
Message Passing Programming

Modes, Tags and Communicators

2Modes, Tags and Communicators

Overview

Lecture will cover
– explanation of MPI modes (Ssend, Bsend and Send)

– meaning and use of message tags

– rationale for MPI communicators

These are all commonly misunderstood
– essential for all programmers to understand modes

– often useful to use tags

– certain cases benefit from exploiting different communicators

3Modes, Tags and Communicators

Modes

MPI_Ssend (Synchronous Send)
– guaranteed to be synchronous

– routine will not return until message has been delivered

MPI_Bsend (Buffered Send)
– guaranteed to be asynchronous

– routine returns before the message is delivered

– system copies data into a buffer and sends it later on

MPI_Send (standard Send)
– may be implemented as synchronous or asynchronous send

– this causes a lot of confusion (see later)

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B)

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B)

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B) Running other

non-MPI code

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B) Running other

non-MPI code

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B) Running other

non-MPI code

Wait in Ssend

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B)

Recv(y,A)

Running other

non-MPI code

Wait in Ssend

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B)

Recv(y,A)

Running other

non-MPI code

Wait in Ssend

x y
Data Transfer

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B)

Recv(y,A)

Running other

non-MPI code

Wait in Ssend

x y
Data Transfer

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B)

Recv(y,A)

Running other

non-MPI code

Wait in Ssend

x y
Data Transfer

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B)

Recv(y,A)

Running other

non-MPI code

Wait in Ssend

x y
Data Transfer

Recv returnsSsend returns

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B)

Recv(y,A)

Running other

non-MPI code

Wait in Ssend

x y
Data Transfer

Recv returnsSsend returns

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B)

Recv(y,A)

Running other

non-MPI code

Wait in Ssend

x y
Data Transfer

Recv returnsSsend returns

x can be

overwritten by A

4Modes, Tags and Communicators

MPI_Ssend

Process A Process B

Ssend(x,B)

Recv(y,A)

Running other

non-MPI code

Wait in Ssend

x y
Data Transfer

Recv returnsSsend returns

x can be

overwritten by A
y can now be

read by B

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B)

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B)

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B) Running other

non-MPI code

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B) Running other

non-MPI code

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B) Running other

non-MPI code
x

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B) Running other

non-MPI code
Bsend returns

x can be

overwritten by A

x

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B) Running other

non-MPI code
Bsend returns

x can be

overwritten by A

x

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B)

Recv(y,A)

Running other

non-MPI code
Bsend returns

x can be

overwritten by A

x

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B)

Recv(y,A)

Running other

non-MPI code

y

Bsend returns

x can be

overwritten by A

x

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B)

Recv(y,A)

Running other

non-MPI code

y

Bsend returns

x can be

overwritten by A

x

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B)

Recv(y,A)

Running other

non-MPI code

y

Bsend returns

x can be

overwritten by A

x

Recv returns

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B)

Recv(y,A)

Running other

non-MPI code

y

Bsend returns

x can be

overwritten by A

x

Recv returns

5Modes, Tags and Communicators

MPI_Bsend

Process A Process B

Bsend(x,B)

Recv(y,A)

Running other

non-MPI code

y

Bsend returns

x can be

overwritten by A

y can now be

read by B

x

Recv returns

6Modes, Tags and Communicators

Notes

Recv is always synchronous
– if process B issued Recv before the Bsend from process A,

then B would wait in the Recv until Bsend was issued

Where does the buffer space come from?
– for Bsend, the user provides a single large block of memory

– make this available to MPI using MPI_Buffer_attach

If A issues another Bsend before the Recv
– system tries to store message in free space in the buffer

– if there is not enough space then Bsend will FAIL!

7Modes, Tags and Communicators

Send

Problems
– Ssend runs the risk of deadlock

– Bsend less likely to deadlock, and your code may run faster, but

• the user must supply the buffer space

• the routine will FAIL if this buffering is exhausted

MPI_Send tries to solve these problems
– buffer space is provided by the system

– Send will normally be asynchronous (like Bsend)

– if buffer is full, Send becomes synchronous (like Ssend)

MPI_Send routine is unlikely to fail
– but could cause your program to deadlock if buffering runs out

8Modes, Tags and Communicators

MPI_Send

Process A Process B

Send(x,B) Send(y,A)

Recv(y,A)Recv(x,B)

This code is NOT guaranteed to work
– will deadlock if Send is synchronous

– is guaranteed to deadlock if you used Ssend!

