
Rules and Regulations of the

2nd Annual IHPCSS

Challenge

Trophy bears no relationship

to reality.

General Rules

Due Thursday midnight (!)

4 Nodes of Bridges

Use any combination of MPI, OpenACC, Python and OpenMP

How fast can you run a 10K x 10K Laplace code to convergence?

2

Some Specifics

Can’t change kernel (Must retain two core loops source)

Can change number of MPI processes (Does not have to be 112 or 4)

1 Source File

1 Combined Environment/Compile/Submit/Execute script
to make it easy for us to run your solutions!

Mail to d.henty@epcc.ed.ac.uk by deadline
Mail a ping earlier if you want to be informed of any developments

3

Rules For Lawyers

No libraries

Don’t mess with timer placement

?

4

Reality Checks

Serial code converges at 3578 time steps. Yours should too.

As we know, this is not enough to verify correctness. You should find

point [7500][9950] in C and (9950,7500) in Fortran converges to 17 (±1)

degrees.

As discussed, the 10K result differs from the 1K result.*

Plugging in Gauss-Seidel or Successive Over Relaxation (SOR) would be easy and

interesting. But, not for our contest.

5

http://www.cs.berkeley.edu/~demmel/cs267/lecture24/lecture24.html is a brief analysis of these issues.

Suggested Things to Explore

Compiler flags
-fast

Compiler
see Bridges documentation for how
to use different modules

MPI Environment Variables
man mpi

Thread placement
google for KMP_AFFINITY

6

MPI

OpenMP OpenACC

?

Blue Waters User Guide is your friend!

https://bluewaters.ncsa.illinois.edu/user-guide

Decision

On Thursday evening we will take the top self-reported speeds and

run them in an interactive session

Timings not within 10% of self-reported time will be disqualified

Codes should print out “test point” at [7500][9950] for C,

(9950,7500) for Fortran at conclusion of run.

Best of two runs for each finalist will determine winner

7

Laplace Exercise

John Urbanic
Parallel Computing Specialist

Pittsburgh Supercomputing Center

Copyright 2014

Our Foundation Exercise:Laplace Solver

I’ve been using this for MPI, OpenMP and now OpenACC. It is a great simulation problem, not rigged for MPI.

In this most basic form, it solves the Laplace equation: 𝛁𝟐𝒇(𝒙, 𝒚) = 𝟎
The Laplace Equation applies to many physical problems, including:

Electrostatics

Fluid Flow

Temperature

For temperature, it is the Steady State Heat Equation:

Metal

Plate

Heating

Element

Initial Conditions Final Steady State

Metal

Plate

Exercise Foundation: Jacobi Iteration

The Laplace equation on a grid states that each grid point is the average of its

neighbors.

We can iteratively converge to that state by repeatedly computing new values at

each point from the average of neighboring points.

We just keep doing this until the difference from one pass to the next is small

enough for us to tolerate.

A(i,j) A(i+1,j)A(i-1,j)

A(i,j-1)

A(i+1,j)

𝐴𝑘+1 𝑖, 𝑗 =
𝐴𝑘(𝑖 − 1, 𝑗) + 𝐴𝑘 𝑖 + 1, 𝑗 + 𝐴𝑘 𝑖, 𝑗 − 1 + 𝐴𝑘 𝑖, 𝑗 + 1

4

Serial Code Implementation

for(i = 1; i <= ROWS; i++) {
for(j = 1; j <= COLUMNS; j++) {

Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
Temperature_last[i][j+1] + Temperature_last[i][j-1]);

}
}

do j=1,columns
do i=1,rows

temperature(i,j)= 0.25 * (temperature_last(i+1,j)+temperature_last(i-1,j) + &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

for(i = 1; i <= ROWS; i++) {
for(j = 1; j <= COLUMNS; j++) {

Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +
Temperature_last[i][j+1] + Temperature_last[i][j-1]);

}
}

dt = 0.0;

for(i = 1; i <= ROWS; i++){
for(j = 1; j <= COLUMNS; j++){

dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

if((iteration % 100) == 0) {
track_progress(iteration);

}

iteration++;

}

Serial C Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

void initialize(){

int i,j;

for(i = 0; i <= ROWS+1; i++){
for (j = 0; j <= COLUMNS+1; j++){

Temperature_last[i][j] = 0.0;
}

}

// these boundary conditions never change throughout run

// set left side to 0 and right to a linear increase
for(i = 0; i <= ROWS+1; i++) {

Temperature_last[i][0] = 0.0;
Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;

}

// set top to 0 and bottom to linear increase
for(j = 0; j <= COLUMNS+1; j++) {

Temperature_last[0][j] = 0.0;
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;

}
}

Serial C Code Subroutines

void track_progress(int iteration) {

int i;

printf("-- Iteration: %d --\n", iteration);
for(i = ROWS-5; i <= ROWS; i++) {

printf("[%d,%d]: %5.2f ", i, i,Temperature[i][i]);
}
printf("\n");

}

BCs could run from 0

to ROWS+1 or from 1

to ROWS. We chose

the former.

#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <sys/time.h>

// size of plate
#define COLUMNS 1000
#define ROWS 1000

// largest permitted change in temp (This value takes about 3400 steps)
#define MAX_TEMP_ERROR 0.01

double Temperature[ROWS+2][COLUMNS+2]; // temperature grid
double Temperature_last[ROWS+2][COLUMNS+2]; // temperature grid from last iteration

// helper routines
void initialize();
void track_progress(int iter);

int main(int argc, char *argv[]) {

int i, j; // grid indexes
int max_iterations; // number of iterations
int iteration=1; // current iteration
double dt=100; // largest change in t
struct timeval start_time, stop_time, elapsed_time; // timers

printf("Maximum iterations [100-4000]?\n");
scanf("%d", &max_iterations);

gettimeofday(&start_time,NULL); // Unix timer

initialize(); // initialize Temp_last including boundary conditions

// do until error is minimal or until max steps
while (dt > MAX_TEMP_ERROR && iteration <= max_iterations) {

