
1

Best-Practice Software Engineering: Software 

Processes to Support Project Success

Dietmar Winkler

Vienna University of Technology

Institute of Software Technology and Interactive Systems

Dietmar.Winkler@qse.ifs.tuwien.ac.at

http://qse.ifs.tuwien.ac.at/



2

Introduction

� How can we achieve better software projects / products?

� How can we improve collaboration within a (distributed) software

development team?

� The application of a defined software process enable the construction 

of high-quality software products within a software development team.

Table of Contents:

� Introduction to Software Engineering Projects

� Software Life Cycle / Requirements Definition

� The Software Life Cycle leads to Software Processes

� Structured and systematic Software Process, e.g., V-Model

� Flexible and agile Software Processes, e.g., SCRUM

� Conclusion



3

Motivation and Goals

� Software is a major part in our daily life (e.g. commercial systems, 

embedded systems, web applications, agents, etc.)

� Increasing complexity of projects (e.g., regarding size, functionality, 

technology) and growing (distributed) teams require professional processes.

� Systems engineering was traditionally focused on mechanical and electrical 

engineering with only little software engineering. Nowadays, software gets 

increasingly a larger part of techn. systems � need to bring in existing 

solutions from software engineering research and practice.

� Software processes help to construct valuable high-quality software 

products because of a disciplined, structured approach.

� Different projects require different process approaches � decision support 

for selecting appropriate processes.

� Methods and Tool support engineers in conducting successful projects and 

deliver valuable products.



4

Software Engineering Goals

� Major objective in software engineering is the delivery of high-quality 

software products.

� Examples: 

� Compliance of the software solution with customer requirements.

� Minimum number of remaining defects within the software product.

� Product delivery in time and budget. 

� ...

� To achieve these goals, we need

� Suitable constructive approaches to enable the construction of 

products (e.g., software processes on organizational level, methods 

and tool on engineering level).

� Suitable analytical methods to verify and validate the solution 

towards the specification (verification) and customer requirements 

(validation).



5

Project Classification (Application Domain)

� Different application domains include a various requirements.

Web Shopsusability, security, 

availability

Web Applications

usability, functionality, 

efficiency

Computer Games

ExamplesRequirementsProject Type

Medical and aerospace 

applications

computational accuracy, 

correctness, reliability

Scientific Software

Cell phones, ABS, lift 

control

time-driven, safety & 

security, real-time 

requirements

Embedded / Real-

time Systems

database transactionsusability, availability, 

support

Commercial Software



6

Project Classification (Project Size)

Aerospace, nuclear power 

plant, electronic 

brokerage

100+ persons

>45 PM

Number of technologies: >20

Super Heavy

ExamplesCriteriaSize

Compiler, database50-100 persons

25-45 PM

Number of technologies: 12-20

Heavy (large)

Accounting applications,

Stock management

10-30 persons

9-24 PM

Number of technologies: 5-12

Medium

Calculation problems, 

algorithms

Up to 6 persons

0-8 person months (PM)

Number of technologies: <5

Small

� Depending on the project, engineers have to apply a suitable software process.



7

Software Life Cycle

� A software process model is a sequence of steps involving activities, 

constraints, and resources that produce an intended output.

� The software life-cycle describes a basic approach for a software 

engineering process from the conceptual phase, via design, 

implementation, operation and maintenance, until the retirement of the 

software product.

R
eq
u
ire
m
e
n
t

S
pe
c
ifi
ca
tio
n

Software
Specification

P
la
n
n
in
g

D
e
si
gn

Im
p
le
m
e
n
ta
tio
n

In
te
g
ra
ti o
n

M
a
in
te
na
nc
e

R
e
tir
e
m
e
n
t

Software Design &
Implementation

Software
Validation

Software
Evolution



8

Software Life-Cycle Process (2)

� Requirements represent the needs of the customer (what does he need?) 

regarding the software product (user/customer view).

� A specification describes the system in a technical way (engineering view).

� Planning: Definition of the project course according to time, duration, 

deliverables, and cost (project manager).

� Design: Detailed technical solution of the system requirements, including 

modularization, components, packaging, etc.

� Implementation considers the construction of the software product. 

(coding/testing).

� Integration: assembling and testing of software components.

