Marc-Alexandre Côté Université de Sherbrooke

Joint work with Hugo Larochelle

- · Deep learning successes have required a lot of labeled training data
 - collecting and labeling such data requires significant human labor
 - is that really how we'll solve Al?

- · Alternative solution: exploit other sources of data that are imperfect but plentiful
 - unlabeled data (unsupervised learning)
 - multimodal data (multimodal learning)
 - multidomain data (transfer learning, domain adaptation)

- By far the largest source is unlabeled data
 - effectively requires algorithms for life-long learning

- · We are currently poorly equipped to deal with this setting
 - ▶ how to do online learning for non-convex models, with a changing input distribution?
 - how to have models whose capacity adapts during training?

- By far the largest source is unlabeled data
 - effectively requires algorithms for life-long learning

- · We are currently poorly equipped to deal with this setting
 - ▶ how to do online learning for non-convex models, with a changing input distribution?
 - ▶ how to have models whose capacity adapts during training?

- By far the largest source is unlabeled data
 - effectively requires algorithms for life-long learning

- · We are currently poorly equipped to deal with this setting
 - ▶ how to do online learning for non-convex models, with a changing input distribution?
 - ▶ how to have models whose capacity adapts during training?
 - In this talk: an infinite restricted Boltzmann machine (iRBM)
 - ▶ RBM with capacity that can grow during training
 - growing mechanism is derived naturally from the energy function definition

RESTRICTED BOLTZMANN MACHINE

$$E(\mathbf{v}, \mathbf{h}) = -\mathbf{h}^T \mathbf{W} \mathbf{v} - \mathbf{v}^T \mathbf{b}^{\mathbf{v}} - \mathbf{h}^T \mathbf{b}^{\mathbf{h}}$$
$$P(\mathbf{v}, \mathbf{h}) = e^{-E(\mathbf{v}, \mathbf{h})} / Z$$

ORDERED RESTRICTED BOLTZMANN MACHINE

$$E(\mathbf{v}, \mathbf{h}, z) = -\mathbf{v}^T \mathbf{b}^{v} - \sum_{i=1}^{\infty} h_i (\mathbf{W}_i \cdot \mathbf{v} + b_i^{h}) - \beta_i$$

ORDERED RESTRICTED BOLTZMANN MACHINE

$$E(\mathbf{v}, \mathbf{h}, z) = -\mathbf{v}^T \mathbf{b}^{\mathbf{v}} - \sum_{i=1}^{\infty} h_i (\mathbf{W}_i \cdot \mathbf{v} + b_i^{\mathbf{h}}) - \beta_i$$

$$E(\mathbf{v}, \mathbf{h}, z) = -\mathbf{v}^T \mathbf{b}^{\mathbf{v}} - \sum_{i=1}^{\infty} h_i (\mathbf{W}_i \cdot \mathbf{v} + b_i^{\mathbf{h}}) - \beta_i$$

• Free energy, given a certain value of z

$$F(\mathbf{v}, z) = -\mathbf{v}^T \mathbf{b}^{\mathrm{v}} - \sum_{i=1}^z \mathrm{soft}_+(\mathbf{W}_i.\mathbf{v} + b_i^{\mathrm{h}}) - \beta_i$$

· For the iRBM to be practical, we must be able to compute

$$P(z|\mathbf{v}) = \frac{\exp(-F(\mathbf{v}, z))}{Z(\mathbf{v})} = \frac{\exp(-F(\mathbf{v}, z))}{\sum_{z'}^{\infty} \exp(-F(\mathbf{v}, z'))}$$

$$Z(\mathbf{v}) = \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \sum_{z=l+1}^{\infty} \exp(-F(\mathbf{v}, z))$$
$$= \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \sum_{z=l+1}^{\infty} \exp\left(-F(\mathbf{v}, l) + \sum_{i=l+1}^{z} \operatorname{soft}_{+}(\mathbf{W}_{i}.\mathbf{v} + b_{i}^{h}) - \beta_{i}\right)$$

$$Z(\mathbf{v}) = \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \sum_{z=l+1}^{\infty} \exp(-F(\mathbf{v}, z))$$

$$\beta_i = \beta \operatorname{soft}_+(b_i^h)$$
 $\beta > 1$

$$= \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \sum_{z=l+1}^{\infty} \exp\left(-F(\mathbf{v}, l) + \sum_{i=l+1}^{z} \operatorname{soft}_{+}(\mathbf{W}_{i}.\mathbf{v} + b_{i}^{h}) - \beta_{i}\right)$$

$$Z(\mathbf{v}) = \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \sum_{z=l+1}^{\infty} \exp(-F(\mathbf{v}, z))$$

$$\beta_i = \beta \operatorname{soft}_+(b_i^h)$$
 $\beta > 1$

$$= \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \sum_{z=l+1}^{\infty} \exp\left(-F(\mathbf{v}, l) + \sum_{i=l+1}^{z} \operatorname{soft}_{+}(\mathbf{W}_{i}.\mathbf{v} + b_{i}^{h}) - \beta_{i}\right)$$

