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Timetable: Tuesday

11:45 OpenMP overview

e 12:15 Walkthrough of pi example

* 12:30 Lunch

e 13:30 Advanced worksharing and orphaning
* 14:15 Practical session: traffic model

* 15:00 Coffee

e 15:30 Hybrid MPI / OpenMP

e 16:15 Practical session

e 17:15 HPC Challenge example

e 17:30 Close
NSRS 4 MPI / OpenMP IHPCSS 2016



http://www.epcc.ed.ac.uk/

Shared Variables

Parallel Programming using Threads
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Outline

- Shared-Variables Parallelism
- threads
- shared-memory architectures
- Practicalities
- operating systems
- usage on real HPC architectures
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Shared Variables

Threads-based parallelism
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Threads

- For many applications each process has a single thread...
- ... but a single process can contain multiple threads
- each thread is like a child process contained within parent process
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Shared-memory concepts

- Have already covered basic concepts
- threads can all see data of parent process
- can run on different cores

- potential for parallel speedup
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5
Analogy

- One very large whiteboard in a two-person office
- the shared memory

- Two people working on the same problem
- the threads running on different cores attached to the memory

- How do they collaborate? shared
- working together
- but not interfering

- Also need private data
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Threads

Thread 1

Thread 2

—

Thread 3
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Thread Communication
Thread 1 Thread 2

Program

Private
data

Shared
data
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Thread Communication

Thread 1 Thread 2
Program MYa=23
Private
data
Shared
data
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Thread Communication

Thread 1 Thread 2
Program MYa=23
Private 53
data
Shared
data
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Thread Communication

Thread 1 Thread 2
Program MYa=23
a=mya
Private 53
data
Shared
data
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Thread Communication

Thread 1 Thread 2
Program MYa=23
a=mya
Private 53
data | — .
Shared 23
data
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Thread Communication

Thread 1 Thread 2
Program MYa=23

a=mvya mya=a-+1
Private 53
data | — .
Shared 23
data
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Thread Communication

Thread 1 Thread 2
Program MYa=23

a=mvya mya=a-+1
Private 53 54
data  |— - | -
Shared 23 |
data
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Synchronisation

- Synchronisation crucial for shared variables approach
- thread 2’s code must execute after thread 1

- Most commonly use global barrier synchronisation
- other mechanisms such as locks also available

- Writing parallel codes relatively straightforward
- access shared data as and when its needed

- Getting correct code can be difficult!
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Specific example

- Computing asum = ay+ a; + .. a,
- shared: asum=0
- main array: a[8]
- result: asum

' : Po(To) Po(T2)
- private: ‘s °
- loop counter: i d a,
* loop limits: istart, istop a, loop: i =+ist?:_:]t,istop as
myasum += a[i
* local sum: myasum a end loop o

- synchronisation: i v | @
- threadO: asum += myasum

* barrier
- threadl: asum += myasum

asum
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Hardware

- Needs support of a shared-memory architecture

Shared Bus
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Thread Placement. Shared Memory
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Thread Placement. Shared Memory
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Thread Placement. Shared Memory
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Thread Placement. Shared Memory
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Thread Placement. Shared Memory
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Thread Placement. Shared Memory
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Threads in HPC

- Threads existed before parallel computers
- designed for concurrency

- many more threads running than physical cores
- scheduled / descheduled as and when needed

- For parallel computing
- typically run a single thread per core
- want them all to run all the time

- OS optimisations
- place threads on selected cores

- stop them from migrating
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Practicalities

- Threading can only operate within a single node
- each node is a shared-memory computer (e.g. 28 cores on Bridges)
- controlled by a single operating system

- Simple parallelisation
- speed up a serial program using threads
- run an independent program per node (e.g. a simple task farm)

- More complicated
- use multiple processes (e.g. message-passing — see later)
- on Bridges: could run one process per node, 28 threads per process

- or 2 procs per node / 14 threads per process
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Threads: Summary

- Shared blackboard a good analogy for thread parallelism

- Requires a shared-memory architecture
- iIn HPC terms, cannot scale beyond a single node

- Threads operate independently on the shared data
- also have private data for local variables
- need to ensure they don'’t interfere; synchronisation is crucial

- Threading in HPC usually uses OpenMP directives
- supports common parallel patterns such as reductions
- e.g. loop limits computed by the compiler
- e.g. summing values across threads done automatically
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