9Modes, Tags and Communicators

Solutions

To avoid deadlock
– either match sends and receives explicitly

– eg for ping-pong

• process A sends then receives

• process B receives then sends

For a more general solution use non-blocking

communications (see later)

For this course you should program with Ssend
– more likely to pick up bugs such as deadlock than Send

Checking for Messages

MPI allows you to check if any messages have arrived
– you can “probe” for matching messages

– same syntax as receive except no receive buffer specified

e.g. in C:

int MPI_Probe(int source, int tag,

MPI_Comm comm, MPI_Status *status)

Status is set as if the receive took place
– e.g. you can find out the size of the message and allocate space prior to receive

Be careful with wildcards
– you can use, e.g., MPI_ANY_SOURCE in call to probe

– but must use specific source in receive to guarantee matching same message

– e.g. MPI_Recv(buff, count, datatype, status.MPI_SOURCE, ...)

11Modes, Tags and Communicators

Tags

Every message can have a tag
– this is a non-negative integer value

– maximum value can be queried using MPI_TAG_UB attribute

– MPI guarantees to support tags of at least 32767

– not everyone uses them; many MPI programs set all tags to zero

Tags can be useful in some situations
– can choose to receive messages only of a given tag

Most commonly used with MPI_ANY_TAG
– receives the most recent message regardless of the tag

– user then finds out the actual value by looking at the status

12Modes, Tags and Communicators

Communicators

All MPI communications take place within a

communicator
– a communicator is fundamentally a group of processes

– there is a pre-defined communicator: MPI_COMM_WORLD which

contains ALL the processes

• also MPI_COMM_SELF which contains only one process

A message can ONLY be received within the

same communicator from which it was sent
– unlike tags, it is not possible to wildcard on comm

13Modes, Tags and Communicators

Uses of Communicators (i)

Can split MPI_COMM_WORLD into pieces
– each process has a new rank within each sub-communicator

– guarantees messages from the different pieces do not interact

• can attempt to do this using tags but there are no guarantees

rank=6
rank=2

rank=1 rank=3

rank=0 rank=4

rank=5

size=7

rank=2

MPI_COMM_WORLD

rank=0
rank=1 rank=3

size=4
size=3

comm1
comm2

rank=2rank=0

rank=1

MPI_Comm_split()

14Modes, Tags and Communicators

Uses of Communicators (ii)

Can make a copy of MPI_COMM_WORLD
– e.g. call the MPI_Comm_dup routine

– containing all the same processes but in a new communicator

Enables processes to communicate with each

other safely within a piece of code
– guaranteed that messages cannot be received by other code

– this is essential for people writing parallel libraries (eg a Fast

Fourier Transform) to stop library messages becoming mixed

up with user messages

• user cannot intercept the the library messages if the library keeps

the identity of the new communicator a secret

• not safe to simply try and reserve tag values due to wildcarding

15Modes, Tags and Communicators

Summary (i)

Question: Why bother with all these send modes?

Answer
– it is a little complicated, but you should make sure you understand

– Ssend and Bsend are clear

• map directly onto synchronous and asynchronous sends

– Send can be either synchronous or asynchronous

• MPI is trying to be helpful here, giving you the benefits of Bsend if
there is sufficient system memory available, but not failing completely
if buffer space runs out

• in practice this leads to endless confusion!

The amount of system buffer space is variable
– programs that run on one machine may deadlock on another

– you should NEVER assume that Send is asynchronous!

16Modes, Tags and Communicators

Summary (ii)

Question: What are the tags for?

Answer
– if you don’t need them don’t use them!

• perfectly acceptable to set all tags to zero

– can be useful for debugging

• eg always tag messages with the rank of the sender

17Modes, Tags and Communicators

Summary (iii)

Question: Can I just use MPI_COMM_WORLD?

Answer
– yes: many people never need to create new communicators in

their MPI programs

– however, it is probably bad practice to specify
MPI_COMM_WORLD explicitly in your routines

• using a variable will allow for greater flexibility later on, eg:

MPI_Comm comm; /* or INTEGER for Fortran */

comm = MPI_COMM_WORLD;

...

MPI_Comm_rank(comm, &rank);

MPI_Comm_size(comm, &size);

....