// main calculation: average my four neighbors
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

dt = 0.0; // reset largest temperature change

// copy grid to old grid for next iteration and find latest dt
for(i = 1; i <= ROWS; i++){

for(j = 1; j <= COLUMNS; j++){
dt = fmax(fabs(Temperature[i][j]-Temperature_last[i][j]), dt);
Temperature_last[i][j] = Temperature[i][j];

}
}

// periodically print test values
if((iteration % 100) == 0) {

track_progress(iteration);
}

iteration++;
}

Whole C Code

gettimeofday(&stop_time,NULL);
timersub(&stop_time, &start_time, &elapsed_time); // Unix time subtract routine

printf("\nMax error at iteration %d was %f\n", iteration-1, dt);
printf("Total time was %f seconds.\n", elapsed_time.tv_sec+elapsed_time.tv_usec/1000000.0);

}

// initialize plate and boundary conditions
// Temp_last is used to to start first iteration
void initialize(){

int i,j;

for(i = 0; i <= ROWS+1; i++){
for (j = 0; j <= COLUMNS+1; j++){

Temperature_last[i][j] = 0.0;
}

}

// these boundary conditions never change throughout run

// set left side to 0 and right to a linear increase
for(i = 0; i <= ROWS+1; i++) {

Temperature_last[i][0] = 0.0;
Temperature_last[i][COLUMNS+1] = (100.0/ROWS)*i;

}

// set top to 0 and bottom to linear increase
for(j = 0; j <= COLUMNS+1; j++) {

Temperature_last[0][j] = 0.0;
Temperature_last[ROWS+1][j] = (100.0/COLUMNS)*j;

}
}

// print diagonal in bottom right corner where most action is
void track_progress(int iteration) {

int i;

printf("---------- Iteration number: %d ------------\n", iteration);
for(i = ROWS-5; i <= ROWS; i++) {

printf("[%d,%d]: %5.2f ", i, i, Temperature[i][i]);
}
printf("\n");

}

do while (dt > max_temp_error .and. iteration <= max_iterations)

do j=1,columns
do i=1,rows

temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

dt=0.0

do j=1,columns
do i=1,rows

dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo

if(mod(iteration,100).eq.0) then
call track_progress(temperature, iteration)

endif

iteration = iteration+1

enddo

Serial Fortran Code (kernel)

Calculate

Update

temp

array and

find max

change

Output

Done?

subroutine initialize(temperature_last)
implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,j

double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

temperature_last = 0.0

!these boundary conditions never change throughout run

!set left side to 0 and right to linear increase
do i=0,rows+1

temperature_last(i,0) = 0.0
temperature_last(i,columns+1) = (100.0/rows) * i

enddo

!set top to 0 and bottom to linear increase
do j=0,columns+1

temperature_last(0,j) = 0.0
temperature_last(rows+1,j) = ((100.0)/columns) * j

enddo

end subroutine initialize

Serial Fortran Code Subroutines

subroutine track_progress(temperature, iteration)
implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,iteration

double precision, dimension(0:rows+1,0:columns+1) :: temperature

print *, '---------- Iteration number: ', iteration, ' ---------------'
do i=5,0,-1

write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
rows-i,columns-i,temperature(rows-i,columns-i)

enddo
print *

program serial
implicit none

!Size of plate
integer, parameter :: columns=1000
integer, parameter :: rows=1000
double precision, parameter :: max_temp_error=0.01

integer :: i, j, max_iterations, iteration=1
double precision :: dt=100.0
real :: start_time, stop_time

double precision, dimension(0:rows+1,0:columns+1) :: temperature, temperature_last

print*, 'Maximum iterations [100-4000]?'
read*, max_iterations

call cpu_time(start_time) !Fortran timer

call initialize(temperature_last)

!do until error is minimal or until maximum steps
do while (dt > max_temp_error .and. iteration <= max_iterations)

do j=1,columns
do i=1,rows

temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

dt=0.0

!copy grid to old grid for next iteration and find max change
do j=1,columns

do i=1,rows
dt = max(abs(temperature(i,j) - temperature_last(i,j)), dt)
temperature_last(i,j) = temperature(i,j)

enddo
enddo

!periodically print test values
if(mod(iteration,100).eq.0) then

call track_progress(temperature, iteration)
endif

iteration = iteration+1

enddo

call cpu_time(stop_time)

print*, 'Max error at iteration ', iteration-1, ' was ',dt
print*, 'Total time was ',stop_time-start_time, ' seconds.'

end program serial

Whole Fortran Code

! initialize plate and boundery conditions
! temp_last is used to to start first iteration
subroutine initialize(temperature_last)

implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,j

double precision, dimension(0:rows+1,0:columns+1) :: temperature_last

temperature_last = 0.0

!these boundary conditions never change throughout run

!set left side to 0 and right to linear increase
do i=0,rows+1

temperature_last(i,0) = 0.0
temperature_last(i,columns+1) = (100.0/rows) * i

enddo

!set top to 0 and bottom to linear increase
do j=0,columns+1

temperature_last(0,j) = 0.0
temperature_last(rows+1,j) = ((100.0)/columns) * j

enddo

end subroutine initialize

!print diagonal in bottom corner where most action is
subroutine track_progress(temperature, iteration)

implicit none

integer, parameter :: columns=1000
integer, parameter :: rows=1000
integer :: i,iteration

double precision, dimension(0:rows+1,0:columns+1) :: temperature

print *, '---------- Iteration number: ', iteration, ' ---------------'
do i=5,0,-1

write (*,'("("i4,",",i4,"):",f6.2," ")',advance='no'), &
rows-i,columns-i,temperature(rows-i,columns-i)

enddo
print *

end subroutine track_progress

First Things First:

Domain Decomposition

All processors have entire T array.

Each processor works on TW part of T.

After every iteration, all processors broadcast their TW to all other
processors.

Increased memory. NOT SCALABLE!

Global (message passing) variables are ALWAYS bad!

Try Again:

Domain Decomposition II

Each processor has sub-grid.

Communicate boundary values only.

Reduces memory.

Reduces communications.

Have to keep track of neighbors in two directions.

But not too bad.

Simplest:

Domain Decomposition III

Only have to keep track of up/down

neighbors, and no corner case.

