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A RESEARCH AGENDA
• Deep learning successes have required a lot of labeled training data
‣ collecting and labeling such data requires significant human labor 

‣ is that really how we’ll solve AI ?

• Alternative solution : exploit other sources of data that are imperfect but plentiful
‣ unlabeled data (unsupervised learning)

‣ multimodal data (multimodal learning)

‣ multidomain data (transfer learning, domain adaptation)
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A RESEARCH AGENDA
• By far the largest source is unlabeled data
‣ effectively requires algorithms for life-long learning

• We are currently poorly equipped to deal with this setting
‣ how to do online learning for non-convex models, with a changing input distribution?

‣ how to have models whose capacity adapts during training?
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• In this talk: an infinite restricted Boltzmann machine (iRBM)
‣ RBM with capacity that can grow during training

‣ growing mechanism is derived naturally from the energy function definition
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Figure 1: a) RBM: inter-connections between visible and hidden units use symmetric weights.
b) Ordered RBM: Since z = 2, only the first two hidden units are selected. c) Infinite RBM: With
z = 2, only the first two hidden units are currently selected. Dashed lines illustrate there are trained
connections (non-zero) with the third hidden unit. All (infinitely many) hidden units after the third
have zero-valued weights, which correspond to l being equal to 3.

where rWF (v) = E[h|v]vT

=

bh(v)vT , rbhF (v) = E[h|v] = bh(v), rbvF (v) = v and where
bh(v) = �(Wv + bh

) with �(·) being the sigmoid function �(x) = 1
1+e

�x

applied element-wise.

Intuitively, the positive phase pushes up the probability of examples coming from our training set,
whereas the negative phase lowers the probability of examples generated by the model. Much like
the partition function, the negative phase is intractable. To overcome this we approximate the ex-
pectation under P (v) with an average of S samples S = {ˆv

s

}S
s=1 drawn from P (v) i.e. the model.
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Moreover, mini-batch training is usually employed and consists in replacing the positive phase av-
erage by one over a small subset of the training set, different for every training update.

Sampling from P (v) can be achieved using block Gibbs sampling, by alternating between sampling
v ⇠ P (v|h) and h ⇠ P (h|v). It can be done efficiently because RBMs have no connections within
a layer, meaning that hidden units are conditionally independent given the visible units and vice
versa. The conditional distributions of a binary RBM are Bernoulli distributions with parameters

P (h
i

= 1|v) = �(W
i·v + bh

i

) and P (v
j

= 1|h) = �(hTW·j + bv
j

). (7)

In theory, the Markov chain should be run until equilibrium before drawing a sample for every
training update, which is highly inefficient. Thus, Contrastive Divergence (CD) learning is often
employed, where we initialize the update’s Gibbs chains to the training examples and only perform T
steps of Gibbs sampling [6]. Another approach, referred to as stochastic approximation or Persistent
CD (PCD) [7], is to not reinitialize the Gibbs chains between updates.

3 Ordered Restricted Boltzmann Machine

The model we propose is a variant of the RBM where the hidden units h are ordered from left to
right, with this order being taken into account by the energy function. We refer to this model as an
ordered RBM (oRBM). As shown in Figure 1(b), the oRBM takes hidden unit order into account
by introducing a random variable z that can be understood as the effective number of hidden units
participating to the energy. Hidden units are selected starting from the left and the selection of each
hidden unit is associated with an incremental cost in energy.

Concretely, we define the energy function of the oRBM as

E(v,h, z) = �vTbv �
zX

i=1

h
i

(W
i·v + bh

i

)� �
i

(8)

where z represents the number of selected hidden units that are active and �
i

is a energy penalty for
selecting each ith hidden unit. As we will see, carefully parametrizing the per unit energy penalty
will allow us to consider the case of an infinite pool of hidden units.
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• Free energy, given a certain value of z

• For the iRBM to be practical, we must be able to compute

In our experiments, as we wanted the filters of each unit to be the dominating factor in a unit being
selected, we parametrized it as �

i

= �soft+(bh
i

), where � is a global hyper-parameter (critically,
as we’ll discuss later, this hyper-parameter doesn’t actually require tuning and a generic value for it
works fine). Intuitively, it forces the model to avoid using more hidden units than needed, prioritizing
smaller networks. Having the penalty depending on the hidden biases also implies that the selection
of a hidden units will be mostly controlled by the values taken by the connections W. Higher values
of the bias of a hidden unit will not increase its probability of being selected. In other words, for the
model to increase its capacity and better fit the training data, it will have to learn better filters. Note
that alternative parametrizations could certainly be considered.

