Causal link matrix and AI planning: A model for Web service composition

Freddy Lécué and Alain Léger

{freddy.lecue, alain.leger}@orange-ftgroup.com

France Telecom R&D, France

4, rue du clos courtel F-35512 Cesson Sévigné

and

École Nationale Supérieure des Mines de Saint-Étienne, France 158, cours Fauriel F-42023 Saint-Étienne cedex 2

Overview and Contents

- Introduction
- Background
- Web Service Composition Problem
- Causal link matrix: A formal model for Web service composition
- An AI planning-oriented composition through a CLM
- A causal link-based optimization
- Related Work
- Conclusion and Future Work

Introduction

As Web services proliferate:

- It becomes difficult to find the specific service that can perform the task at hand;
- It becomes even more difficult when there is no single service capable of performing that task.
- But there are combinations of existing services that could.

Ultimate goal: Automated Web service composition in a semantic context i.e., the Semantic Web.

Web Services

A Web Service is a software application identified by a URI, whose interfaces and binding are capable of being defined, described and discovered by XML artifacts and supports direct interactions with other software applications using XML based messages via Internet-based protocols (W3C definition).

A protocol communication.

Web service, Semantic Web and Semantic Web Services

- Nowadays Web: syntax-based Web.
- Semantic Web is an extension of current Web in which information is given well-defined meaning.
 - Ontology: a key enabling technology (RDF, OWL)
- Semantic web principles applied to web services
 - Give a semantics to services description;

Challenges for the Success of Semantic Web Services

From

Sharing at best the skills of Human and Computer for:

- Better precision
- Repetitive tasks
- More creativity
- Time-to-product
- Time-to-market
- Lower price/better quality ...

Functional Level and Process Level Description/Composition

- Such as the Yin and the Yang, FLC and PLC
 - are not opposite but complementary;
 - are interdependent i.e., they are mutually dependent;
 - can be further subdivided (e.g., FLC is divided into Inupt/Output and Pre-Condition/Post-Condition composition);
 - consume and support each other (e.g., PLC consumes FLC);
 - can be transformed into one another (e.g., FLC is transformed into PLC);

Semantic connection between Web services is considered as essential to form new value-added Web services (Functional Level composition);

- Semantic connection between Web services is considered as essential to form new value-added Web services (Functional Level composition);
 - i.e., the semantic link between Input and Output parameters;

- Semantic connection between Web services is considered as essential to form new value-added Web services (Functional Level composition);
 - i.e., the semantic link between Input and Output parameters;
 - The semantic connection is valued by the $Sim_T(Out_s_y, In_s_x)$ function e.g., the *Exact, Plug-in, Subsume* and *Fail* matching functions [M.Paolucci et al. 2002];

- Semantic connection between Web services is considered as essential to form new value-added Web services (Functional Level composition);
 - i.e., the semantic link between Input and Output parameters;
 - The semantic connection is valued by the $Sim_T(Out_s_y, In_s_x)$ function e.g., the *Exact, Plug-in, Subsume* and *Fail* matching functions [M.Paolucci et al. 2002];

So a Causal link is defined as a triple $\langle s_y, Sim_T(Out_s_y, In_s_x), s_x \rangle$.

- Semantic connection between Web services is considered as essential to form new value-added Web services (Functional Level composition);
 - i.e., the semantic link between Input and Output parameters;
 - ✓ The semantic connection is valued by the $Sim_T(Out_s_y, In_s_x)$ function e.g., the *Exact, Plug-in, Subsume* and *Fail* matching functions [M.Paolucci et al. 2002];

- **So a Causal link** is defined as a triple $\langle s_y, Sim_T(Out_s_y, In_s_x), s_x \rangle$.
- Composition as sequences of Web service is a necessary requirement to propose a solution plan.
 - Such a composition is defined by the (trivial) sequence-composability $s_x \circ s_y$;