Scales, as below. How would we handle 5

PEs with the “square decomposition”?

Simplest Decomposition for C Code

Simplest Decomposition for C Code

In the parallel case, we will break this up into 4 processors. There is only one set of boundary values. But

when we distribute the data, each processor needs to have an extra row for data distribution, these are

commonly called the “ghost cells”.

The program has a local view of

data. The programmer has to

have a global view of data. The

ghost cells don’t exist in the

global dataset. They are only

copies from the “real” data in the

adjacent PE.

Sending Multiple Elements

For the first time we want to send multiple elements. In this case, a whole row or column of data. That is

exactly what the count parameter is for.

The common use of the count parameter is to point the Send or Receive routine at the first element of an

array, and then the count will proceed to strip off as many elements as you specify.

This implies (and demands) that the elements are contiguous in memory. That will be true for one

dimension of an array, but the other dimension(s) will have a stride.

In C this is true for our rows. In Fortran this is true for our columns. This will give us a strong preference for

the problem orientation in each language. Then we don’t have to worry about strides in the strips that we

send.

However, it is often necessary to send messages that are not contiguous data. Using defined data types,

we can send other array dimensions, or even blocks or surfaces. We will talk about that capability in the

Advanced talk.

Sending Multiple Elements

C:

int A[8][12];

MPI_Send(&A[3][1], 4, MPI_INT, pe, tag, MPI_COMM_WORLD);

Fortran:

integer A(0:7,0:11)

MPI_Send(A(3,1), 4, MPI_INT, pe, tag, MPI_COMM_WORLD, err);

This last index is the one contiguous in memory.

This first index is the one contiguous in memory.

Sending Multiple Elements

if (mype != 0){

up = mype - 1

MPI_Send(t, COLUMNS, MPI_FLOAT, up, UP_TAG, comm);

}

Alternatively

up = mype - 1

if (mype == 0) up = MPI_PROC_NULL;

MPI_Send(t, COLUMNS, MPI_FLOAT, up, UP_TAG, comm);

Simplest Decomposition for Fortran Code

Simplest Decomposition for Fortran Code

Then we send strips to ghost zones like this:

Same ghost cell structure as the C code, we have

just swapped rows and columns.

Sending Multiple Elements in Fortran

if(mype.ne.0) then

left = mype - 1

call MPI_Send(t, ROWS, MPI_REAL, left, L_TAG, comm, ierr)

endif

Alternatively

left = mype - 1

if(mype.eq.0) left = MPI_PROC_NULL

call MPI_Send(t, ROWS, MPI_REAL, left, L_TAG, comm, ierr)

endif

Note: You may also MPI_Recv from MPI_PROC_NULL

Main Loop Structure

for (iter=1; iter < NITER; iter++) {

Do averaging

Copy Temperature into Temperature_last

Communicate
Phase
(all new)

Send real values down

Temperature or Temperature_last ?

Send real values up

Receive values from above into ghost zone

Receive values from below into ghost zone

Temperature or Temperature_last?

Find the max change

Synchronize?

Compute
Phase

(almost unchanged)

Boundary Conditions

Both C and Fortran will need to set proper boundary conditions based upon the PE number.

Two ways to approach this exercise.

• Start from the serial code

• Start from the template (“hint”) code

Staring files in /MPI:

laplace_serial.c laplace_serial.f90

laplace_template.c laplace_template.f90

You can peek at my answer in /Solutions

laplace_mpi.c laplace_mpi.f90

.

.
int main(int argc, char *argv[]) {

int i, j;
int max_iterations;
int iteration=1;

// the usual MPI startup routines
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

// verify only NPES PEs are being used
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

// PE 0 asks for input
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

// bcast max iterations to other PEs
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

if (my_PE_num==0) gettimeofday(&start_time,NULL);

initialize(npes, my_PE_num);

while (dt_global > MAX_TEMP_ERROR && iteration <= max_iterations) {

// main calculation: average my four neighbors
for(i = 1; i <= ROWS; i++) {

for(j = 1; j <= COLUMNS; j++) {
Temperature[i][j] = 0.25 * (Temperature_last[i+1][j] + Temperature_last[i-1][j] +

Temperature_last[i][j+1] + Temperature_last[i][j-1]);
}

}

// COMMUNICATION PHASE: send and receive ghost rows for next iteration
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

dt = 0.0;
.
.
.

MPI Template for C

.

.
program mpi

implicit none
include 'mpif.h'

!Size of plate
integer, parameter :: columns_global=1000
integer, parameter :: rows=1000

double precision, dimension(0:rows+1,0:columns+1) :: temperature, temperature_last

!usual mpi startup routines
>>>

!It is nice to verify that proper number of PEs are running
>>>

!Only one PE should prompt user
if(mype == 0) then

print*, 'Maximum iterations [100-4000]?'
read*, max_iterations

endif

!Other PEs need to recieve this information
>>>

call cpu_time(start_time)

call initialize(temperature_last, npes, mype)

!do until global error is minimal or until maximum steps
do while (dt_global > max_temp_error .and. iteration <= max_iterations)

do j=1,columns
do i=1,rows

temperature(i,j)=0.25*(temperature_last(i+1,j)+temperature_last(i-1,j)+ &
temperature_last(i,j+1)+temperature_last(i,j-1))

enddo
enddo

.

MPI Template for Fortran

Some ways we might get fancy…

Send and receive at the same time:
MPI_Sendrecv(…)

Defined Data Types:
MPI_Datatype row, column ;

MPI_Type_vector (COLUMNS, 1, 1, MPI_DOUBLE, & row);

MPI_Type_vector (ROWS, 1, COLUMNS, MPI_DOUBLE , & column);

MPI_Type_commit (& row);

MPI_Type_commit (& column);

.

.

//Send top row to up neighbor (what we’ve been doing)

MPI_Send(Temperature[1,1], 1, row, dest, tag, MPI_COMM_WORLD);

//Send last column to right hand neighbor (in a new 2D layout)

MPI_Send(Temperature[1,COLUMNS], 1, column, dest, tag, MPI_COMM_WORLD);

Some ways you might go wrong…

You have two main data structures

•Temperature

•Temperature_last

Each has

•Boundary Conditions (unchanged through entire run)

•Ghost zones (changing every timestep)

Each iteration

•Copying/calculating Temperature to/from Temperature_last

•Sending/receiving into/from ghost zones and data

It is easy to mix these things up. I suggest you step through at least the initialization and first time

step for each of the above combinations of elements.