As with the RBM, P (v) is defined in terms of its energy function. For this, we have to specify the
set of legal values for v, h and z. Since, for a given z, the value of the energy is irrelevant for the
dimensions of h from z to K, we will assume they are set to 0. There is thus a coupling between the
value of z and the legal values of h. We will note H

z

= {h 2 H|h
k

= 0 8k > z} the legal values
of h for a given z. As for z, it can vary in [1,K], and v 2 V as usual.

The joint probability over v, h and z is thus:

P (v,h, z) =
1

Z
e�E(v,h,z) with Z =

KX

z

0=1

X

v02V

X

h02H
z

0

e�E(v0
,h0

,z

0). (9)

As for the marginal distribution P (v) of the oRBM model, it can also be written in terms of a free
energy. Indeed, in a derivation similar to the case of the RBM, we can show:

P (v) =
1

Z

KX

z=1

X

h2H
z

e�E(v,h,z)
=

1

Z

KX

z=1

e�F (v,z) (10)

F (v, z) = �vTbv �
zX

i=1

soft+(Wi·v + bh
i

)� �
i

(11)

This gives us a free energy where only the hidden units have been marginalized. We can also derive
a formulation where the free energy depends only on v:

P (v) =
1

Z

KX

z=1

e�F (v,z)
=

1

Z
e�F (v) with F (v) = ln

 
KX

z=1

e�F (v,z)

!
(12)

It should be noticed that, in the oRBM, z does not correspond to the number of hidden units assumed
to have generated all observations. Instead, the model allows for different observations having
been generated by a different number of hidden units. Specifically, for a given v, the conditional
distribution over the corresponding value of z is

P (z|v) = exp(�F (v, z))
P

K

z

0 exp(�F (v, z0))
. (13)

As for the conditional distribution over the hidden units, given a value of z it takes the same form
as for the regular RBM, except for unselected hidden units which are forced to zero. Similarly, the
distribution of v given a value of the hidden layer and z reflects that of the RBM:

P (h
i

= 1|v, z) =
⇢
�(W

i·v + bh
i

) if i  z

0 otherwise
(14)

P (v
j

= 1|h, z) = �

 
zX

i=1

W
ij

h
i

+ bv
j

!
(15)

To train the oRBM, we can also rely on CD or PCD for estimating the gradients based on Equation 6.

Defining 1
z

= [

zz }| {
1, . . . , 1, 0, . . . , 0]T and cdf(z|v) = [P (z < 1|v), . . . , P (z < K|v)]T with �

denoting the element-wise product, the free energy gradients are then slightly modified as follows:

rWF (v) = E[h� 1
z

|v]vT

= (

bh(v)� (1� cdf(z|v)))vT (16)

rbhF (v) = E[(h� �(bh
))� 1

z

|v] = (

bh(v)� �(bh
))� (1� cdf(z|v)) (17)

rbvF (v) = v (18)

4

Compared to the RBM, computing these gradients requires one additional quantity: the vector of
cumulative probabilities cdf(z|v). Fortunately, this quantity can be efficiently computed, in O(K),
by first computing the required probabilities vector P (z|v) and performing a cumulative sum.

Sampling from P (v) slightly differs from the RBM as we need to consider z in the Markov chain.
With the oRBM, Gibbs steps alternate between sampling (h, z) ⇠ P (h, z|v) and v ⇠ P (v|h, z).
Sampling from P (h, z|v) is done in two steps: z ⇠ P (z|v) followed by h ⇠ P (h|v, z).
During training, what we observe is that the hidden units are each trained gradually, in sequence,
from left to right. This effect is mainly due to the multiplicative term (1� cdf(z|v)) in the hidden
unit parameter updates of Equations 16 and 17, which is monotonically decreasing. Effectively, the
model is thus growing in capacity during training, until its maximum capacity of K hidden units.

4 Infinite Restricted Boltzmann Machine

This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).

This limit is made possible thanks to two modeling choices. The first is the assumption that a finite
(but variable!) number of hidden units have non-zero weights and biases. This is trivial to ensure,
for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.

