Message Passing Programming

Modes, Tags and Communicators




Overview

» Lecture will cover
— explanation of MPI modes (Ssend, Bsend and Send)
— meaning and use of message tags
— rationale for MPI communicators

» These are all commonly misunderstood
— essential for all programmers to understand modes
— often useful to use tags
— certain cases benefit from exploiting different communicators
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» MPI_Ssend (Synchronous Send)

— guaranteed to be synchronous
— routine will not return until message has been delivered

» MPI_Bsend (Buffered Send)

— guaranteed to be asynchronous
— routine returns before the message is delivered
— system copies data into a buffer and sends it later on

» MPI_Send (standard Send)

— may be implemented as synchronous or asynchronous send
— this causes a lot of confusion (see later)
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» Recv is always synchronous

— If process B issued Recv before the Bsend from process A,
then B would wait in the Recv until Bsend was issued

» Where does the buffer space come from?
— for Bsend, the user provides a single large block of memory
— make this available to MP| using MPI_Buffer attach

» If A issues another Bsend before the Recv

— system tries to store message in free space in the buffer
— if there is not enough space then Bsend will FAIL!
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» Problems
— Ssend runs the risk of deadlock

— Bsend less likely to deadlock, and your code may run faster, but

* the user must supply the buffer space
 the routine will FAIL if this buffering is exhausted

» MPI_Send tries to solve these problems

— Dbuffer space is provided by the system

— Send will normally be asynchronous (like Bsend)

— 1f buffer is full, Send becomes synchronous (like Ssend)
» MPI_Send routine is unlikely to fail

— but could cause your program to deadlock if buffering runs out
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MPI_Send

Process A Process B

Send (x, B) Send (y,A)

Recv (x, B) Recv (y,A)

» This code is NOT guaranteed to work
— will deadlock if Send is synchronous
— iIs guaranteed to deadlock if you used Ssend!
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Solutions

» To avoid deadlock

— either match sends and receives explicitly
— eg for ping-pong

* process A sends then receives

* process B receives then sends

» For a more general solution use non-blocking
communications (see later)

» For this course you should program with Ssend
— more likely to pick up bugs such as deadlock than Send
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Checking for Messages

» MPI allows you to check if any messages have arrived

— you can “probe” for matching messages
— same syntax as receive except no receive buffer specified

> e.g.in C:

int MPI Probe (int source, int tag,
MPI Comm comm, MPI Status *status)

» Status is set as if the receive took place

— e.g. you can find out the size of the message and allocate space prior to receive

» Be careful with wildcards

— you can use, e.g., MPl_ANY_SOURCE in call to probe
— but must use specific source in receive to guarantee matching same message
— €.9g.MPI Recv (buff, count, datatype, status.MPI SOURCE, ...)




» Every message can have a tag

— this is a non-negative integer value

— maximum value can be queried using MPI_TAG_UB attribute

— MPI guarantees to support tags of at least 32767

— not everyone uses them; many MPI programs set all tags to zero

» Tags can be useful in some situations
— can choose to receive messages only of a given tag

» Most commonly used with MPI_ANY TAG

— receives the most recent message regardless of the tag
— user then finds out the actual value by looking at the status
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Communicators

» All MPI communications take place within a

communicator

— a communicator is fundamentally a group of processes

— there is a pre-defined communicator: MPI_COMM WORLD which
contains ALL the processes

- alsoMPI_ COMM SELF which contains only one process

» A message can ONLY be received within the

same communicator from which it was sent
— unlike tags, it is not possible to wildcard on comm
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Uses of Communicators (i)

» Can split MPI_COMM WORLD into pieces

— each process has a new rank within each sub-communicator

— guarantees messages from the different pieces do not interact
« can attempt to do this using tags but there are no guarantees

MPI_COMM WORLD

size="/

MPI Comm split(

size=3

size=4 comm2
comml
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Uses of Communicators (ii)

» Can make a copy of MPI_COMM_ WORLD

— e.g. call the MPI_Comm_dup routine
— containing all the same processes but in a new communicator

» Enables processes to communicate with each

other safely within a piece of code

— guaranteed that messages cannot be received by other code

— this is essential for people writing parallel libraries (eg a Fast
Fourier Transform) to stop library messages becoming mixed
up with user messages

 user cannot intercept the the library messages if the library keeps
the identity of the new communicator a secret

* not safe to simply try and reserve tag values due to wildcarding
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Summary (i)

» Question: Why bother with all these send modes?