There are multiple reasonable solutions. Each will deal with the above slightly differently.

How do you know you are correct?

Your solution converges

at 3372 timesteps!

How do you know you are correct?

Your solution converges

at 3372 timesteps!

How do you know you are correct?

Working MPI Solution MPI Routines Disabled

Bottom

Right

Corner

Both converge at 3372 steps!

Bottom

Right

Corner

How do you know you are correct?

Working MPI Solution MPI Routines Disabled

PE 2

PE 3

Bottom

Right

Corner

Both converge at 3372 steps!

Bottom

Right

Corner

All the action is here.

Last

To

Converge

void output(int my_pe, int iteration) {

FILE* fp;
char filename[50];

sprintf(filename,"output%d.txt",iteration);

for (int pe = 0; pe<4; pe++){
if (my_pe==pe){

fp = fopen(filename, "a");

for(int y = 1; y <= ROWS; y++){
for(int x = 1; x <= COLUMNS; x ++){

fprintf(fp, "%5.2f ",Temperature[y][x]);
}
fprintf(fp,"\n");

}

fflush(fp);
fclose(fp);

}
MPI_Barrier(MPI_COMM_WORLD);

}

}

Check for yourself.

• Human Readable

• 1M entries

• Visualize. I used Excel (terrible idea).

void output(int my_pe, int iteration) {

FILE* fp;
char filename[50];

sprintf(filename,"output%d.txt",iteration);

for (int pe = 0; pe<4; pe++){
if (my_pe==pe){

fp = fopen(filename, "a");

for(int y = 1; y <= ROWS; y++){
for(int x = 1; x <= COLUMNS; x ++){

fprintf(fp, "%5.2f ",Temperature[y][x]);
}
fprintf(fp,"\n");

}

fflush(fp);
fclose(fp);

}
MPI_Barrier(MPI_COMM_WORLD);

}

}

Check for yourself.

c:
if (my_PE_num==2)

printf("Global coord [750,900] is %f \n:", Temperature[250][900]);

Fortran:
if (mype==2) then

print*, 'magic point', temperature(900,250)
endif

• Human Readable

• 1M entries

• Visualize. I used Excel (terrible idea).

Magic

Point

• If about 1.0, probably good

• Otherwise (like 0.02 here) probably not

Laplace Exercise

1. You copied a directory called MPI_Course/Laplace into your home directory. Go there and you will see the files:

laplace_template.c and laplace_serial.c

or

laplace_template.f90 and laplace_serial.f90

2. The templates are “hint” files with sections marked >>>>> in the source code where you might add statements so that the code

will run on 4 PEs. You can start from either these or from the serial code, whichever you prefer. A useful Web reference

for this exercise is the Message Passing Interface Standard at:

http://www.mpich.org/static/docs/v3.0.x/

3. To compile the program as it becomes an MPI code, execute:

mpicc laplace_your_mpi.c

mpif90 laplace_your_mpi.f90

4. In an interactive idev session, you can just run these as:

ibrun -np 4 a.out

5. You can check your program against one possible solution in the Solutions directory:

laplace_mpi.c or laplace_mpi.f90

6. When you are done, let us know by hitting the survey button on the workshop page: bit.ly/XSEDE-Workshop

http://www.mpich.org/static/docs/v3.0.x/

Introduction to

OpenMP

Lecture 6: Further topics in OpenMP

2

Nested parallelism

• Unlike most previous directive systems, nested parallelism is

permitted in OpenMP.

• This is enabled with the OMP_NESTED environment variable or the

OMP_SET_NESTED routine.

• If a PARALLEL directive is encountered within another PARALLEL

directive, a new team of threads will be created.

• The new team will contain only one thread unless nested

parallelism is enabled.

http://www.epcc.ed.ac.uk/

3

Nested parallelism (cont)

Example:

!$OMP PARALLEL

!$OMP SECTIONS

!$OMP SECTION

!$OMP PARALLEL DO

 do i = 1,n

 x(i) = 1.0

 end do

!$OMP SECTION

!$OMP PARALLEL DO

 do j = 1,n

 y(j) = 2.0

 end do

!$OMP END SECTIONS

!$OMP END PARALLEL

http://www.epcc.ed.ac.uk/

4

Nested parallelism (cont)

• Not often needed, but can be useful to exploit non-scalable

parallelism (SECTIONS).

• Note: nested parallelism isn’t supported in some

implementations (the code will execute, but as if

OMP_NESTED is set to FALSE).

– turns out to be hard to do correctly without impacting performance

significantly.

http://www.epcc.ed.ac.uk/

5

NUMTHREADS clause

• One way to control the number of threads used at each level is with the
NUM_THREADS clause:

!$OMP PARALLEL DO NUM_THREADS(4)

 DO I = 1,4

!$OMP PARALLEL DO NUM_THREADS(TOTALTHREADS/4)

 DO J = 1,N

 A(I,J) = B(I,J)

 END DO

 END DO

• The value set in the clause supersedes the value in the environment
variable OMP_NUM_THREADS (or that set by
omp_set_num_threads())

http://www.epcc.ed.ac.uk/

6

Orphaned directives

• Directives are active in the dynamic scope of a parallel region, not

just its lexical scope.

• Example:

!$OMP PARALLEL

 call fred()

!$OMP END PARALLEL

 subroutine fred()

!$OMP DO

 do i = 1,n

 a(i) = a(i) + 23.5

 end do

 return

 end

http://www.epcc.ed.ac.uk/

7

Orphaned directives (cont)

• This is very useful, as it allows a modular programming style….

• But it can also be rather confusing if the call tree is complicated (what

happens if fred is also called from outside a parallel region?)

• There are some extra rules about data scope attributes….

http://www.epcc.ed.ac.uk/

8

Data scoping rules

When we call a subroutine from inside a parallel region:

• Variables in the argument list inherit their data scope attribute from the

calling routine.