The second key choice is our parametrization of the per-unit energy penalty �
i

, which will ensure
that the infinite sums required in computing probabilities will be convergent. For instance, consider
the conditional P (z|v):

P (z|v) = exp(�F (v, z))

Z(v)
=

exp(�F (v, z))P1
z

0 exp(�F (v, z0))
(19)

Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
split the normalization constant Z(v) of Equation 19 into two parts, split at z = l, as follows:

Z(v) =
lX

z=1

exp(�F (v, z)) +
1X

z=l+1

exp(�F (v, z))

=

lX

z=1

exp(�F (v, z)) +
1X

z=l+1

exp

 
�F (v, l) +

zX

i=l+1

soft+(Wi·v + bh
i

)� �
i

!

=

lX

z=1

exp(�F (v, z)) + exp(�F (v, l))
1X

z=1

exp((1� �)soft+(0))z

| {z }
Geometric series

(20)

where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
split the normalization constant Z(v) of Equation 19 into two parts, split at z = l, as follows:
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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Compared to the RBM, computing these gradients requires one additional quantity: the vector of
cumulative probabilities cdf(z|v). Fortunately, this quantity can be efficiently computed, in O(K),
by first computing the required probabilities vector P (z|v) and performing a cumulative sum.

Sampling from P (v) slightly differs from the RBM as we need to consider z in the Markov chain.
With the oRBM, Gibbs steps alternate between sampling (h, z) ⇠ P (h, z|v) and v ⇠ P (v|h, z).
Sampling from P (h, z|v) is done in two steps: z ⇠ P (z|v) followed by h ⇠ P (h|v, z).
During training, what we observe is that the hidden units are each trained gradually, in sequence,
from left to right. This effect is mainly due to the multiplicative term (1� cdf(z|v)) in the hidden
unit parameter updates of Equations 16 and 17, which is monotonically decreasing. Effectively, the
model is thus growing in capacity during training, until its maximum capacity of K hidden units.

4 Infinite Restricted Boltzmann Machine

This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).

This limit is made possible thanks to two modeling choices. The first is the assumption that a finite
(but variable!) number of hidden units have non-zero weights and biases. This is trivial to ensure,
for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.

The second key choice is our parametrization of the per-unit energy penalty �
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, which will ensure
that the infinite sums required in computing probabilities will be convergent. For instance, consider
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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unit parameter updates of Equations 16 and 17, which is monotonically decreasing. Effectively, the
model is thus growing in capacity during training, until its maximum capacity of K hidden units.
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This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).

This limit is made possible thanks to two modeling choices. The first is the assumption that a finite
(but variable!) number of hidden units have non-zero weights and biases. This is trivial to ensure,
for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.

The second key choice is our parametrization of the per-unit energy penalty �
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, which will ensure
that the infinite sums required in computing probabilities will be convergent. For instance, consider
the conditional P (z|v):
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Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
split the normalization constant Z(v) of Equation 19 into two parts, split at z = l, as follows:
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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Sampling from P (h, z|v) is done in two steps: z ⇠ P (z|v) followed by h ⇠ P (h|v, z).
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without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).

This limit is made possible thanks to two modeling choices. The first is the assumption that a finite
(but variable!) number of hidden units have non-zero weights and biases. This is trivial to ensure,
for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.

The second key choice is our parametrization of the per-unit energy penalty �
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, which will ensure
that the infinite sums required in computing probabilities will be convergent. For instance, consider
the conditional P (z|v):
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Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
split the normalization constant Z(v) of Equation 19 into two parts, split at z = l, as follows:
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).

This limit is made possible thanks to two modeling choices. The first is the assumption that a finite
(but variable!) number of hidden units have non-zero weights and biases. This is trivial to ensure,
for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.

The second key choice is our parametrization of the per-unit energy penalty �
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, which will ensure
that the infinite sums required in computing probabilities will be convergent. For instance, consider
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Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
split the normalization constant Z(v) of Equation 19 into two parts, split at z = l, as follows:
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.
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Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
split the normalization constant Z(v) of Equation 19 into two parts, split at z = l, as follows:
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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In our experiments, as we wanted the filters of each unit to be the dominating factor in a unit being
selected, we parametrized it as �

i
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), where � is a global hyper-parameter (critically,
as we’ll discuss later, this hyper-parameter doesn’t actually require tuning and a generic value for it
works fine). Intuitively, it forces the model to avoid using more hidden units than needed, prioritizing
smaller networks. Having the penalty depending on the hidden biases also implies that the selection
of a hidden units will be mostly controlled by the values taken by the connections W. Higher values
of the bias of a hidden unit will not increase its probability of being selected. In other words, for the
model to increase its capacity and better fit the training data, it will have to learn better filters. Note
that alternative parametrizations could certainly be considered.