Parallel Programming
Thought exercise: traffic modelling

Traffic Flow

Parallel Traffic Modelling 2

• we want to predict traffic flow

Traffic Flow

Parallel Traffic Modelling 2

• we want to predict traffic flow
– to look for effects such as congestion

Traffic Flow

Parallel Traffic Modelling 2

• we want to predict traffic flow
– to look for effects such as congestion

• build a computer model

Simple Traffic Model
• divide road into a series of cells

Parallel Traffic Modelling 3

Simple Traffic Model
• divide road into a series of cells

– either occupied or unoccupied

Parallel Traffic Modelling 3

Simple Traffic Model
• divide road into a series of cells

– either occupied or unoccupied

• perform a number of steps

– each step, cars move forward if space ahead is empty

Parallel Traffic Modelling 3

Simple Traffic Model
• divide road into a series of cells

– either occupied or unoccupied

• perform a number of steps

– each step, cars move forward if space ahead is empty

Parallel Traffic Modelling 3

Simple Traffic Model
• divide road into a series of cells

– either occupied or unoccupied

• perform a number of steps

– each step, cars move forward if space ahead is empty

Parallel Traffic Modelling 3

Simple Traffic Model
• divide road into a series of cells

– either occupied or unoccupied

• perform a number of steps

– each step, cars move forward if space ahead is empty

could do this by moving

pawns on a chess board

Parallel Traffic Modelling 3

traffic behaviour
• model predicts a number of interesting features

Parallel Traffic Modelling 4

traffic behaviour
• model predicts a number of interesting features

Parallel Traffic Modelling 4

• traffic lights

traffic behaviour
• model predicts a number of interesting features

Parallel Traffic Modelling 4

• traffic lights

traffic behaviour
• model predicts a number of interesting features

Parallel Traffic Modelling 4

• traffic lights

traffic behaviour
• model predicts a number of interesting features

Parallel Traffic Modelling 4

• congestion

0.0

0.5

1.0

density of

cars

average

speed

0% 50% 100%

• traffic lights

traffic behaviour
• model predicts a number of interesting features

Parallel Traffic Modelling 4

• more

complicated

models are

used in practice

• traffic lights

Traffic simulation

n n+1n-1 n n+1n-1
current value new value new value

n n
current value

• Update rules depend on:

• state of cell

• state of nearest neighbours in both directions

Parallel Traffic Modelling 5

Traffic simulation

n n+1n-1 n n+1n-1
current value new value new value

n n
current value

• Update rules depend on:

• state of cell

• state of nearest neighbours in both directions

Parallel Traffic Modelling 5

Traffic simulation

n n+1n-1 n n+1n-1
current value new value new value

n n
current value

• Update rules depend on:

• state of cell

• state of nearest neighbours in both directions

Parallel Traffic Modelling 5

Traffic simulation

n n+1n-1 n n+1n-1
current value new value new value

n n
current value

• Update rules depend on:

• state of cell

• state of nearest neighbours in both directions

Parallel Traffic Modelling 5

Traffic simulation

n n+1n-1 n n+1n-1
current value new value new value

n n
current value

• Update rules depend on:

• state of cell

• state of nearest neighbours in both directions

Parallel Traffic Modelling 5

State Table
• If Rt(i) = 0, then Rt+1(i) is given by:

• Rt(i-1) = 0 Rt(i -1) = 1

• Rt(i+1) = 0 0 1

• Rt(i+1) = 1 0 1

• If Rt(i) = 1, then Rt+1(i) is given by:

• Rt(i-1) = 0 Rt(i -1) = 1

• Rt(i+1) = 0 0 0

• Rt(i+1) = 1 1 1

Parallel Traffic Modelling 6

Pseudo Code

declare arrays old(i) and new(i), i = 0,1,...,N,N+1

initialise old(i) for i = 1,2,...,N-1,N (eg randomly)

loop over iterations

set old(0) = old(N) and set old(N+1) = old(1)

loop over i = 1,...,N

if old(i) = 1

if old(i+1) = 1 then new(i) = 1 else new(i) = 0

if old(i) = 0

if old(i-1) = 1 then new(i) = 1 else new(i) = 0

end loop over i

set old(i) = new(i) for i = 1,2,...,N-1,N

end loop over iterations

Parallel Traffic Modelling 7

how fast can we run the model?
• measure speed in Car Operations Per second

Parallel Traffic Modelling 8

how fast can we run the model?
• measure speed in Car Operations Per second

– how many COPs?

Parallel Traffic Modelling 8

how fast can we run the model?
• measure speed in Car Operations Per second

– how many COPs?

Parallel Traffic Modelling 8

how fast can we run the model?
• measure speed in Car Operations Per second

– how many COPs?

Parallel Traffic Modelling 8

how fast can we run the model?
• measure speed in Car Operations Per second

– how many COPs?

Parallel Traffic Modelling 8

how fast can we run the model?
• measure speed in Car Operations Per second

– how many COPs?