• Global variables in C++ and COMMON blocks or module variables in

Fortran are shared, unless declared THREADPRIVATE (see later).

• static local variables in C/C++ and SAVE variables in Fortran are

shared.

• All other local variables are private.

http://www.epcc.ed.ac.uk/

9

Binding rules

• There could be ambiguity about which parallel region directives refer to,

so we need a rule….

• DO/FOR, SECTIONS, SINGLE, MASTER and BARRIER directives

always bind to the nearest enclosing PARALLEL directive.

http://www.epcc.ed.ac.uk/

10

Thread private global variables

• It can be convenient for each thread to have its own copy of variables

with global scope (e.g. COMMON blocks and module data in Fortran, or

file-scope and namespace-scope variables in C/C++).

• Outside parallel regions and in MASTER directives, accesses to these

variables refer to the master thread’s copy.

http://www.epcc.ed.ac.uk/

11

Thread private globals (cont)

Syntax:

Fortran: !$OMP THREADPRIVATE (list)

 where list contains named common blocks (enclosed in slashes), module

variables and SAVEd variables..

This directive must come after all the declarations for the common blocks or

variables.

C/C++: #pragma omp threadprivate (list)

This directive must be at file or namespace scope, after all declarations of

variables in list and before any references to variables in list. See

standard document for other restrictions.

http://www.epcc.ed.ac.uk/

12

COPYIN clause

• Allows the values of the master thread’s THREADPRIVATE data to be

copied to all other threads at the start of a parallel region.

Syntax:

Fortran: COPYIN(list)

C/C++: copyin(list)

In Fortran the list can contain variables in THREADPRIVATE COMMON

blocks.

http://www.epcc.ed.ac.uk/

13

COPYIN clause

Example:

 common /junk/ nx

 common /stuff/ a,b,c

!$OMP THREADPRIVATE (/JUNK/,/STUFF/)

 nx = 32

 c = 17.9

 . . .

!$OMP PARALLEL PRIVATE(NX2,CSQ) COPYIN(/JUNK/,C)

 nx2 = nx * 2

 csq = c*c

 . . .

http://www.epcc.ed.ac.uk/

14

Timing routines

OpenMP supports a portable timer:

– return current wall clock time (relative to arbitrary origin) with:

 DOUBLE PRECISION FUNCTION OMP_GET_WTIME()

 double omp_get_wtime(void);

– return clock precision with

 DOUBLE PRECISION FUNCTION OMP_GET_WTICK()

 double omp_get_wtick(void);

http://www.epcc.ed.ac.uk/

15

Using timers

DOUBLE PRECISION STARTTIME, TIME

STARTTIME = OMP_GET_WTIME()

......(work to be timed)

TIME = OMP_GET_WTIME()- STARTTIME

Note: timers are local to a thread: must make both calls on the same thread.

Also note: no guarantees about resolution!

http://www.epcc.ed.ac.uk/

16

Exercise

Molecular dynamics again

• Aim: use of orphaned directives.

• Modify the molecular dynamics code so by placing a parallel region

directive around the iteration loop in the main program, and making all

code within this sequential except for the forces loop.

• Modify the code further so that each thread accumulates the forces into a

local copy of the force array, and reduce these copies into the main array

at the end of the loop.

http://www.epcc.ed.ac.uk/

Introduction to

OpenMP

Lecture 7: Tasks

2

OpenMP tasks

• The task construct defines a section of code

• Inside a parallel region, a thread encountering a task

construct will package up the task for execution

• Some thread in the parallel region will execute the task at

some point in the future

http://www.epcc.ed.ac.uk/

3

task directive

Syntax:

Fortran:

!$OMP TASK [clauses]

structured block

!$OMP END TASK

C/C++:

#pragma omp task [clauses]

structured-block

http://www.epcc.ed.ac.uk/

4

Data Sharing

• The default for tasks is usually firstprivate, because the task may not be

executed until later (and variables may have gone out of scope).

• Variables that are shared in all constructs starting from the innermost

enclosing parallel construct are shared.

#pragma omp parallel shared(A) private(B)

{

...

#pragma omp task

{

int C;

compute(A, B, C);

}

}

A is shared

B is firstprivate

C is private

http://www.epcc.ed.ac.uk/

5

When/where are tasks complete?

• At thread barriers (explicit or implicit)

– applies to all tasks generated in the current parallel region up to the

barrier

• At taskwait directive

– i.e. Wait until all tasks defined in the current task have completed.

– Fortran: !$OMP TASKWAIT

– C/C++: #pragma omp taskwait

– Note: applies only to tasks generated in the current task, not to

“descendants” .

http://www.epcc.ed.ac.uk/

6

Example

• Classic linked list traversal

• Do some work on each item in the list

• Assume that items can be processed independently

• Cannot use an OpenMP loop directive

p = listhead ;

while (p) {

process (p);

p=next(p) ;

}

http://www.epcc.ed.ac.uk/

7

Parallel pointer chasing

#pragma omp parallel

{

#pragma omp single private(p)

{

p = listhead ;

while (p) {

#pragma omp task

process (p);

p=next (p) ;

}

}

}

p is firstprivate by

default inside this

task

Only one thread

packages tasks

http://www.epcc.ed.ac.uk/

8

Parallel pointer chasing on multiple lists

#pragma omp parallel

{

#pragma omp for private(p)

for (int i =0; i <numlists ; i++) {

p = listheads [i] ;

while (p) {

#pragma omp task

process (p);

p=next (p) ;

}

}

}

All threads package

tasks

http://www.epcc.ed.ac.uk/

9

Example: postorder tree traversal

void postorder(node *p) {

if (p->left)

#pragma omp task

postorder(p->left);

if (p->right)

#pragma omp task

postorder(p->right);

#pragma omp taskwait

process(p->data);

}

Parent task suspended until

children tasks complete

• Binary tree of tasks

• Traversed using a recursive function

• A task cannot complete until all tasks below it in the tree are complete

http://www.epcc.ed.ac.uk/

10

Task switching

• Certain constructs have task scheduling points at defined

locations within them

• When a thread encounters a task scheduling point, it is

allowed to suspend the current task and execute another

(called task switching)