As with the RBM, P (v) is defined in terms of its energy function. For this, we have to specify the
set of legal values for v, h and z. Since, for a given z, the value of the energy is irrelevant for the
dimensions of h from z to K, we will assume they are set to 0. There is thus a coupling between the
value of z and the legal values of h. We will note H
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of h for a given z. As for z, it can vary in [1,K], and v 2 V as usual.
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As for the marginal distribution P (v) of the oRBM model, it can also be written in terms of a free
energy. Indeed, in a derivation similar to the case of the RBM, we can show:
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This gives us a free energy where only the hidden units have been marginalized. We can also derive
a formulation where the free energy depends only on v:
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It should be noticed that, in the oRBM, z does not correspond to the number of hidden units assumed
to have generated all observations. Instead, the model allows for different observations having
been generated by a different number of hidden units. Specifically, for a given v, the conditional
distribution over the corresponding value of z is

P (z|v) = exp(�F (v, z))
P

K

z
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. (13)

As for the conditional distribution over the hidden units, given a value of z it takes the same form
as for the regular RBM, except for unselected hidden units which are forced to zero. Similarly, the
distribution of v given a value of the hidden layer and z reflects that of the RBM:
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To train the oRBM, we can also rely on CD or PCD for estimating the gradients based on Equation 6.

Defining 1
z

= [
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1, . . . , 1, 0, . . . , 0]T and cdf(z|v) = [P (z < 1|v), . . . , P (z < K|v)]T with �

denoting the element-wise product, the free energy gradients are then slightly modified as follows:
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Compared to the RBM, computing these gradients requires one additional quantity: the vector of
cumulative probabilities cdf(z|v). Fortunately, this quantity can be efficiently computed, in O(K),
by first computing the required probabilities vector P (z|v) and performing a cumulative sum.

Sampling from P (v) slightly differs from the RBM as we need to consider z in the Markov chain.
With the oRBM, Gibbs steps alternate between sampling (h, z) ⇠ P (h, z|v) and v ⇠ P (v|h, z).
Sampling from P (h, z|v) is done in two steps: z ⇠ P (z|v) followed by h ⇠ P (h|v, z).
During training, what we observe is that the hidden units are each trained gradually, in sequence,
from left to right. This effect is mainly due to the multiplicative term (1� cdf(z|v)) in the hidden
unit parameter updates of Equations 16 and 17, which is monotonically decreasing. Effectively, the
model is thus growing in capacity during training, until its maximum capacity of K hidden units.

4 Infinite Restricted Boltzmann Machine

This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).

This limit is made possible thanks to two modeling choices. The first is the assumption that a finite
(but variable!) number of hidden units have non-zero weights and biases. This is trivial to ensure,
for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.

The second key choice is our parametrization of the per-unit energy penalty �
i

, which will ensure
that the infinite sums required in computing probabilities will be convergent. For instance, consider
the conditional P (z|v):

P (z|v) = exp(�F (v, z))

Z(v)
=

exp(�F (v, z))P1
z

0 exp(�F (v, z0))
(19)

Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
split the normalization constant Z(v) of Equation 19 into two parts, split at z = l, as follows:
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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Compared to the RBM, computing these gradients requires one additional quantity: the vector of
cumulative probabilities cdf(z|v). Fortunately, this quantity can be efficiently computed, in O(K),
by first computing the required probabilities vector P (z|v) and performing a cumulative sum.

Sampling from P (v) slightly differs from the RBM as we need to consider z in the Markov chain.
With the oRBM, Gibbs steps alternate between sampling (h, z) ⇠ P (h, z|v) and v ⇠ P (v|h, z).
Sampling from P (h, z|v) is done in two steps: z ⇠ P (z|v) followed by h ⇠ P (h|v, z).
During training, what we observe is that the hidden units are each trained gradually, in sequence,
from left to right. This effect is mainly due to the multiplicative term (1� cdf(z|v)) in the hidden
unit parameter updates of Equations 16 and 17, which is monotonically decreasing. Effectively, the
model is thus growing in capacity during training, until its maximum capacity of K hidden units.

4 Infinite Restricted Boltzmann Machine

This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).

This limit is made possible thanks to two modeling choices. The first is the assumption that a finite
(but variable!) number of hidden units have non-zero weights and biases. This is trivial to ensure,
for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.