Parallel Traffic Modelling 8

how fast can we run the model?
• measure speed in Car Operations Per second

– how many COPs?

• around 2 COPs

Parallel Traffic Modelling 8

how fast can we run the model?
• measure speed in Car Operations Per second

– how many COPs?

• around 2 COPs

• but what about three people?

– can they do six COPs?

Parallel Traffic Modelling 8

a parallel traffic model

Parallel Traffic Modelling 9

B

CA

a parallel traffic model

Parallel Traffic Modelling 9

B

CA

a parallel traffic model

Parallel Traffic Modelling 9

B

CA

a parallel traffic model

Parallel Traffic Modelling 9

B

CA

a parallel traffic model

Parallel Traffic Modelling 9

B

CA

a parallel traffic model

Parallel Traffic Modelling 9

B

CA

a parallel traffic model

Parallel Traffic Modelling 9

B

CA

a parallel traffic model

Parallel Traffic Modelling 9

B

CA

Traffic Model
Parallel Solutions

The Model

• Consider a road with N cells

• Simulate traffic on a roundabout

• i.e. periodic boundary counditions

• If a car moves off the right it reappears on the left

• i.e. identify cell N+1 with cell 1, and cell 0 with cell N

Traffic Solutions 2

Pseudo Code

declare arrays old(i) and new(i), i = 0,1,...,N,N+1

initialise old(i) for i = 1,2,...,N-1,N (eg randomly)

loop over iterations

set old(0) = old(N) and set old(N+1) = old(1)

loop over i = 1,...,N

if old(i) = 1

if old(i+1) = 1 then new(i) = 1 else new(i) = 0

if old(i) = 0

if old(i-1) = 1 then new(i) = 1 else new(i) = 0

end loop over i

set old(i) = new(i) for i = 1,2,...,N-1,N

end loop over iterations

Traffic Solutions 3

Message-Passing Strategy (1)
Broadcast data

to 2 processes:

Split calculation

between 2 processes:

Process 1 Process 2

•Globally resynchronise all data after each move

• a replicated data strategy

•Every process stores the entire state of the calculation

• e.g. any process can compute total number of moves

Traffic Solutions 4

Parallelisation Strategy (2)

Scatter data

between 2 processes:

distributed data strategy

•Internal cells can be updated independently.

•Must communicate with neighbouring processes to update edge cells.

•Sum local number of moves on each process to obtain total number of

moves at each iteration.

Split calculation

between 2 processes:
Process 1 Process 2

•Each process must know which part of roadway it is updating.

•Synchronise at completion of each iteration and obtain total

number of moves

Traffic Solutions 5

Parallelisation

• Load balance not an issue
• updates take equal computation regardless of state of road

• split the road into equal pieces of size N/P

• For each piece
• rule for cell i depends on cells i-1 and i+1

• the N/P - 2 interior cells can be updated independently in parallel

• however, the edge cells are updated by other processors

• similar to having separate rules for boundary conditions

• Communications required
• to get value of edge cells from other processors

• to produce a global sum of the number of cars that move

Traffic Solutions 6

Message Passing Parallelisation

local moves = 2local moves = 1

global moves = 3

2 processes,

add halos

copy data

to halos

update

interior cells

Traffic Solutions 7

8

Threads Parallelisation

• Load balance not an issue
• updates take equal computation regardless of state of road

• split the road into equal pieces of size N/T (for T threads)

• For each piece
• rule for cell i depends on cells i-1 and i+1

• can parallelise as we are updating new array based on old

• Synchronisation required
• to ensure threads do not start until boundary data is updated

• to produce a global sum of the number of cars that move

• to ensure that all threads have finished before next iteration

Traffic Solutions

Fork-Join Model

9

10

Shared Variables Parallelisation
serial: initialise old(i) for i = 1,2,...,N-1,N

serial: loop over iterations

serial: set old(0) = old(N) and set old(N+1) = old(1)

parallel: loop over i = 1,...,N

if old(i) = 1

if old(i+1) = 1 then ...

if old(i) = 0

if old(i-1) = 1 then ...

end loop over i

synchronise

parallel: set old(i) = new(i) for i = 1,2,...,N-1,N

synchronise

end loop over iterations

• private: i; shared: old, new, N
• reduction operation to compute number of moves

Traffic Solutions

Non-Blocking

Communications

Deadlock

1

5
2

3

4

0Communicator

Completion

The mode of a communication determines

when its constituent operations complete.
– i.e. synchronous / asynchronous

The form of an operation determines when the

procedure implementing that operation will

return
– i.e. when control is returned to the user program

Blocking Operations

Relate to when the operation has completed.