- Semantic connection between Web services is considered as essential to form new value-added Web services (Functional Level composition);
 - i.e., the semantic link between Input and Output parameters;
 - The semantic connection is valued by the $Sim_{\mathcal{T}}(Out_s_y, In_s_x)$ function e.g., the *Exact, Plug-in, Subsume* and *Fail* matching functions [M.Paolucci et al. 2002];

- So a **Causal link** is defined as a triple $\langle s_y, Sim_T(Out_s_y, In_s_x), s_x \rangle$.
- Composition as sequences of Web service is a necessary requirement to propose a solution plan.
 - Such a composition is defined by the (trivial) sequence-composability $s_x \circ s_y$;
 - ... but not only e.g., (parallel) disjunction, and non determinism constructs.

- Find an appropriate and innovative formal model for:
 - proposing a necessary starting point for the automation of WSC;
 - improving the way to store semantic links as Web service dependencies;
 - easing Web service composition and selection;
 - ... under the Sequence-composability constraints;
- The key contribution of the Causal link matrix is a formal and semantic model to control a set of Web services which are relevant for a Web service composition.
- The CLM aims at storing all those connections (i.e., causal links) by a pre-computation of Input and Output parameters matching: Sequence-composability.
- The *CLM* describes all possible interactions between all the known Web services in S_{Ws} as semantic connections.

Requirements:

• An ontology T to infer concepts Matching;

Output/Input		Input Parameters] ~
Parameters		I_1	I_2	Organization	$I_{\#\{Input\{S_{Ws}\}\}}$	
	<i>O</i> ₁	$v_{1,1}$	$v_{1,2}$	$v_{1,i}$	$v_{1,n}$]_
Output	O_2	$v_{2,1}$	$v_{2,2}$	$v_{2,i}$	$v_{2,n}$	
Parameters	EmergencyDpt	fail	fail	plug-in	fail	
	$O_{\#\{Output\{S_{Ws}\}\}}$	$v_{m,1}$	$v_{m,2}$	$v_{m,i}$	$v_{m,n}$	/

- An ontology \mathcal{T} to infer concepts Matching;
- An AI planning problem $\Pi = \langle S_{Ws}, \mathcal{KB}, \beta \rangle$;
 - S_{Ws} refers to a set of possible state transitions;

- An ontology T to infer concepts Matching;
- An AI planning problem $\Pi = \langle S_{Ws}, \mathcal{KB}, \beta \rangle;$
 - S_{Ws} refers to a set of possible state transitions;
 - *KB* is the Initial state. Individuals e.g., an instance of the concept Patient and another of Device Address.

- An ontology T to infer concepts Matching;
- An AI planning problem $\Pi = \langle S_{Ws}, \mathcal{KB}, \beta \rangle$;
 - S_{Ws} refers to a set of possible state transitions;
 - **S**KB is the*Initial state*.

- An ontology T to infer concepts Matching;
- An AI planning problem $\Pi = \langle S_{Ws}, \mathcal{KB}, \beta \rangle$;
 - S_{Ws} refers to a set of possible state transitions;

 - $\ \, {\beta} \subseteq {\mathcal T} \text{ is an explicit goal representation.}$
- A causal link matrix \mathcal{M} and its causal links;

- An ontology T to infer concepts Matching;
- An AI planning problem $\Pi = \langle S_{Ws}, \mathcal{KB}, \beta \rangle$;
 - S_{Ws} refers to a set of possible state transitions;

 - $\ \, {\beta \subseteq \mathcal{T}} \ \, \text{is an explicit goal representation.}$
- A causal link matrix \mathcal{M} and its causal links;
- Methodology:
 - Computation of consistent, correct and complete solution plans of the Functional-level composition with the backward chaining technique: A plan of Web services is generated for finding an optimal plan among various compositions.

- An ontology T to infer concepts Matching;
- An AI planning problem $\Pi = \langle S_{Ws}, \mathcal{KB}, \beta \rangle$;
 - S_{Ws} refers to a set of possible state transitions;

 - $\ \, {\beta \subseteq \mathcal{T}} \ \, \text{is an explicit goal representation.}$
- A causal link matrix \mathcal{M} and its causal links;
- Methodology:
 - Computation of consistent, correct and complete solution plans of the Functional-level composition with the backward chaining technique: A plan of Web services is generated for finding an optimal plan among various compositions.
 - Computation of the optimal solution plan by pruning of the plan solution space.