� Operation and Maintenance: Defect correction, support, extensions of the 

software solution.

� Retirement: Replacement of software products, if they are obsolete.



9

Software Requirements

� Requirements represent the needs of the customer (what does he need?)  from 

user/customer point of view.

� Requirements contribute to the solution of a real-world-problem

[SWEBOK, 2004]

� A requirement is an expression of desired behavior from user perspective.

� Requirements management is the science and art of gathering and managing 

user, business, technical, and functional requirements within a product 

development project.

� Requirements management deals with a set of requirements to handle 

complex systems.

Note: Requirements must be auditable and testable !

The hardest single part of building a system is

deciding what do build. (B.W. Boehm, 1997)



10

Why requirements are important …

� Reasons for project interruption - survey including 365 industrial 

responses (8.380 applications) [Chaos Report, 1994]:

1) Incomplete requirements (13.1%)

2) Lack of User Involvement (12.4%)

…

6) Changing Requirements and Specifications (8.7%)

…

� Selection of “Top-Ten” risk items for project failure [Boehm, 1991]

…

3) Developing wrong software functions.

4) Developing the wrong user interfaces.

5) Gold plating.

6) Continuing stream of requirement changes.

…
We have to know, what the customer needs, to construct the right system!



11

Basic Requirements Classification (1)

� Functional requirements

– Services (operations) of a system (which problem should be solved?). 

– Functional behavior (system responses on defined input parameters).

– Data formats (Input and Output). etc.

� Non-functional requirements

– Performance: e.g., information flow-rate.

– Usability and human factors: e.g., required user training, simplicity of 

applications.

– Security: e.g., access control, separation of application and data.

– Reliability and availability: e.g., Backup strategies, system recovery 

mechanisms.

– Maintainability: Simplicity to modify/add features.

– Time-to-Delivery / Cost: predefined project schedule, budget limitations, etc.



12

Basic Requirements Classification (2)

� Design Constraints

– Physical environment: e.g., development environment, co-located 

vs. distributed development.

– Interfaces

� Need for communication between different systems.

� Data format definitions for communication.

– Users

� User target group (experienced users, less experienced users).

� Process Constraints

– Resources: e.g., material, developers, skills of engineering staff.

– Documentation: e.g., type of documents (electronically, printed,

etc.), target audience.



13

Stakeholders

� Depending on the role, the software product must meet requirements 

according to their individual expectations. 

– Clients / Customers pay for the software product 

� Cheap and fast system delivery, etc.

– Users will operate on the software system

� Functional requirements, non-functional requirements 

(e.g., usability, simplicity, stability), etc.

– Developer, e.g., software engineers, technology experts, will design 

and construct the software system

� Latest technology, “gold plating”, etc.

– etc. 

� Major goal is to develop and deliver a software system that meets the 

requirements of important stakeholders, according to function, non-

functional requirements design constraints, and process constraints 

(requirements elicitation).



14

Excursus: Verification and Validation

� Software defects have a heavy impact on project quality, project

duration and project budget. 

� Rework effort increases the later a defect is detected within the project 

course.

� Thus, a major goal is to identify and correct defects (deviation of a 

solution and its specification / expected behavior) as soon as possible.

� Verification vs. Validation:

� Verification is a quality assurance approach to find out, if the 

product is in accordance with the specification, i.e., did we create 

the product in the right way. 

� Validation is a quality assurance approach to finde out, if the 

product is in accordance with the user requirements, i.e., did we 

produce the right product.



15

Excursus: Testing

� Software testing is an analytical quality assurance approach for

software product improvement.

� Testing is considered with program execution to find deviations and 

defects. 

� In traditional software processes test cases are generated in early 

cycles of development (e.g. in the analysis / design phase) and they 

are executed during / after software implementation (module, 

integration, acceptance tests).

� Flexible and agile software processes include test case generation and 

execution at the same time (e.g., test driven development).



16

Excursus: Basic Test Principles
“Testing is a quality assurance activity in order to find defects”.

Black Box Tests

� Based on the specification 

document.

� Independent on the realization of the 

module.

� Data-driven (Input/Output).

� Requirements coverage.

� Equivalence classes of input data.

� No defect localization possible.

Input Output

White Box Tests

� Based on software code.

� Knowledge of internal representation 

necessary.