$$= \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \exp(-F(\mathbf{v}, l)) \sum_{z=l+1}^{\infty} \exp\left(\sum_{i=l+1}^{z} (1 - \beta)\operatorname{soft}_{+}(0)\right)$$

$$Z(\mathbf{v}) = \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \sum_{z=l+1}^{\infty} \exp(-F(\mathbf{v}, z))$$

$$= \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \sum_{z=l+1}^{\infty} \exp\left(-F(\mathbf{v}, l) + \sum_{i=l+1}^{z} \operatorname{soft}_{+}(\mathbf{W}_{i} \cdot \mathbf{v} + b_{i}^{h}) - \beta_{i}\right)$$

$$= \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \exp(-F(\mathbf{v}, l)) \sum_{z=l+1}^{\infty} \exp\left(\sum_{i=l+1}^{z} (1 - \beta) \operatorname{soft}_{+}(0)\right)$$

$$= \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \exp(-F(\mathbf{v}, l)) \sum_{z=l+1}^{\infty} \exp((1 - \beta) \operatorname{soft}_{+}(0))^{z}$$

$$Z(\mathbf{v}) = \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \sum_{z=l+1}^{\infty} \exp(-F(\mathbf{v}, z))$$

$$= \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \sum_{z=l+1}^{\infty} \exp\left(-F(\mathbf{v}, l) + \sum_{i=l+1}^{z} \operatorname{soft}_{+}(\mathbf{W}_{i} \cdot \mathbf{v} + b_{i}^{h}) - \beta_{i}\right)$$

$$= \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \exp(-F(\mathbf{v}, l)) \sum_{z=l+1}^{\infty} \exp\left(\sum_{i=l+1}^{z} (1 - \beta) \operatorname{soft}_{+}(0)\right)$$

$$= \sum_{z=1}^{l} \exp(-F(\mathbf{v}, z)) + \exp(-F(\mathbf{v}, l)) \sum_{z=l+1}^{\infty} \exp((1 - \beta) \operatorname{soft}_{+}(0))^{z}$$

Geometric series

- Can perform Gibbs sampling
 - ightharpoonup before sampling \mathbf{h} , first sample z given \mathbf{v}

$$P(z|\mathbf{v}) = \frac{\exp(-F(\mathbf{v}, z))}{Z(\mathbf{v})}$$

$$P(h_i = 1 | \mathbf{v}, z) = \begin{cases} \sigma(\mathbf{W}_i \cdot \mathbf{v} + b_i^{\text{h}}) & \text{if } i \leq z \\ 0 & \text{otherwise} \end{cases}$$
$$P(v_j = 1 | \mathbf{h}, z) = \sigma\left(\sum_{i=1}^z W_{ij} h_i + b_j^{\text{v}}\right)$$

- Can perform Gibbs sampling
 - ightharpoonup before sampling \mathbf{h} , first sample z given \mathbf{v}

- · If can perform Gibbs sampling, can perform contrastive divergence CD training
 - Gibbs sampling provides negative samples for update

- Can perform Gibbs sampling
 - ightharpoonup before sampling \mathbf{h} , first sample z given \mathbf{v}

- · If can perform Gibbs sampling, can perform contrastive divergence CD training
 - Gibbs sampling provides negative samples for update
- CD training is well defined
 - only selected hidden units get a non-zero gradient on their weights
 - any amount of regularization ensures that training does not diverge to infinitely many units with non-zero weights

Training of iRBM

EXPERIMENTS

• Binarized MNIST and CalTech 101 Silhouettes

	Binarized MNIST		CalTech101 Silhouettes			
Model	Size	$\ln(\hat{Z} \pm 3\sigma)$	Avg. NLL	Size	$\ln(\hat{Z} \pm 3\sigma)$	Avg. NLL
RBM	100	[600.88, 600.95]	98.17 ± 0.52	100	[2511.62, 2512.56]	177.37 ± 2.81
RBM	500	[613.24, 613.31]	86.50 ± 0.44	500	[2385.68, 2386.10]	119.05 ± 2.27
RBM	2000	[1098.94, 1099.17]	85.03 ± 0.42	2000	[3349.85, 3354.15]	118.29 ± 2.25
oRBM	500	[39.90, 40.19]	88.15 ± 0.46	500	[1782.88 1783.02]	114.99 ± 1.97
iRBM	1208	[40.03, 40.54]	85.65 ± 0.44	915	[1999.93, 2000.22]	121.47 ± 2.07

- Use adagrad for training
- Training robust to value of eta
 - used 1.01 in all experiments

EXPERIMENTS

• Distribution $p(z|\mathbf{v})$ (Binarized MNIST)

FUTURE WORK

- Can be extended to other types of representations
 - feed-forward neural networks
 - RBM with softmax units, for quantization-based fast search
 - RBM with tree-based representations, for hierarchical topic modeling
 - word representations (infinite Skip-Gram, Nalisnick and Ravi, 2015)

http://github.com/MarcCote/iRBM http://arxiv.org/abs/1502.02476

MERCI!

http://github.com/MarcCote/iRBM http://arxiv.org/abs/1502.02476

Côté & Larochelle (2016) An Infinite Restricted Boltzmann Machine. Neural Computation