> Answer

— Itis a little complicated, but you should make sure you understand
— Ssend and Bsend are clear

* map directly onto synchronous and asynchronous sends
— Send can be either synchronous or asynchronous

* MPI is trying to be helpful here, giving you the benefits of Bsend if
there is sufficient system memory available, but not failing completely
if buffer space runs out

* in practice this leads to endless confusion!

» The amount of system buffer space is variable

— programs that run on one machine may deadlock on another
— you should NEVER assume that Send is asynchronous!
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Summary (ii)

» Question: What are the tags for?

> Answer

— if you don’t need them don’t use them!
» perfectly acceptable to set all tags to zero
— can be useful for debugging
* eg always tag messages with the rank of the sender
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Summary (lii)

» Question: Can | just use MPI_COMM WORLD?

> Answer

— yes: many people never need to create new communicators in
their MPI programs

— however, it is probably bad practice to specify
MPI COMM WORLD explicitly in your routines

 using a variable will allow for greater flexibility later on, eg:

MPI Comm comm; /* or INTEGER for Fortran */
comm = MPI_COMM WORLD;

MPI Comm rank (comm, &rank);
MPI Comm size (comm, &size);
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Parallel Programming

Thought exercise: traffic modelling
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Traffic Flow

we want to predict traffic flow
— to look for effects such as congestion

* build a computer model




Parallel Traffic Modelling

Simple Traffic Model

- divide road into a series of cells
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— either occupied or unoccupied

- perform a number of steps
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Parallel Traffic Modelling

Simple Traffic Model

- divide road into a series of cells
— either occupied or unoccupied

- perform a number of steps
— each step, cars move forward if space ahead is empty

could do this by moving

pawns on a chess board
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traffic behaviour

- model predicts a number of interesting features
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Parallel Traffic Modelling

traffic behaviour

- model predicts a number of interesting features
- traffic lights

average
: speed
e congestlon
1.0
05 =+
00 : : density of
cars
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traffic behaviour

model predicts a number of interesting features

traffic lights
oy Ay
more
complicated
models are

used in practice




Traffic simulation

« Update rules depend on:
- state of cell
- state of nearest neighbours in both directions

current value new value current value new value
n-1 n n+1 n n-1 n n+1 n
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Traffic simulation

« Update rules depend on:
- state of cell
- state of nearest neighbours in both directions
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State Table

- If RY(i) = 0, then R™(i) is given by:

RY(i-1) = 0 RY(i-1) = 1
- RY(i+1) =0 0 1
- RY(i+1) =1 0 1

- If RY(i) = 1, then R™(i) is given by:

Ri(i-1) = 0 R -1) = 1
. RY(i+1)=0 0 0
- Ri(i+1) =1 1 1
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Pseudo Code

declare arrays old(i) and new(i), i =0,1,...,N,N+1
initialise old(i) for i =1,2,...,N-1,N (eg randomly)
loop over iterations
set 01ld(0) = o0ld(N) and set o0ld(N+1l) = old(1)
loop over i =1,...,N
if old(i) =1
if old(i+l) = 1 then new(i) = 1 else new(i) = 0
if old(i) =0
if old(i-1l) = 1 then new(i) = 1 else new(i) = 0
end loop over i
set old(i) = new(i) for i =1,2,...,N-1,N
end loop over iterations
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how fast can we run the model?

- measure speed in Car Operations Per second
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Parallel Traffic Modelling

how fast can we run the model?