Requirements:

- An ontology T to infer concepts Matching;
- An AI planning problem $\Pi = \langle S_{Ws}, \mathcal{KB}, \beta \rangle$;
 - S_{Ws} refers to a set of possible state transitions;

 - $\ \, {\beta \subseteq \mathcal{T}} \ \, \text{is an explicit goal representation.}$
- A causal link matrix \mathcal{M} and its causal links;
- Methodology:
 - Computation of consistent, correct and complete solution plans of the Functional-level composition with the backward chaining technique: A plan of Web services is generated for finding an optimal plan among various compositions.
 - Computation of the optimal solution plan by pruning of the plan solution space.

Assumption:

- The set of Web services S_{Ws} is closed.
- Non determinism, Implicit goal, Fuzzy Web service description and behaviour are out of scope.

In case DeviceAddress and Patient are instantiated concepts.

The composition process consists of a recursive and regression-based approach: Ra_4C ;

- The composition process consists of a recursive and regression-based approach: Ra_4C ;
 - From the goal Person

- The composition process consists of a recursive and regression-based approach: Ra_4C ;
 - From the goal Person

The composition process consists of a recursive and regression-based approach: Ra_4C ;

• From the goal Person, the new goal Organization

The composition process consists of a recursive and regression-based approach: Ra_4C ;

• From the goal Person, the new goal Organization

The composition process consists of a recursive and regression-based approach: Ra_4C ;

 ${f I}$ From the goal Person, Organization, the new goal WL

- The composition process consists of a recursive and regression based approach: Ra_4C ;
 - ${f
 ho}$ From the goal Person, Organization, the new goal WL

The composition process consists of a recursive and regression-based approach: Ra_4C ;

• From the goal Person, Organization, WL, the new goal BP

$$\bigcirc \xrightarrow{?} \textcircled{BP} \xleftarrow{(S_c, 1)} \textcircled{WL} \xleftarrow{(S_d, \frac{2}{3})} \textcircled{Or.} \xleftarrow{(S_b, 1)} \textcircled{Pe.}$$

The composition process consists of a recursive and regression-based approach: Ra_4C ;

• From the goal Person, the new goal Organization

The composition process consists of a recursive and regression-based approach: Ra_4C ;

• From the goal Person, the new goals Organization, WL

The composition process consists of a recursive and regression-based approach: Ra_4C ;

• From the goal Person, the new goals Organization, WL

The composition process consists of a recursive and regression-based approach: Ra_4C ;

• From the goal Person, Organization, WL, the new goal BP

Formal results

The algorithmic complexity for the CLM construction is:

- $\theta(\#(Input(S_{Ws})) \times \#(Output(S_{Ws})));$
- **•** i.e., $\theta((Max\{\#(Input(S_{Ws})), \#(Output(S_{Ws}))\}^2);$
- so square in the worst case.

The algoritmic complexity of the Ra_4C algorithm is time polynomial

🍠 in

- \checkmark #rows, #columns of the Causal Link Matrix,
- i.e., $\#(Input(S_{Ws}))$.
- 🔎 with
 - Fail nodes detection;
 - Loop nodes detection;
- In general cases $\theta(BuildClm) > \theta(Ra_4C)$.

The Ra_4C algorithm returns a set of **correct**, **complete** and **consistent plans**.

- **P** The Ra_4C algorithm returns a set of **correct**, **complete** and **consistent plans**.
- However such a set may contain a large number of plans:
 - Pruning strategies of plans'space is necessary to propose an optimal solution;
 - A causal link-based optimization criteria is proposed to detect the optimal plan.