� logic-driven tests.

� Control-flow coverage.

� Equivalence classes of internal 

branches and loops.

� Enables defect localization.

Input Output



17

Software Life Cycle vs. Software Process

� The Software Life Cycle is a general purpose process including all 

process steps from the first idea to the retirement of a software product.

� A Software Process is a subset of the life cycle approach.

� Software processes define the sequence of steps within the project 

course.

� Most of them focus on the technical part and start at the requirements 

definition phase and end with the deployment of the solution at the 

customer site.

� In industrial practice exist a wide range of different software process 

approaches with emphasis on project related criteria.

� Standardized software processes, e.g., Rational Unified Process,

V-Modell XT, Scrum, Incremental Development Processes, etc.

� Customized / company-wide software processes, e.g., stdSEM by 

Siemens PSE.



18

Process Model Selection

Selection of a applicable software process model / framework depends on:

– Project Types (e.g.,  commercial system, embedded system)

– Project Size (e.g., „small“ vs. „super heavy projects“)

– Project Duration vs. Project Effort.

– Applied Technology (New vs. approved Technology)

– System complexity

– Risk (e.g., New vs. well-known application area)

– Roles (Distributed vs. Co-located development teams)

Selection of the „best-practice“ software process approach is not simple!



19

The Technical V-Model Concept

operation / 

maintenance

system 

specification

system 

design

module 

specification

tested 

modules

tested 

design/system

installed 

systemuser view

archetectural view

implementing view

system / acceptance test

integration test

module test

idea / study

QP

Infrastructure

Standards

Quality Assurance

Configuration Management

Audits

QP: Quality Plan

R: Review / Inspection

TP: Test Plan

P: Prototype

T: Testing

R P TP

R P TP

TP

R

RT

R

RR



20

Basic V Model Concept (2)
PRO

� Specification phase vs. realization and testing.

� Context of products and tests.

� Different levels of abstraction (user, architectural and implementation view).

� Defect Handling in early stages of software development because of reviews 

at different milestones.

� Basic Concept for VM 97 and VM XT.

CON

� Clear definition of system requirements necessary.

� Well-known application domain required.

� Documentation overhead.

� Still critical on defects in early stages of software development.

Application

� Well-known application domains.

� Large projects in the public sector.



21

V-Modell XT (VM XT)

� The V-Modell XT (VM XT) is based on the basic V-Model concept.

� VM XT is the mandatory SE process standard for public projects in Germany.

� Addresses the responsibilities of the system acquirer (customer) and 

producers.

� VM XT supports Value-Based Systems Engineering by considering 

requirements of suppliers (producers) and systems acquirers (customers).

� VM XT supports iterative systems engineering processes

� Process modules encapsulate products, roles, and activities.

� VM XT provides a flexible basic system process for development projects 

without restriction to a specific application domain.

� Process modules include guidelines for hard/software products, logistics, 

security, etc.

� VM XT allows a flexible arrangement of mandatory and optional process 

modules (tailoring and customization).

� Open source tool support for process tailoring and customizing is available.



22

V-Modell XT – Basic Components

V-Modell XT is a systematic framework for development, planning and 

process improvement. 

– Project Types (from customer / supplier point of view).

– Products, Activities, Roles encapsulated within process modules.

– Integrated method and tool support linked to 

� products (generation), activities (proceeding) and 

� roles (who is responsible for the product). 

– Process Modules including 

� core components and optional elements to meet the individual requirements 

of the application domain.

– Decision gates represent the state of treatment.

– Project Operation Strategy as a defined sequence of decision gates for project 

course.

– Mapping strategies for application of common software processes (reuse of 

approved industrial practices)



23

V-Modell XT – Process Module Overview

� Core Modules (mandatory 

for all project types)

� Required  Modules

(depending on the project 

type and application 

domain)

� Optional Modules

(depending on the 

application domain)

� Selection support by V-

Modell XT Project Assistant 

tool.



24

VM XT Process Module Concept

� Process Modules are the basic elements of the V-Modell XT.

� A Process module 

– Encapsulation of roles, products, and activities.

– Independent component (maintainability) for application purposes.

– Defined interfaces to be replaced in case of updates or extensions.



