Probability and statistics ESWC summer school 2016

Jan Rupnik
Jožef Stefan Institute

Outline

- Basics of probability
- Definition
- Laws
- Random variables
- Statistical inference
- Estimation
- Hypothesis testing

Basics of probability

- Definition
- Laws
- Random variables
- Distributions
- Discrete variables
- Continuous variables
- Expected value, variance
- Joint distributions
- Independence
- Combinations
- Sampling

Probability: defintion

- The probability of an event refers to the likelihood that the event will occur
- If an experiment has n outcomes that are equally likely and a subset of r outcomes are classified as successful, then the probability of a successful outcome is $\frac{r}{n}$
- Example: urn with 3 red and 2 white balls, $\operatorname{Pr}($ pick red $)=\frac{3}{5}$

Probability: defintion

- The relative frequency of an event is the number of times an event occurs, divided by the total number of trials. Probability can be seen as a long-term relative frequencies (number of trials goes to infinity)
- Example: coin toss with two events: $\mathrm{H}, \mathrm{T} . \operatorname{Pr}(H)=\frac{\# H \text { in } n \text { experiments }}{n}$
- Bayesian interpretations (belief)

Probability: notation

- $\operatorname{Pr}(A \cap B)$ - probability of A and B both occurring (intersection)
- $\operatorname{Pr}\left(A^{\prime}\right)$ - probability of A NOT occurring (complement)
- $\operatorname{Pr}(A \mid B)$ - probability of A occurring given that B occurred (conditional)
- $\operatorname{Pr}(A \cup B)$ - probability of A or B occurring (union)
- $\operatorname{Pr}(A \cap B)=0-$ events are mutually exclusive (disjoint)

Probability: notation

- Example - 6 sided dice, events: $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}$:
- $\operatorname{Pr}\left(E_{3} \cap E_{1}\right)=0$
- $\operatorname{Pr}\left(E_{3} \mid E_{>2}\right)=1 / 4$
- $\operatorname{Pr}\left(E_{3} \cup E_{1}\right)=1 / 3$
- $\operatorname{Pr}\left(E_{4}{ }^{\prime}\right)=5 / 6$

Probability: laws

- $\operatorname{Pr}(A) \in[0,1]$
- $\operatorname{Pr}(A)=1-\operatorname{Pr}\left(A^{\prime}\right)$
- $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B \mid A)$
- If $\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \operatorname{Pr}(B)$ we say that events are independent
- If $\operatorname{Pr}(A \cap B \mid C)=\operatorname{Pr}(A \mid C) \operatorname{Pr}(B \mid C)$ we say that events are conditionally independent

Probability: laws

- $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \cap B)$
- $\operatorname{Pr}\left(\mathrm{U}_{i} A_{i}\right) \leq \sum_{i} \operatorname{Pr}\left(A_{i}\right)$, where $A_{1}, A_{2} \ldots$ is a countable set (Boole's inequality)
- If B_{1}, B_{2}, \ldots are mutually disjoint, whose union is the entire space, then: $\operatorname{Pr}(A)=\sum_{n} \operatorname{Pr}\left(A \cap B_{n}\right)$ (total probability)

Probability: random variables

- Maps from events to real numbers
- Example:
- events represent tossing a fair coin n times (2^{n} mutually exclusive equally probable events)
- $X(e)=\#$ heads obtained in the event e
- $X(e)=100$ if all n flips of e result in heads and 0 instead
- When the value of a variable is determined by a chance event, that variable is called a random variable

Probability: random variables

- Discrete random variables map to a countable set
- total of roll of two dices: $2,3, \ldots, 12$
- customer count: $0,1,2, \ldots$
- Continuous random variables map to an uncountable set of numbers
- Task completion time (nonnegative)
- Price of a stock (nonnegative)
- Stock price move

Probability: distributions

- Probability distribution specifies the probability for a random variable to assume a particular value
- X : event $\rightarrow \mathbb{R}$-random variable
- Pr: event \rightarrow [0,1] - probability
- For discrete variables $P(x) \equiv \operatorname{Pr}(X=x)$ is called probability mass function (pmf)
- For continuous variables $f_{X}(x)$ is called probability density function (pdf) such that $\operatorname{Pr}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x$
- Cumulative density function (cdf) is defined as:

$$
F_{X}(b)=\operatorname{Pr}(X \leq b)=\int_{\infty}^{b} f_{X}(x) d x
$$

Probability: discrete distributions

- Example:
- Bernoulli: $X(H)=1, X(T)=0 . P(X=1)=p, P(X=0)=1-p$
- Multinomial (example: unfair dice)
- events represent tossing a fair coin n times (2^{n} mutually exclusive equally probable events)
- $X(e)=$ \#heads obtained in the event e
- $P(X=k)=\frac{\binom{n}{k}}{2^{n}}$
- $X(e)=100$ if all n flips of e result in heads and 0 instead
- $P(X=k)=\left\{\begin{array}{c}\frac{1}{2^{n}} ; \text { if } k=100 \\ 1-\frac{1}{2^{n}} ; \text { if } \mathrm{k}=0 \\ 0 ; \text { else }\end{array}\right.$