• It can then return to the original task and resume

http://www.epcc.ed.ac.uk/

11

Task switching

#pragma omp single

{

for (i=0; i<ONEZILLION; i++)

#pragma omp task

process(item[i]);

}

• Risk of generating too many tasks

• Generating task will have to suspend for a while

• With task switching, the executing thread can:

– execute an already generated task (draining the “task pool”)

– execute the encountered task

http://www.epcc.ed.ac.uk/

12

Using tasks

• Getting the data attribute scoping right can be quite tricky

– default scoping rules different from other constructs

– as ever, using default(none) is a good idea

• Don’t use tasks for things already well supported by OpenMP

– e.g. standard do/for loops

– the overhead of using tasks is greater

• Don’t expect miracles from the runtime

– best results usually obtained where the user controls the

number and granularity of tasks

http://www.epcc.ed.ac.uk/

13

Exercise

• Mandelbrot example using tasks.

http://www.epcc.ed.ac.uk/

Advanced OpenMP

Lecture 4: OpenMP and MPI

Motivation

• In recent years there has been a trend towards clustered architectures

• Distributed memory systems, where each node consist of a traditional

shared memory multiprocessor (SMP).

– with the advent of multicore chips, every cluster is like this

• Single address space within each node, but separate nodes have

separate address spaces.

http://www.epcc.ed.ac.uk/

Clustered architecture

http://www.epcc.ed.ac.uk/

Programming clusters

• How should we program such a machine?

• Could use MPI across whole system

• Cannot (in general) use OpenMP/threads across whole

system

– requires support for single address space

– this is possible in software, but inefficient

– also possible in hardware, but expensive

• Could use OpenMP/threads within a node and MPI between

nodes

– is there any advantage to this?

http://www.epcc.ed.ac.uk/

Issues

We need to consider:

• Development / maintenance costs

• Portability

• Performance

http://www.epcc.ed.ac.uk/

Development / maintenance

• In most cases, development and maintenance will be harder

than for an MPI code, and much harder than for an OpenMP

code.

• If MPI code already exists, addition of OpenMP may not be

too much overhead.

• In some cases, it may be possible to use a simpler MPI

implementation because the need for scalability is reduced.

– e.g. 1-D domain decomposition instead of 2-D

http://www.epcc.ed.ac.uk/

Portability

• Both OpenMP and MPI are themselves highly portable (but

not perfect).

• Combined MPI/OpenMP is less so

– main issue is thread safety of MPI

– if maximum thread safety is assumed, portability will be reduced

• Desirable to make sure code functions correctly (maybe with

conditional compilation) as stand-alone MPI code (and as

stand-alone OpenMP code?)

http://www.epcc.ed.ac.uk/

Thread Safety

• Making libraries thread-safe can be difficult

– lock access to data structures

– multiple data structures: one per thread

– …

• Adds significant overheads

– which may hamper standard (single-threaded) codes

• MPI defines various classes of thread usage

– library can supply an appropriate implementation

– see later

http://www.epcc.ed.ac.uk/

Performance

Four possible performance reasons for mixed OpenMP/MPI

codes:

1. Replicated data

2. Poorly scaling MPI codes

3. Limited MPI process numbers

4. MPI implementation not tuned for SMP clusters

http://www.epcc.ed.ac.uk/

Replicated data

• Some MPI codes use a replicated data strategy

– all processes have a copy of a major data structure

– classical domain decomposition code have replication in halos

– MPI buffers can consume significant amounts of memory

• A pure MPI code needs one copy per process/core.

• A mixed code would only require one copy per node

– data structure can be shared by multiple threads within a process

– MPI buffers for intra-node messages no longer required

• Will be increasingly important

– amount of memory per core is not likely to increase in future

• Halo regions are a type of replicated data

– can become significant for small domains (i.e. many processes)

http://www.epcc.ed.ac.uk/

Effect of domain size on halo storage

Local domain size Halos % of data in halos

503 = 125000 523 – 503 = 15608 11%

203 = 8000 223 – 203 = 2648 25%

103 = 1000 123 – 103 = 728 42%

• Typically, using more processors implies a smaller domain

size per processor

– unless the problem can genuinely weak scale

• Although the amount of halo data does decrease as the local

domain size decreases, it eventually starts to occupy a

significant amount fraction of the storage

– even worse with deep halos or >3 dimensions

http://www.epcc.ed.ac.uk/

Poorly scaling MPI codes

• If the MPI version of the code scales poorly, then a mixed

MPI/OpenMP version may scale better.

• May be true in cases where OpenMP scales better than MPI

due to:

1. Algorithmic reasons.

– e.g. adaptive/irregular problems where load balancing in MPI is

difficult.

2. Simplicity reasons

– e.g. 1-D domain decomposition

http://www.epcc.ed.ac.uk/

Load balancing

• Load balancing between MPI processes can be hard

– need to transfer both computational tasks and data from overloaded

to underloaded processes

– transferring small tasks may not be beneficial

– having a global view of loads may not scale well

– may need to restrict to transferring loads only between neighbours

• Load balancing between threads is much easier

– only need to transfer tasks, not data

– overheads are lower, so fine grained balancing is possible

– easier to have a global view

• For applications with load balance problems, keeping the

number of MPI processes small can be an advantage

http://www.epcc.ed.ac.uk/

Limited MPI process numbers

• MPI library implementation may not be able to handle

millions of processes adequately.

– e.g. limited buffer space

– Some MPI operations are hard to implement without O(p)
computation, or O(p) storage in one or more processes

– e.g. AlltoAllv, matching wildcards

• Likely to be an issue on very large systems.

