop limits computed by the compiler
- e.g. summing values across threads done automatically

epCccC

<
<
I~
o)
i

	1
	2