The second key choice is our parametrization of the per-unit energy penalty �
i

, which will ensure
that the infinite sums required in computing probabilities will be convergent. For instance, consider
the conditional P (z|v):
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Z(v)
=

exp(�F (v, z))P1
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(19)

Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
split the normalization constant Z(v) of Equation 19 into two parts, split at z = l, as follows:
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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In our experiments, as we wanted the filters of each unit to be the dominating factor in a unit being
selected, we parametrized it as �

i

= �soft+(bh
i

), where � is a global hyper-parameter (critically,
as we’ll discuss later, this hyper-parameter doesn’t actually require tuning and a generic value for it
works fine). Intuitively, it forces the model to avoid using more hidden units than needed, prioritizing
smaller networks. Having the penalty depending on the hidden biases also implies that the selection
of a hidden units will be mostly controlled by the values taken by the connections W. Higher values
of the bias of a hidden unit will not increase its probability of being selected. In other words, for the
model to increase its capacity and better fit the training data, it will have to learn better filters. Note
that alternative parametrizations could certainly be considered.

As with the RBM, P (v) is defined in terms of its energy function. For this, we have to specify the
set of legal values for v, h and z. Since, for a given z, the value of the energy is irrelevant for the
dimensions of h from z to K, we will assume they are set to 0. There is thus a coupling between the
value of z and the legal values of h. We will note H

z

= {h 2 H|h
k

= 0 8k > z} the legal values
of h for a given z. As for z, it can vary in [1,K], and v 2 V as usual.

The joint probability over v, h and z is thus:
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Z
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,z

0). (9)

As for the marginal distribution P (v) of the oRBM model, it can also be written in terms of a free
energy. Indeed, in a derivation similar to the case of the RBM, we can show:

P (v) =
1

Z

KX

z=1

X

h2H
z

e�E(v,h,z)
=

1

Z

KX

z=1

e�F (v,z) (10)

F (v, z) = �vTbv �
zX

i=1

soft+(Wi·v + bh
i

)� �
i

(11)

This gives us a free energy where only the hidden units have been marginalized. We can also derive
a formulation where the free energy depends only on v:

P (v) =
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Z
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e�F (v,z)
=

1

Z
e�F (v) with F (v) = ln
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!
(12)

It should be noticed that, in the oRBM, z does not correspond to the number of hidden units assumed
to have generated all observations. Instead, the model allows for different observations having
been generated by a different number of hidden units. Specifically, for a given v, the conditional
distribution over the corresponding value of z is

P (z|v) = exp(�F (v, z))
P

K

z

0 exp(�F (v, z0))
. (13)

As for the conditional distribution over the hidden units, given a value of z it takes the same form
as for the regular RBM, except for unselected hidden units which are forced to zero. Similarly, the
distribution of v given a value of the hidden layer and z reflects that of the RBM:

P (h
i

= 1|v, z) =
⇢
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i·v + bh
i

) if i  z

0 otherwise
(14)
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To train the oRBM, we can also rely on CD or PCD for estimating the gradients based on Equation 6.

Defining 1
z

= [

zz }| {
1, . . . , 1, 0, . . . , 0]T and cdf(z|v) = [P (z < 1|v), . . . , P (z < K|v)]T with �

denoting the element-wise product, the free energy gradients are then slightly modified as follows:

rWF (v) = E[h� 1
z

|v]vT

= (

bh(v)� (1� cdf(z|v)))vT (16)

rbhF (v) = E[(h� �(bh
))� 1

z

|v] = (

bh(v)� �(bh
))� (1� cdf(z|v)) (17)

rbvF (v) = v (18)
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Compared to the RBM, computing these gradients requires one additional quantity: the vector of
cumulative probabilities cdf(z|v). Fortunately, this quantity can be efficiently computed, in O(K),
by first computing the required probabilities vector P (z|v) and performing a cumulative sum.

Sampling from P (v) slightly differs from the RBM as we need to consider z in the Markov chain.
With the oRBM, Gibbs steps alternate between sampling (h, z) ⇠ P (h, z|v) and v ⇠ P (v|h, z).
Sampling from P (h, z|v) is done in two steps: z ⇠ P (z|v) followed by h ⇠ P (h|v, z).
During training, what we observe is that the hidden units are each trained gradually, in sequence,
from left to right. This effect is mainly due to the multiplicative term (1� cdf(z|v)) in the hidden
unit parameter updates of Equations 16 and 17, which is monotonically decreasing. Effectively, the
model is thus growing in capacity during training, until its maximum capacity of K hidden units.