• Mixed MPI/OpenMP implementation will reduce number of

MPI processes.

http://www.epcc.ed.ac.uk/

MPI implementation not tuned for SMP clusters

• Some MPI implementations are not well optimised for SMP

clusters

– less of a problem these days

• Especially true for collective operations (e.g. reduce, alltoall)

• Mixed-mode implementation naturally does the right thing

– reduce within a node via OpenMP reduction clause

– then reduce across nodes with MPI_Reduce

• Mixed-mode code also tends to aggregate messages

– send one large message per node instead of several small ones

– reduces latency effects, and contention for network injection

http://www.epcc.ed.ac.uk/

Styles of mixed-mode programming

• Master-only

– all MPI communication takes place in the sequential part of the

OpenMP program (no MPI in parallel regions)

• Funneled

– all MPI communication takes place through the same (master) thread

– can be inside parallel regions

• Serialized

– only one thread makes MPI calls at any one time

– distinguish sending/receiving threads via MPI tags or communicators

– be very careful about race conditions on send/recv buffers etc.

• Multiple

– MPI communication simultaneously in more than one thread

– some MPI implementations don’t support this

– …and those which do mostly don’t perform well

http://www.epcc.ed.ac.uk/

OpenMP Master-only

!$OMP parallel

work…

!$OMP end parallel

call MPI_Send(…)

!$OMP parallel

work…

!$OMP end parallel

#pragma omp parallel

{

work…

}

ierror=MPI_Send(…);

#pragma omp parallel

{

work…

}

Fortran C

http://www.epcc.ed.ac.uk/

OpenMP Funneled

!$OMP parallel

… work

!$OMP barrier

!$OMP master

call MPI_Send(…)

!$OMP end master

!$OMP barrier

.. work

!$OMP end parallel

#pragma omp parallel

{

… work

#pragma omp barrier

#pragma omp master

{

ierror=MPI_Send(…);

}

#pragma omp barrier

… work

}

Fortran C

http://www.epcc.ed.ac.uk/

OpenMP Serialized

!$OMP parallel

… work

!$OMP critical

call MPI_Send(…)

!$OMP end critical

… work

!$OMP end parallel

#pragma omp parallel

{

… work

#pragma omp critical

{

ierror=MPI_Send(…);

}

… work

}

Fortran C

http://www.epcc.ed.ac.uk/

OpenMP Multiple

!$OMP parallel

… work

call MPI_Send(…)

… work

!$OMP end parallel

#pragma omp parallel

{

… work

ierror=MPI_Send(…);

… work

}

Fortran C

http://www.epcc.ed.ac.uk/

MPI_Init_thread

• MPI_Init_thread works in a similar way to MPI_Init by initialising MPI on

the main thread.

• It has two integer arguments:

– Required ([in] Level of desired thread support)

– Provided ([out] Level of provided thread support)

• C syntax

int MPI_Init_thread(int *argc, char *((*argv)[]), int

required, int *provided);

• Fortran syntax

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR

http://www.epcc.ed.ac.uk/

MPI_Init_thread

• MPI_THREAD_SINGLE

– Only one thread will execute.

• MPI_THREAD_FUNNELED

– The process may be multi-threaded, but only the main thread will make

MPI calls (all MPI calls are funneled to the main thread).

• MPI_THREAD_SERIALIZED

– The process may be multi-threaded, and multiple threads may make

MPI calls, but only one at a time: MPI calls are not made concurrently

from two distinct threads (all MPI calls are serialized).

• MPI_THREAD_MULTIPLE

– Multiple threads may call MPI, with no restrictions.

http://www.epcc.ed.ac.uk/

MPI_Init_thread

• These integer values are monotonic; i.e.,

– MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED

< MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE

• Note that these values do not strictly map on to the

four MPI/OpenMP Mixed-mode styles as they are

more general (i.e. deal with Posix threads where we

don’t have “parallel regions”, etc.)

– e.g. no distinction here between Master-only and Funneled

– see MPI standard for full details

http://www.epcc.ed.ac.uk/

MPI_Query_thread()

• MPI_Query_thread() returns the current level of thread support

– Has one integer argument: provided [in] as defined for MPI_Init_thread()

• C syntax

int MPI_query_thread(int *provided);

• Fortran syntax

MPI_QUERY_THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

• Need to compare the output manually, i.e.

If (provided < requested) {

printf(“Not a high enough level of thread support!\n”);

MPI_Abort(MPI_COMM_WORLD,1)

…etc.

}

http://www.epcc.ed.ac.uk/

Pitfalls

• The OpenMP implementation may introduce additional overheads not

present in the MPI code (e.g. synchronisation, false sharing, sequential

sections).

• The mixed implementation may require more synchronisation than a pure

OpenMP version, if non-thread-safety of MPI is assumed.

• Implicit point-to-point synchronisation may be replaced by (more

expensive) barriers.

• In the pure MPI code, the intra-node messages will often be naturally

overlapped with inter-node messages

– harder to overlap inter-thread communication with inter-node messages.

• NUMA effects can limit the scalability of OpenMP: it may be

advantageous to run one MPI process per NUMA domain, rather than

one MPI process per node.

– process placement becomes very important

http://www.epcc.ed.ac.uk/

Master-only

• Advantages

– simple to write and maintain

– clear separation between outer (MPI) and inner (OpenMP) levels of

parallelism

– no concerns about synchronising threads before/after sending

messages

• Disadvantages

– threads other than the master are idle during MPI calls

– all communicated data passes through the cache where the master

thread is executing.

– inter-process and inter-thread communication do not overlap.

– only way to synchronise threads before and after message transfers

is by parallel regions which have a relatively high overhead.

– packing/unpacking of derived datatypes is sequential.

http://www.epcc.ed.ac.uk/

Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_RECV(A(0),1,.....)

DO I = 1,N

D(I) = A(I-1) + A(I)

END DO

Intra-node messages

overlapped with inter-

node
CALL MPI_BSEND(A(N),1,.....)

http://www.epcc.ed.ac.uk/

Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_RECV(A(0),1,.....)

DO I = 1,N

D(I) = A(I-1) + A(I)

END DO

!$omp parallel do

Intra-node messages

overlapped with inter-

node
CALL MPI_BSEND(A(N),1,.....)

http://www.epcc.ed.ac.uk/

Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_RECV(A(0),1,.....)

DO I = 1,N

D(I) = A(I-1) + A(I)

END DO

!$omp parallel do

Intra-node messages

overlapped with inter-

node

* nthreads

CALL MPI_BSEND(A(N),1,.....)

http://www.epcc.ed.ac.uk/

Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_RECV(A(0),1,.....)