- measure speed in Car Operations Per second

— how many COPs?
e around 2 COPs
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how fast can we run the model?
- measure speed in Car Operations Per second

— how many COPs?
e around 2 COPs

* but what about three people?
— can they do six COPs?
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Parallel Traffic Modelling

a parallel traffic model
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Traffic Model

Parallel Solutions
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The Model

- Consider a road with N cells

- Simulate traffic on a roundabout
- I.e. periodic boundary counditions

- If a car moves off the right it reappears on the left
- 1.e. identify cell N+1 with cell 1, and cell O with cell N
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Pseudo Code

declare arrays old(i) and new(i), i =0,1,...,N,N+1
initialise old(i) for i =1,2,...,N-1,N (eg randomly)
loop over iterations
set 01ld(0) = o0ld(N) and set o0ld(N+1l) = old(1)
loop over i =1,...,N
if old(i) =1

if old(i+l) = 1 then new(i) = 1 else new(i) = 0
if old(i) =0
if old(i-1) = 1 then new(i) = 1 else new(i) =0

end loop over i
set old(i) = new(i) for i1 =1,2,...,N-1,N
end loop over iterations
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Traffic Solutions 4

Message-Passing Strategy (1)
Broadcast data _

- A
to 2 processes: /

\J
\ J
~"

Split calculation
between 2 processes:

- J
Y

Process 1 Process 2

*Globally resynchronise all data after each move
- areplicated data strategy
*Every process stores the entire state of the calculation
* e.g. any process can compute total number of moves
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Traffic Solutions 5

Parallelisation Strategy (2)
o o[eje] o |

Scatter data N PN y

between 2 processes: .

distributed data strategy _
*Must communicate with neighbouring processes to update edge cells.

Internal cells can be updated independently.

*Sum local number of moves on each process to obtain total number of

moves at each iteration.
Split calculation

between 2 processes: - g g
Process 1 Process 2

/) - /)

*Each process must know which part of roadway it is updating.
*Synchronise at completion of each iteration and obtain total

number of moves
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Parallelisation

- Load balance not an issue
- updates take equal computation regardless of state of road
- split the road into equal pieces of size N/P

- For each piece
- rule for cell i depends on cells i-1 and i+1
- the N/P - 2 interior cells can be updated independently in parallel
- however, the edge cells are updated by other processors
- similar to having separate rules for boundary conditions
- Communications required
- to get value of edge cells from other processors
- to produce a global sum of the number of cars that move
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Traffic Solutions 7

Message Passing Parallelisation
o eee (o |—| [e[0e [0 [0

- AN /)

\;\

2 processes,
add halos

v C  (Clelelo
to halos O O O
nesndll  [SIEEENISIN N[ )S)

interior cells O O O

local moves = 1 local moves =2

gl OWB/
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Threads Parallelisation

- Load balance not an issue
- updates take equal computation regardless of state of road
- split the road into equal pieces of size N/T (for T threads)

- For each piece
- rule for cell i depends on cells i-1 and i+1
- can parallelise as we are updating new array based on old
- Synchronisation required
- to ensure threads do not start until boundary data is updated

- to produce a global sum of the number of cars that move
- to ensure that all threads have finished before next iteration




Py - |
o]
a
Po(Ty) |
dy
a0,
a,
[a.




Shared Variables Parallelisation

serial: initialise old(i) for i =1,2,...,N-1,N
serial: loop over iterations
serial: set 01d(0) = o0ld(N) and set old(N+1l) = old(1)
parallel: loop over i =1,...,N
if old(i) =1
if old(i+l) = 1 then ...
if old(i) =0
if old(i-1)
end loop over 1

1 then ...

synchronise
parallel: set old(i) = new(i) for i =1,2,...,N-1,N
synchronise

end loop over iterations

- private: I, shared: old, new, N
- reduction operation to compute number of moves
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Completion

» The mode of a communication determines

when its constituent operations complete.
— l.e. synchronous / asynchronous

» The form of an operation determines when the
procedure implementing that operation will

return
— l.e. when control is returned to the user program




e . CC Blocking Operations

> Relate to when the operation has completed.

» Only return from the subroutine call when the
operation has completed.

» These are the routines you used thus far

— MPI_Ssend
— MPI_Recv




e . CC Non-Blocking Operations

» Return straight away and allow the sub-program to
continue to perform other work. At some later time the
sub-program can test or wait for the completion of the

non-blocking operation.
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e . CC Non-Blocking Operations

> All non-blocking operations should have
matching wait operations. Some systems
cannot free resources until wait has been
called.

> A non-blocking operation immediately followed
by a matching wait Is equivalent to a blocking
operation.