Only return from the subroutine call when the

operation has completed.

These are the routines you used thus far
– MPI_Ssend

– MPI_Recv

Non-Blocking Operations

Return straight away and allow the sub-program to

continue to perform other work. At some later time the

sub-program can test or wait for the completion of the

non-blocking operation.

Beep!

Non-Blocking Operations

All non-blocking operations should have

matching wait operations. Some systems

cannot free resources until wait has been

called.

A non-blocking operation immediately followed

by a matching wait is equivalent to a blocking

operation.

Non-blocking operations are not the same as

sequential subroutine calls as the operation

continues after the call has returned.

Non-Blocking Communications

Separate communication into three phases:

Initiate non-blocking communication.

Do some work (perhaps involving other

communications?)

Wait for non-blocking communication to

complete.

Non-Blocking Send

1

5
2

3

4

0Communicator

Non-Blocking Receive

1

5
2

3

4

0Communicator

Handles used for Non-blocking Comms

datatype same as for blocking
(MPI_Datatype or INTEGER).

communicator same as for blocking
(MPI_Comm or INTEGER).

request MPI_Request or INTEGER.

A request handle is allocated when a

communication is initiated.

Non-blocking Synchronous Send

 C:

int MPI_Issend(void* buf, int count,

MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm,

MPI_Request *request)

int MPI_Wait(MPI_Request *request,

MPI_Status *status)

 Fortran:

MPI_ISSEND(buf, count, datatype, dest,

tag, comm, request, ierror)

MPI_WAIT(request, status, ierror)

Non-blocking Receive

 C:

int MPI_Irecv(void* buf, int count,

MPI_Datatype datatype, int src,

int tag, MPI_Comm comm,

MPI_Request *request)

int MPI_Wait(MPI_Request *request,

MPI_Status *status)

 Fortran:

MPI_IRECV(buf, count, datatype, src,

tag, comm, request, ierror)

MPI_WAIT(request, status, ierror)

Blocking and Non-Blocking

Send and receive can be blocking or non-

blocking.

A blocking send can be used with a non-

blocking receive, and vice-versa.

Non-blocking sends can use any mode -

synchronous, buffered, standard, or ready.

Synchronous mode affects completion, not

initiation.

Communication Modes

NON-BLOCKING OPERATION MPI CALL

Standard send MPI_ISEND

Synchronous send MPI_ISSEND

Buffered send MPI_IBSEND

Ready send MPI_IRSEND

Receive MPI_IRECV

Completion

 Waiting versus Testing.

 C:

int MPI_Wait(MPI_Request *request,

MPI_Status *status)

int MPI_Test(MPI_Request *request,

int *flag,

MPI_Status *status)

 Fortran:

MPI_WAIT(handle, status, ierror)

MPI_TEST(handle, flag, status, ierror)

Multiple Communications

Test or wait for completion of one message.

Test or wait for completion of all messages.

Test or wait for completion of as many

messages as possible.

Testing Multiple Non-Blocking Comms

in

in

in

Process

Combined Send and Receive

Specify all send / receive arguments in one call
– MPI implementation avoids deadlock

– useful in simple pairwise communications patterns, but not as

generally applicable as non-blocking

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,

int dest, int sendtag,

void *recvbuf, int recvcount, MPI_Datatype recvtype,

int source, int recvtag,

MPI_Comm comm, MPI_Status *status);

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag,

recvbuf, recvcount, recvtype, source, recvtag,

comm, status, ierror)

Exercise

Rotating information around a ring

See Exercise 4 on the sheet

Arrange processes to communicate round a ring.

Each process stores a copy of its rank in an integer

variable.

Each process communicates this value to its right

neighbour, and receives a value from its left neighbour.

Each process computes the sum of all the values

received.

Repeat for the number of processes involved and print

out the sum stored at each process.

Possible solutions

Non-blocking send to forward neighbour
– blocking receive from backward neighbour

– wait for forward send to complete

Non-blocking receive from backward neighbour
– blocking send to forward neighbour

– wait for backward receive to complete

Non-blocking send to forward neighbour

Non-blocking receive from backward neighbour
– wait for forward send to complete

– wait for backward receive to complete

Notes

Your neighbours do not change
– send to left, receive from right, send to left, receive from right, …

You do not alter the data you receive
– receive it

– add it to you running total

– pass the data unchanged along the ring

You must not access send or receive buffers

until communications are complete
– cannot read from a receive buffer until after a wait on irecv

– cannot overwrite a send buffer until after a wait on issend

	1
	2
	3