4 Infinite Restricted Boltzmann Machine

This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).

This limit is made possible thanks to two modeling choices. The first is the assumption that a finite
(but variable!) number of hidden units have non-zero weights and biases. This is trivial to ensure,
for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.

The second key choice is our parametrization of the per-unit energy penalty �
i

, which will ensure
that the infinite sums required in computing probabilities will be convergent. For instance, consider
the conditional P (z|v):

P (z|v) = exp(�F (v, z))

Z(v)
=

exp(�F (v, z))P1
z

0 exp(�F (v, z0))
(19)

Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
split the normalization constant Z(v) of Equation 19 into two parts, split at z = l, as follows:

Z(v) =
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.
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hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).

This limit is made possible thanks to two modeling choices. The first is the assumption that a finite
(but variable!) number of hidden units have non-zero weights and biases. This is trivial to ensure,
for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.

The second key choice is our parametrization of the per-unit energy penalty �
i

, which will ensure
that the infinite sums required in computing probabilities will be convergent. For instance, consider
the conditional P (z|v):

P (z|v) = exp(�F (v, z))
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Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
split the normalization constant Z(v) of Equation 19 into two parts, split at z = l, as follows:
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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Compared to the RBM, computing these gradients requires one additional quantity: the vector of
cumulative probabilities cdf(z|v). Fortunately, this quantity can be efficiently computed, in O(K),
by first computing the required probabilities vector P (z|v) and performing a cumulative sum.

Sampling from P (v) slightly differs from the RBM as we need to consider z in the Markov chain.
With the oRBM, Gibbs steps alternate between sampling (h, z) ⇠ P (h, z|v) and v ⇠ P (v|h, z).
Sampling from P (h, z|v) is done in two steps: z ⇠ P (z|v) followed by h ⇠ P (h|v, z).
During training, what we observe is that the hidden units are each trained gradually, in sequence,
from left to right. This effect is mainly due to the multiplicative term (1� cdf(z|v)) in the hidden
unit parameter updates of Equations 16 and 17, which is monotonically decreasing. Effectively, the
model is thus growing in capacity during training, until its maximum capacity of K hidden units.

4 Infinite Restricted Boltzmann Machine

This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).
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for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.
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the conditional P (z|v):

P (z|v) = exp(�F (v, z))

Z(v)
=

exp(�F (v, z))P1
z

0 exp(�F (v, z0))
(19)

Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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In our experiments, as we wanted the filters of each unit to be the dominating factor in a unit being
selected, we parametrized it as �
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), where � is a global hyper-parameter (critically,
as we’ll discuss later, this hyper-parameter doesn’t actually require tuning and a generic value for it
works fine). Intuitively, it forces the model to avoid using more hidden units than needed, prioritizing
smaller networks. Having the penalty depending on the hidden biases also implies that the selection
of a hidden units will be mostly controlled by the values taken by the connections W. Higher values
of the bias of a hidden unit will not increase its probability of being selected. In other words, for the
model to increase its capacity and better fit the training data, it will have to learn better filters. Note
that alternative parametrizations could certainly be considered.

As with the RBM, P (v) is defined in terms of its energy function. For this, we have to specify the
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value of z and the legal values of h. We will note H
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As for the marginal distribution P (v) of the oRBM model, it can also be written in terms of a free
energy. Indeed, in a derivation similar to the case of the RBM, we can show:
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This gives us a free energy where only the hidden units have been marginalized. We can also derive
a formulation where the free energy depends only on v:
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It should be noticed that, in the oRBM, z does not correspond to the number of hidden units assumed
to have generated all observations. Instead, the model allows for different observations having
been generated by a different number of hidden units. Specifically, for a given v, the conditional
distribution over the corresponding value of z is

P (z|v) = exp(�F (v, z))
P
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0 exp(�F (v, z0))
. (13)

As for the conditional distribution over the hidden units, given a value of z it takes the same form
as for the regular RBM, except for unselected hidden units which are forced to zero. Similarly, the
distribution of v given a value of the hidden layer and z reflects that of the RBM:
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To train the oRBM, we can also rely on CD or PCD for estimating the gradients based on Equation 6.