» Non-blocking operations are not the same as
sequential subroutine calls as the operation
continues after the call has returned.




e . CC Non-Blocking Communications

» Separate communication into three phases:
> Initiate non-blocking communication.

» Do some work (perhaps involving other
communications?)

» Wait for non-blocking communication to
complete.




e . CC Non-Blocking Send

Communicator




Non-Blocking Receive

Communicator °




e . CC Handles used for Non-blocking Comms

» datatype same as for blocking
(MPI Datatype or INTEGER).

» communicator same as for blocking
(MPI Comm Or INTEGER).

» request MPT Request Of INTEGER.

» A request handle is allocated when a
communication Is initiated.




Non-blocking Synchronous Send

int MPI Issend(void* buf, 1nt count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm,
MPI Request *request)

int MPI Wailt (MPI Request *request,
MPI Status *status)
» Fortran:

MPI ISSEND (buf, count, datatype, dest,
tag, comm, request, 1lerror)

MPI WAIT (request, status, ilerror)




Non-blocking Receive

int MPI Irecv(void* buf, 1nt count,
MPI Datatype datatype, int src,
int tag, MPI Comm comm,
MPI Request *request)

int MPI Wailt (MPI Request *request,
MPI Status *status)
» Fortran:

MPI IRECV (buf, count, datatype, src,
tag, comm, request, 1lerror)

MPI WAIT (request, status, ilerror)




Blocking and Non-Blocking

» Send and receive can be blocking or non-
blocking.

> A blocking send can be used with a non-
blocking receive, and vice-versa.

» Non-blocking sends can use any mode -
synchronous, buffered, standard, or ready.

» Synchronous mode affects completion, not
Initiation.




Communication Modes

NON-BLOCKING OPERATION MPI CALL
Standard send MPI_ISEND
Synchronous send MPI_ISSEND
Buffered send MPI_IBSEND
Ready send MPI_IRSEND
Receive MPI_IRECV




Completion

> Waiting versus Testing.

> C:
int MPI Wailt (MPI Request *request,
MPI Status *status)
int MPI Test (MPI Request *request,
int *flag,
MPI Status *status)
» Fortran:

MPI WAIT (handle, status, lerror)

MPI TEST (handle, flag, status, lerror)




Multiple Communications

» Test or wait for completion of one message.
» Test or wait for completion of all messages.

» Test or wait for completion of as many
messages as possible.




e . CC Testing Multiple Non-Blocking Comms

Process




Combined Send and Recelve

» Specify all send / receive arguments in one call

— MPI implementation avoids deadlock
— useful in simple pairwise communications patterns, but not as
generally applicable as non-blocking

int MPI Sendrecv (void *sendbuf, int sendcount, MPI Datatype sendtype,

int dest, 1int sendtag,
void *recvbuf, int recvcount, MPI Datatype recvtype,

int source, int recvtag,
MPI Comm comm, MPI Status *status);

MPI SENDRECV (sendbuf, sendcount, sendtype, dest, sendtag,
recvbuf, recvcount, recvtype, source, recvtag,

comm, status, ierror)




Rotating information around a ring
> See Exercise 4 on the sheet
» Arrange processes to communicate round a ring.

» Each process stores a copy of its rank in an integer
variable.

» Each process communicates this value to its right
neighbour, and receives a value from its left neighbour.

» Each process computes the sum of all the values
received.

» Repeat for the number of processes involved and print
out the sum stored at each process.




Possible solutions

» Non-blocking send to forward neighbour

— blocking receive from backward neighbour
— wait for forward send to complete

» Non-blocking receive from backward neighbour

— blocking send to forward neighbour
— wait for backward receive to complete

» Non-blocking send to forward neighbour

» Non-blocking receive from backward neighbour

— wait for forward send to complete
— wait for backward receive to complete




» Your neighbours do not change
— send to left, receive from right, send to left, receive from right, ...

» You do not alter the data you receive

— receive it
— add it to you running total
— pass the data unchanged along the ring

» You must not access send or receive buffers

until communications are complete

— cannot read from a receive buffer until after a wait on irecv
— cannot overwrite a send buffer until after a wait on issend
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