Probability: continuous distributions

- $U[a, b]$

- $\mathcal{N}(\mu, \sigma)$

Lognormal

- If $X \sim N(\mu, \sigma)$ then $Y=\ln (X)$ has a lognormal distribution
- Notation: $\ln N(\mu, \sigma)$

Probability: expected value, variance

- Is there a "typical" value (location)? How spread is the distribution - is the distribution spikey or flat (spread)? The answers summarize the shape of the distribution.
- Sometimes the distributions are completely defined by a few parameters (summaries)
- Expected value $E(X)$ and variance $\operatorname{Var}(X)$ are two very important location and spread measures of distributions
- Standard deviation: $\operatorname{Std}(X)=\sqrt{\operatorname{Var}(X)}$

Probability: expected value, variance

- Discrete distribution
- $E(X)=\sum_{i} x_{i} \cdot P\left(x_{i}\right)$
- $\operatorname{Var}(X)=\sum_{i}\left(x_{i}-E(X)\right)^{2} \cdot P\left(x_{i}\right)$

Probability: expected value, variance

- Continuous distribution
- $E(X)=\int x \cdot f_{X}(x) d x$
- $\operatorname{Var}(X)=\int(x-E(X))^{2} \cdot f_{X}(x) d x$
- Examples
- $X \sim N(\mu, \sigma)$
- $E(X)=\mu$
- $\operatorname{Var}(X)=\sigma^{2}$
- $X \sim \ln N(\mu, \sigma)$
- $E(X)=e^{\mu+\frac{\sigma^{2}}{2}}$
- $\operatorname{Var}(X)=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)$

Probability: quantiles

- The median of a random variable X is a value m , so that $\operatorname{Pr}(X \geq$ $m)=0.5$
- The k-th q-quantile is defined similarly as a number x so that $\operatorname{Pr}(X<x) \leq \frac{k}{q}$
- Quartiles ($\mathrm{k}=4$)

Probability: independence

- If X and Y are random variables we can define a multivariate random variable (X, Y) that maps an event e to $(X(e), Y(e))$

- If the random variables are independent, then: $P(X, Y)=P(X) P(Y)$ in the discrete case and $f_{X, Y}(x, y)=f_{X}(x) \cdot f_{Y}(y)$

Probability: sampling

- How to sample from the uniform distribution?
- Physical methods
- Pseudo-random generators
- How to sample from a distribution whose cdf F we know?
- Answer: Inverse transform sampling
- 1. Generate a random u from Uniform[0,1].
- 2. Return the value x such that $\mathrm{F}(\mathrm{x})=\mathrm{u}$.
- IID (independent identically distributed) samples

Statistical inference

- Probabilities describe populations
- Statistics: generating conclusions about a population from a noisy sample
- Elections
- Weather
- Estimation
- point
- interval
- Hypothesis testing

Point estimates: mean

- Distributions and parameters vs samples and estimates
- Unknown variable X with a defined mean μ
- We get a iid sample of n values $S_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$
- Goal: estimate μ based on the sample
- Estimators map samples (sets) to estimates (numbers) of the parameters
- Sample mean estimate: $\mu_{*}=\frac{1}{n} \sum_{i} X_{i}$
- How close are μ_{*} and μ ?
- Note: μ_{*} is random since it is a function (average) of random quantities

Point estimates: variance

- Distributions and parameters vs samples and estimates
- Unknown variable X
- We get a iid sample of n values $S_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$
- Estimate $\operatorname{Var}(X)$
- Sample variance estimator: $\frac{1}{n-1} \sum_{i}\left(X_{i}-\mu_{*}\right)^{2}$

Point estimates: bias

- Distributions and parameters vs samples and estimates
- Unknown variable X
- We get a iid sample of n values $S_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$
- We estimate a parameter (for example μ)
- If we repeatedly did this over many random sample sets S_{n} and get a set of estimates, would their average be close to the real μ ?
- If the answer is YES then the estimator is said to be unbiased

Point estimates: median

- Distributions and parameters vs samples and estimates
- Unknown variable X
- We get a iid sample of n values $S_{n}=\left\{X_{1}, \ldots, X_{n}\right\}$
- Estimate median (X)
- If the pdf of X is normal, then sample median estimator: median $_{*}=$ median $\left(S_{n}\right)$
- If the pdf is not symmetric then the sample median estimator may be biased
- Bias: does the average of estimate over many sample sets equal the true parameter