Defining 1
z

= [

zz }| {
1, . . . , 1, 0, . . . , 0]T and cdf(z|v) = [P (z < 1|v), . . . , P (z < K|v)]T with �

denoting the element-wise product, the free energy gradients are then slightly modified as follows:
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Compared to the RBM, computing these gradients requires one additional quantity: the vector of
cumulative probabilities cdf(z|v). Fortunately, this quantity can be efficiently computed, in O(K),
by first computing the required probabilities vector P (z|v) and performing a cumulative sum.

Sampling from P (v) slightly differs from the RBM as we need to consider z in the Markov chain.
With the oRBM, Gibbs steps alternate between sampling (h, z) ⇠ P (h, z|v) and v ⇠ P (v|h, z).
Sampling from P (h, z|v) is done in two steps: z ⇠ P (z|v) followed by h ⇠ P (h|v, z).
During training, what we observe is that the hidden units are each trained gradually, in sequence,
from left to right. This effect is mainly due to the multiplicative term (1� cdf(z|v)) in the hidden
unit parameter updates of Equations 16 and 17, which is monotonically decreasing. Effectively, the
model is thus growing in capacity during training, until its maximum capacity of K hidden units.

4 Infinite Restricted Boltzmann Machine

This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).

This limit is made possible thanks to two modeling choices. The first is the assumption that a finite
(but variable!) number of hidden units have non-zero weights and biases. This is trivial to ensure,
for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.

The second key choice is our parametrization of the per-unit energy penalty �
i

, which will ensure
that the infinite sums required in computing probabilities will be convergent. For instance, consider
the conditional P (z|v):

P (z|v) = exp(�F (v, z))
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z

0 exp(�F (v, z0))
(19)

Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
split the normalization constant Z(v) of Equation 19 into two parts, split at z = l, as follows:
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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Compared to the RBM, computing these gradients requires one additional quantity: the vector of
cumulative probabilities cdf(z|v). Fortunately, this quantity can be efficiently computed, in O(K),
by first computing the required probabilities vector P (z|v) and performing a cumulative sum.

Sampling from P (v) slightly differs from the RBM as we need to consider z in the Markov chain.
With the oRBM, Gibbs steps alternate between sampling (h, z) ⇠ P (h, z|v) and v ⇠ P (v|h, z).
Sampling from P (h, z|v) is done in two steps: z ⇠ P (z|v) followed by h ⇠ P (h|v, z).
During training, what we observe is that the hidden units are each trained gradually, in sequence,
from left to right. This effect is mainly due to the multiplicative term (1� cdf(z|v)) in the hidden
unit parameter updates of Equations 16 and 17, which is monotonically decreasing. Effectively, the
model is thus growing in capacity during training, until its maximum capacity of K hidden units.
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This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).

This limit is made possible thanks to two modeling choices. The first is the assumption that a finite
(but variable!) number of hidden units have non-zero weights and biases. This is trivial to ensure,
for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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4 Infinite Restricted Boltzmann Machine

This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).

This limit is made possible thanks to two modeling choices. The first is the assumption that a finite
(but variable!) number of hidden units have non-zero weights and biases. This is trivial to ensure,
for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
regularization) on all the weights and hidden biases. An infinite number of non-zero weights and
biases would then correspond to an infinite penalty, so no proper optimization would ever diverge to
this solution, no matter the initialization.

The second key choice is our parametrization of the per-unit energy penalty �
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, which will ensure
that the infinite sums required in computing probabilities will be convergent. For instance, consider
the conditional P (z|v):
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Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
weights and biases which is guarantee to happen thanks to the growing behaviour. Then, we can
split the normalization constant Z(v) of Equation 19 into two parts, split at z = l, as follows:
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
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In our experiments, as we wanted the filters of each unit to be the dominating factor in a unit being
selected, we parametrized it as �

i

= �soft+(bh
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), where � is a global hyper-parameter (critically,
as we’ll discuss later, this hyper-parameter doesn’t actually require tuning and a generic value for it
works fine). Intuitively, it forces the model to avoid using more hidden units than needed, prioritizing
smaller networks. Having the penalty depending on the hidden biases also implies that the selection
of a hidden units will be mostly controlled by the values taken by the connections W. Higher values
of the bias of a hidden unit will not increase its probability of being selected. In other words, for the
model to increase its capacity and better fit the training data, it will have to learn better filters. Note
that alternative parametrizations could certainly be considered.