- The Ra_4C algorithm returns a set of correct, complete and consistent plans.
- However such a set may contain a large number of plans:
 - Pruning strategies of plans'space is necessary to propose an optimal solution;
 - A causal link-based optimization criteria is proposed to detect the optimal plan.
- \checkmark The weight of the optimal plan is computed by means of the *CLM* and Ra_4C algorithm.

$$W_{Max}(\beta) = Max_{S_c} \left\{ \frac{1}{\# In(s_y)^2} \sum_{In(s_y)} m_{I_i,\beta} . score \times \left(\prod_{In(s_y)} (W_{Max}(I_i))\right) \right\}$$

- The Ra_4C algorithm returns a set of **correct**, **complete** and **consistent plans**.
- B However such a set may contain a large number of plans:
 - Pruning strategies of plans'space is necessary to propose an optimal solution;
 - A causal link-based optimization criteria is proposed to detect the optimal plan.
- The weight of the optimal plan is computed by means of the CLM and Ra_4C algorithm.

$$W_{Max}(\beta) = Max_{S_c} \left\{ \frac{1}{\#In(s_y)^2} \sum_{In(s_y)} m_{I_i,\beta} . score \times \left(\prod_{In(s_y)} (W_{Max}(I_i))\right) \right\}$$

is still the goal,

- The Ra_4C algorithm returns a set of **correct**, **complete** and **consistent plans**.
- However such a set may contain a large number of plans:
 - Pruning strategies of plans'space is necessary to propose an optimal solution;
 - A causal link-based optimization criteria is proposed to detect the optimal plan.
- **D** The weight of the optimal plan is computed by means of the *CLM* and Ra_4C algorithm.

$$W_{Max}(\beta) = Max_{S_c} \left\{ \frac{1}{\#In(s_y)^2} \sum_{In(s_y)} m_{I_i,\beta} . score \times \left(\prod_{In(s_y)} (W_{Max}(I_i))\right) \right\}$$

• S_c is a set of couple (s_y, v) such that s_y is a Web service with an output β and inputs $I_{i,1 \le i \le \#In(s_y)}$: $\langle s_y, Sim_T(Out_s_y, \beta), s_x \rangle$ is a valid causal link.

- The Ra_4C algorithm returns a set of correct, complete and consistent plans.
- However such a set may contain a large number of plans:
 - Pruning strategies of plans'space is necessary to propose an optimal solution;
 - A causal link-based optimization criteria is proposed to detect the optimal plan.
- **D** The weight of the optimal plan is computed by means of the *CLM* and Ra_4C algorithm.

$$W_{Max}(\beta) = Max_{S_c} \{ \frac{1}{\#In(s_y)^2} \sum_{In(s_y)} m_{I_i,\beta} . score \times (\prod_{In(s_y)} (W_{Max}(I_i))) \}$$

Solution The first ratio is depending on the cardinal of the input parameters of s_y .

- The Ra_4C algorithm returns a set of **correct**, **complete** and **consistent plans**.
- However such a set may contain a large number of plans:
 - Pruning strategies of plans'space is necessary to propose an optimal solution;
 - A causal link-based optimization criteria is proposed to detect the optimal plan.
- The weight of the optimal plan is computed by means of the *CLM* and Ra_4C algorithm.

$$W_{Max}(\beta) = Max_{S_c} \{ \frac{1}{\#In(s_y)^2} \sum_{In(s_y)} m_{I_i,\beta} . score \times (\prod_{In(s_y)} (W_{Max}(I_i))) \}$$

Solution The first sum is depending on semantic similarity between an output parameter of s_y and β .

- The Ra_4C algorithm returns a set of **correct**, **complete** and **consistent plans**.
- B However such a set may contain a large number of plans:
 - Pruning strategies of plans'space is necessary to propose an optimal solution;
 - A causal link-based optimization criteria is proposed to detect the optimal plan.
- The weight of the optimal plan is computed by means of the *CLM* and Ra_4C algorithm.

$$W_{Max}(\beta) = Max_{S_c} \left\{ \frac{1}{\#In(s_y)^2} \sum_{In(s_y)} m_{I_i,\beta} \cdot score \times \left(\prod_{In(s_y)} (W_{Max}(I_i))\right) \right\}$$

The first component proposes a causal link-based optimization: The shorter is the solution path the better it is.