DO I = 1,N

D(I) = A(I-1) + A(I)

END DO

!$omp parallel do

Intra-node messages

overlapped with inter-

node

* nthreads

http://www.epcc.ed.ac.uk/

Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_RECV(A(0),1,.....)

DO I = 1,N

D(I) = A(I-1) + A(I)

END DO

!$omp parallel do

Intra-node messages

overlapped with inter-

node

* nthreads

CALL MPI_BSEND(A(N * nthreads),1,.....)

http://www.epcc.ed.ac.uk/

Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_RECV(A(0),1,.....)

DO I = 1,N

D(I) = A(I-1) + A(I)

END DO

!$omp parallel do

!$omp parallel do

Intra-node messages

overlapped with inter-

node

* nthreads

CALL MPI_BSEND(A(N * nthreads),1,.....)

http://www.epcc.ed.ac.uk/

Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_RECV(A(0),1,.....)

DO I = 1,N

D(I) = A(I-1) + A(I)

END DO

!$omp parallel do

!$omp parallel do

Intra-node messages

overlapped with inter-

node

* nthreads

* nthreads

CALL MPI_BSEND(A(N * nthreads),1,.....)

http://www.epcc.ed.ac.uk/

Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_RECV(A(0),1,.....)

DO I = 1,N

D(I) = A(I-1) + A(I)

END DO

!$omp parallel do

!$omp parallel do

Intra-node messages

overlapped with inter-

node

Inter-thread communication

occurs here

* nthreads

* nthreads

CALL MPI_BSEND(A(N * nthreads),1,.....)

http://www.epcc.ed.ac.uk/

Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_RECV(A(0),1,.....)

DO I = 1,N

D(I) = A(I-1) + A(I)

END DO

!$omp parallel do

!$omp parallel do

Intra-node messages

overlapped with inter-

node

Inter-thread communication

occurs here

* nthreads

* nthreads

CALL MPI_BSEND(A(N * nthreads),1,.....)

http://www.epcc.ed.ac.uk/

Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_RECV(A(0),1,.....)

DO I = 1,N

D(I) = A(I-1) + A(I)

END DO

!$omp parallel do

!$omp parallel do

Intra-node messages

overlapped with inter-

node

Inter-thread communication

occurs here

Implicit barrier added here

* nthreads

* nthreads

CALL MPI_BSEND(A(N * nthreads),1,.....)

http://www.epcc.ed.ac.uk/

Example

DO I=1,N

A(I) = B(I) + C(I)

END DO

CALL MPI_RECV(A(0),1,.....)

DO I = 1,N

D(I) = A(I-1) + A(I)

END DO

!$omp parallel do

!$omp parallel do

Intra-node messages

overlapped with inter-

node

Inter-thread communication

occurs here

Implicit barrier added here

* nthreads

* nthreads

CALL MPI_BSEND(A(N * nthreads),1,.....)

http://www.epcc.ed.ac.uk/

Funneled

• Advantages

– relatively simple to write and maintain

– cheaper ways to synchronise threads before and after message

transfers

– possible for other threads to compute while master is in an MPI call

• Disadvantages

– less clear separation between outer (MPI) and inner (OpenMP) levels

of parallelism

– all communicated data still passes through the cache where the

master thread is executing.

– inter-process and inter-thread communication still do not overlap.

http://www.epcc.ed.ac.uk/

OpenMP Funneled with overlapping (1)

Can’t using

worksharing here!

http://www.epcc.ed.ac.uk/

OpenMP Funneled with overlapping (2)

Higher overheads and

harder to synchronise

between teams

http://www.epcc.ed.ac.uk/

Serialised

• Advantages

– easier for other threads to compute while one is in an MPI call

– can arrange for threads to communicate only their “own” data (i.e. the

data they read and write).

• Disadvantages

– getting harder to write/maintain

– more, smaller messages are sent, incurring additional latency

overheads

– need to use tags or communicators to distinguish between messages

from or to different threads in the same MPI process.

http://www.epcc.ed.ac.uk/

Distinguishing between threads

• By default, a call to MPI_Recv by any thread in an MPI

process will match an incoming message from the sender.

• To distinguish between messages intended for different

threads, we can use MPI tags

– if tags are already in use for other purposes, this gets messy

• Alternatively, different threads can use different MPI

communicators

– OK for simple patterns, e.g. where thread N in one process only ever

communicates with thread N in other processes

– more complex patterns also get messy

http://www.epcc.ed.ac.uk/

Multiple

• Advantages

– Messages from different threads can (in theory) overlap

– many MPI implementations serialise them internally.

– Natural for threads to communicate only their “own” data

– Fewer concerns about synchronising threads (responsibility passed to

the MPI library)

• Disdavantages

– Hard to write/maintain

– Not all MPI implementations support this – loss of portability

– Most MPI implementations don’t perform well like this

– Thread safety implemented crudely using global locks.

http://www.epcc.ed.ac.uk/

End points

• A possible solution to permit more easier use and efficient

implementations of Multiple is to extend MPI so that an MPI

rank may have multiple source and destination identifiers

(end points)

• e.g. if we want 4 threads per MPI process we could create an

MPI communicator with 4 end points per rank

– each thread can use a different end point

• Avoids need to use tags to identify threads

• Currently under discussion in MPI Forum

– might appear in MPI 4.0?

http://www.epcc.ed.ac.uk/

Performance

• Conceptually easy to write

– rather messy

– hard to get good performance: cannot just concentrate on key kernels

P P P P PP P P P P PP

MPI MPI + OpenMP

http://www.epcc.ed.ac.uk/

Consequences

Performance

Developer Time

http://www.epcc.ed.ac.uk/

Summary

• Hybrid programming still a major current research topic

• Many see it as the key to exascale, however …

– will require MPI_THREAD_MULTIPLE style to avoid synchronisation

– ... and end points to make this usable?

• Achieving correctness is hard

– have to consider race conditions on messages

• Achieving performance is hard

– entire application must be threaded (efficiently!)

• Must optimise choice of

– numbers of processes/threads

– placement of processes/threads on NUMA architectures

http://www.epcc.ed.ac.uk/

	1
	2
	3
	4