As with the RBM, P (v) is defined in terms of its energy function. For this, we have to specify the
set of legal values for v, h and z. Since, for a given z, the value of the energy is irrelevant for the
dimensions of h from z to K, we will assume they are set to 0. There is thus a coupling between the
value of z and the legal values of h. We will note H
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As for the marginal distribution P (v) of the oRBM model, it can also be written in terms of a free
energy. Indeed, in a derivation similar to the case of the RBM, we can show:
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This gives us a free energy where only the hidden units have been marginalized. We can also derive
a formulation where the free energy depends only on v:
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It should be noticed that, in the oRBM, z does not correspond to the number of hidden units assumed
to have generated all observations. Instead, the model allows for different observations having
been generated by a different number of hidden units. Specifically, for a given v, the conditional
distribution over the corresponding value of z is

P (z|v) = exp(�F (v, z))
P

K

z

0 exp(�F (v, z0))
. (13)

As for the conditional distribution over the hidden units, given a value of z it takes the same form
as for the regular RBM, except for unselected hidden units which are forced to zero. Similarly, the
distribution of v given a value of the hidden layer and z reflects that of the RBM:
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To train the oRBM, we can also rely on CD or PCD for estimating the gradients based on Equation 6.

Defining 1
z

= [
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1, . . . , 1, 0, . . . , 0]T and cdf(z|v) = [P (z < 1|v), . . . , P (z < K|v)]T with �

denoting the element-wise product, the free energy gradients are then slightly modified as follows:
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During training, what we observe is that the hidden units are each trained gradually, in sequence,
from left to right. This effect is mainly due to the multiplicative term (1� cdf(z|v)) in the hidden
unit parameter updates of Equations 16 and 17, which is monotonically decreasing. Effectively, the
model is thus growing in capacity during training, until its maximum capacity of K hidden units.

4 Infinite Restricted Boltzmann Machine

This growing behaviour of the oRBM begs for the question: could we achieve a similar effect
without having to specify (theoretically) a maximum capacity to the model? It turns out we can, by
taking the limit of K ! 1. For this reason, we refer to this model as the infinite RBM (iRBM).
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for any optimization procedure, using any amount of any type of weight decay (e.g. L2 or L1
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this solution, no matter the initialization.
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Let’s note l the number of effectively trained hidden units, i.e. where all hidden units > l have zero
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where Equation 20 is obtained by exploiting the fact that all weights and biases of hidden units at
position l + 1 and higher are zero. By ensuring that � > 1, the geometric series of Equation 20
is finite and can be analytically computed. This in turn implies that P (z|v) is tractable and can be
sampled from. Following a similar reasoning, the global partition function Z can be shown to be
finite, thus yielding a properly defined joint distribution for any configurations with a finite number
of non-zero weights and hidden biases.

One could think that, compared to a regular RBM, we have merely traded the hyper-parameter of the
hidden layer size with the hyper-parameter �. However, crucially, �’s role is only to ensure that the
iRBM is properly defined, and the penalty it imposes in the energy function can be compensated by
the learned parameters. The extent to which the parameters can grow enough to compensate for that
penalty is then controlled by the strength of weight decay, a hyper-parameter the iRBM shares with
the RBM. We’ve thus effectively removed one hyper-parameter. Moreover, we’ve indeed observed
that results are robust to the choice of �, and the experiments we report all used the same value.
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• Distribution p(z |v) (Binarized MNIST)

similar z random variable, should allow us to derive a training algorithm that also learns the latent
representation’s size.
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Supplementary Materials

Interestingly, we’ve observed that Gibbs sampling can mix much more slowly with the oRBM and
the iRBM. The reason is the addition of variable z increases the dependence between states and
thus hurts the convergence of Gibbs sampling. In particular, we observed that when the Gibbs chain
is in a state corresponding to a noisy image without any structure, it can require many steps before
stepping out of this region of the input space. Yet, comparing the free energy of such random images
and images that resemble digits confirmed that these random images have significantly higher free
energy (and thus are unlikely samples of the model). Figure 4 also confirms the high dependence
between z and v: the distribution of the unstructured image is peaked at z = 1, while all digits
prefer values of z greater than 250. To fix this issue, we’ve found that simply initializing the Gibbs
chain to z = K was sufficient. We used this when sampling from trained oRBM and iRBM models.

(a) oRBM (b) iRBM

Figure 4: Each row shows a plot of P (z|v) where v is a given example from MNIST testset and
is displayed to the left. The first row illustrates the impact of a noisy image on sampling z. As
explained in Section 3 of the paper, we see that different input images are related to different values
for the number z of used units.
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