- The Ra_4C algorithm returns a set of correct, complete and consistent plans.
- However such a set may contain a large number of plans:
 - Pruning strategies of plans'space is necessary to propose an optimal solution;
 - A causal link-based optimization criteria is proposed to detect the optimal plan.
- **D** The weight of the optimal plan is computed by means of the *CLM* and Ra_4C algorithm.

$$W_{Max}(\beta) = Max_{S_c} \{ \frac{1}{\#In(s_y)^2} \sum_{In(s_y)} m_{I_i,\beta}.score \times (\prod_{In(s_y)} (W_{Max}(I_i))) \}$$

The second component is the recursive process.

- The Ra_4C algorithm returns a set of **correct**, **complete** and **consistent plans**.
- However such a set may contain a large number of plans:
 - Pruning strategies of plans'space is necessary to propose an optimal solution;
 - A causal link-based optimization criteria is proposed to detect the optimal plan.
- The weight of the optimal plan is computed by means of the CLM and Ra_4C algorithm.

$$W_{Max}(\beta) = Max_{S_c} \left\{ \frac{1}{\#In(s_y)^2} \sum_{In(s_y)} m_{I_i,\beta} . score \times \left(\prod_{In(s_y)} (W_{Max}(I_i))\right) \right\}$$

$$Max_{S_c} \text{ is a } n \text{-arity function which returns the maximum value between } n \text{ float value(s) depending on the } S_c \text{ elements.}$$

- The Ra_4C algorithm returns a set of correct, complete and consistent plans.
- B However such a set may contain a large number of plans:
 - Pruning strategies of plans'space is necessary to propose an optimal solution;
 - A causal link-based optimization criteria is proposed to detect the optimal plan.
- The weight of the optimal plan is computed by means of the *CLM* and Ra_4C algorithm.

$$W_{Max}(\beta) = Max_{S_c} \left\{ \frac{1}{\#In(s_y)^2} \sum_{In(s_y)} m_{I_i,\beta} . score \times \left(\prod_{In(s_y)} (W_{Max}(I_i))\right) \right\}$$

- Even if the optimal global plan may be obtained by $Max_{p \in Plan} \{Weight(p)\}$.
 - wherein the function Weight(p) computes the weight of each solution plan discovered by the Ra_4C algorithm.

Related Work

Models for automatic composition have roots in

- AI planning (Situation calculii: Strips influence, HTN) e.g., [Golog], [ConGoloG], [SHOP2];
- Logic (Description Logics, Linear Logic, first-order logic);
- (Guarded) Finite State Automata e.g., [WSAT], [Roman Model], [Mealy Model], [COCOA];
- Petri nets, Coloured Petri Nets;
- **9** π Calculus, Process Calculus.
- What is the right way to model web services and their compositions?
- Web services composition:
 - Functional-level composition: e.g., [M.Paolucci et al. 2002], [E.Sirin, J.Hendler, and B.Parsia 2003], [J.Cardoso and A.Sheth 2003], [R.Zhang et al. 2003].
 - Process-level composition: e.g., [D.Berardi et al. 2003], [T.Bultan et al. 2003], [S.Narayanan and S.McIlraith 2002], [M.Pistore et al. 2005].

Conclusion and Future work

A model is proposed to help automation of Web service composition at functional level:

- by capturing semantic connections between Web services: Causal links;
- by provinding a relevant starting point to solve an AI planning problem: Causal link matrix;
- by applying a regression-based approach: Ra_4C ;
- by satisfying an optimization criteria;
- in order to obtain correct, complete, consistent and optimal plans through the Sequence-composability property.
- Easily applied to Web services which are described according to SAWSDL, OWL-S (service profile) or WSMO (capability model) specification;

Future Work:

- Extending the set of semantic Web service matching functions for optimization reasons;
- Scalability of the model.

Questions?