Interval estimate: confidence intervals

- Point estimators take sample sets and return numbers (estimates of the parameters)
- The estimates are random - how far are they from the true parameter?
- Interval estimators take sample sets and return intervals
- Confidence interval estimator at level α (example 0.90) will contain the true parameter α fraction cases (90%) if we repeated the experiment many times.
- Each time we will get a different parameter estimate and a different interval around it (the width will vary as well)

Interval estimate

- $N(1,2)$
- 100 experimets
- Each time we get a different estimate μ_{*} and a different $90 \% \mathrm{Cl}$
- 87 intervals contain the true $m u=1$

Interval estimate

- How do we compute the interval given a sample?
- We used a bootstrap Cl estimate - a resampling technique
- The idea:
- Use the sample S_{n} to generate m new datasets, each time by picking n numbers from S_{n} with replacement (elements can repeat) to create a sets $S_{n}^{1}, S_{n}^{2}, \ldots S_{n}^{m}$
- [10, 2, 5] -> \{[10,10,5], [2,5,10], [5, 2, 2],[5,5,5]...\}
- Compute μ_{*} on the sample S_{n} and an estimate μ_{*}^{i} for S_{n}^{i}
- [17/3] -> \{25/3, 17/3, 9/3, 15/3...\}
- The differences $\left\{\mu_{*}-\mu_{*}^{1}, \mu_{*}-\mu_{*}^{2} \ldots, \mu_{*}-\mu_{*}^{m}\right\}$ reveal how much the estimate varies
- $\{-8 / 3,0,8 / 3,2 / 3\}$

Interval estimate

Hypothesis testing

- Example
- 100 coin tosses, 54 heads, 46 tails
- Is the coin fair?
- This could be a result of an unfair coin with $p=0.54$, but would we be surprised if a fair coin resulted in $54 \mathrm{H}, 46 \mathrm{~T}$?
- What if we threw 1000 coins and got: $540 \mathrm{H}, 440 \mathrm{~T}$?
- Two competing models - two hypothesis
- H_{0} : coin is fair $p=0.5$
- H_{1} : coin is not fair $p \neq 0.5$

Hypothesis testing

- Example
- 100 coin tosses, 54 heads, 46 tails
- Is the coin fair? Is this difference 54-46 very unexpected for fair coins?
- Two competing models - two hypothesis
- H_{0} : coin is fair $p=0.5$
- H_{1} : coin is not fair $p \neq 0.5$ (two sided test: $\mathbf{p}<\mathbf{0 . 5}$ or $\mathbf{p}>\mathbf{0 . 5}$)
- Strategy:
- Select a confidence level, for example 95\%
- Assume that H_{0} is true and generate many sets of 100 tosses
- Compute the histogram of differences \#H - \#T
- If $54-46=8$ is in the top 2.5% or bottom 2.5% (two sided test) then reject the null hypothesis
- Else, fail to reject (the difference is not large enough)

Hypothesis testing

- Example
- 100 coin tosses, 54 heads, 46 tails
- Is the coin fair? Is this difference 54-46 very unexpected for fair coins?

Not a surprising difference under H_{0}

Hypothesis testing

- Example
- 1000 coin tosses, 540 heads, 460 tails
- Is the coin fair? Is this difference 540-460 very unexpected for fair coins?

Surprising difference under H_{0}
REJECT H_{0} !

Hypothesis testing

- Example
- 10000 coin tosses, 5400 heads, 4600 tails
- Is the coin fair? Is this difference 5400-4600 very unexpected for fair coins?

Hypothesis tests

- Four scenarios
- H_{0} is true, fail to reject
- H_{0} is true, reject (FALSE DISCOVERY, Type I error)
- H_{0} is false, fail to reject (Type II error)
- H_{0} is false, reject (DISCOVERY)
- The power of a test: if the null is false, will we detect it?
- Larger samples => more power
- Bigger differences => more power (harder it is for the null to discourage us)

Different test outcomes

- Explore how different types of errors arise
- Fix the true parameter $p=0.5$ and use a sample size n and see what happens over many scenarios (H_{0} is true)
- Loop
- Generate a random sample
- Test H_{0} : $p=0.5$
- Check result (one of four scenarios)
- Check the error table: how many times did we reject the null?
- How about when H_O

Different test outcomes

- How about when H_{0} is false
- Fix the true parameter $p=0.6$ and use a sample size n and see what happens over many scenarios (H_{0} is true)
- Loop
- Generate a random sample
- Test $H_{0}: p=0.5$
- Check result (one of four scenarios)
- Check the error table: how many times did we fail to reject the null?