25

Project Execution Strategy based von VM XT

Selection of an Execution Strategy (including Decision Gates)

� Definition of the sequence of decision gates (comparable to 

milestones)

� Decision Gates require a defined set of products (linked to process 

modules)

� Example

Bidding phase (acquirer)

Technical Development



26

SCRUM

� Scrum represents a set of 

procedures, roles and 

methods for project 

management.

� Agile software 

development

� Self-organizing teams.



27

SCRUM – Phases (1)



28

SCRUM – Phases (2)

� Pregame

– Definition of new release based in product backlog.

– Design how backlog will be implemented.

– Estimate time and costs (deliverables).

� Sprints: 

– Typically 1-4 weeks (depending on product complexity and risk)

– Multiple iterative sprints to construct the system (4 steps: 

development; wrapping; reviewing; adjusting).

– Interaction with variables of time, requirements, quality, costs and 

competition define the end of this phase.

� Postgame

– Preparation for release, pre-release staged testing & release.

– Closing all issues for the current release.



29

SCRUM – Characteristics

� The flexible process model approach enables immediate respond to 

changed requirements during the project course.

� The iterative approach enables earlier delivery of product parts (e.g. 

components).

� Project content is determined by the environment variables time, 

competition, cost, and functionality.

� Deliverables depend on market information, customer contact, and skill 

of developers.

� Small but multiple teams (if necessary).

� Scrum defines frequent reviews of functional executables.

� The last couple of years Scrum became more popular, as the software 

market requires very quick new software products, e.g. for mobile 

communication.



30

SCRUM – Vocabulary

� Backlog: All work to be performed in the near future, both well defined

and requiring further definition. 

� Sprint: A period of 30 days or less where a set of work will be 

performed to create a deliverable. 

� Sprint Backlog: A set of defined work packages for a sprint duration of 

about 1 month (incremental deliverables). No or only a few changes are 

possible.

� Scrum: A daily meeting for progress discussion to clarify questions and 

to remove obscurities.

� Scrum Meeting rules: Protocol for effective Scrum daily meetings. 

� Scrum Team: The cross-functional team working on the sprint's 

backlog. 



31

SCRUM – Roles

� Product Owner (comparable to the project manager): 

– defines goals, deliverables and is responsible for backlog items. 

– Release management.

� Team (3-6 members): 

– Estimation of backlog item effort, implementation, 

– self-organizing teams. 

� Scrum Master: 

– organization and observation of detailed planning and development 

processes. 

– He is no member of the SCRUM team!

� External stakeholders:

– Customers

– Marketing

– Sales



32

Conclusion

� The construction of high-quality software products require professional 

processes.

� The software life-cycle process includes a sequence of basic steps 

from the first idea to the retirement of a product.

� Requirements represent the view of the customer and must be 

auditable and testable.

� The basic V-Model concept enables is a systematic and structured

project course including several views on a software product.

� The V-Modell XT is a mandatory software process model for public IT 

project in Germany. 

� Scrum is a flexible and agile software process with the ability to 

respond to frequently changing requirements due to tight customer 

interaction.



33

Recommended Literature

� Barry Boehm: Software Risk Management: Principles and Practices, 

IEEE Software 8(1), pp32-41, 1991.

� Ian Sommerville: "Software Engineering", 8th edition, Addison-Wesley 

Longman, 2007.

� Kruchten Philippe: The Rational Unified Process, An Introduction, Third 

Edition, 2004, Addison-Wesley.

� SWEBOK: Guide to the Software Engineering Body of Knowledge, 

http://www.swebok.org, 2005.

� Software Engineering – Best practices: 

http://best-practice-software-engineering.blogspot.com/

� SCRUM: www.controlchaos.com, last access: August 2007.

� V-Modell XT: www.v-modell-xt.de, last access: August 2007. 



34

Thank you for your attention

Contact:
Dipl.-Ing. Dietmar Winkler

Vienna University of Technology

Institute of Software Technology and Interactive Systems

Favoritenstr. 9-11/188, A-1040 Vienna, Austria

dietmar.winkler@qse.ifs.tuwien.ac.at

http://qse.ifs.tuwien.ac.at



35

This research work has been supported by a Marie Curie Transfer of Knowledge

Fellowship of the European Community's 6th Framework Programme under the 

contract MTKD-CT-2005-029755: CzechVMXT.


