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A RESEARCH AGENDA

» Deep learning successes have required a lot of labeled training data

» collecting and labeling such data requires significant human labor

» Is that really how we'll solve Al ¢

* Alternative solution : exploit other sources of data that are imperfect but plentiful
» unlabeled data (unsupervised learning)
» multimodal data (multimodal learning)

» multidomain data (transfer learning, domain adaptation)



A RESEARCH AGENDA

* By far the largest source Is unlabeled data

» effectively requires algorithms for life-long learning

* We are currently poorly equipped to deal with this setting
» how to do online learning for non-convex models, with a changing input distribution?

» how to have models whose capacity adapts during training?
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* By far the largest source Is unlabeled data

» effectively requires algorithms for life-long learning

* We are currently poorly equipped to deal with this setting
» how to do online learning for non-convex models, with a changing input distribution?

» how to have models whose capacity adapts during training?

‘

* In this talk: an infinite restricted Boltzmann machine (1IRBM)

» RBM with capacity that can grow during training

L » growing mechanism is derived naturally from the energy function definrtion A
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ORDERED RESTRICTED BOLTZMANN MACHINE

Nb of hidden units
involved in energy

ze {l, ..., H}
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* Free energy, given a certain value of 2z
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* For the IRBM to be practical, we must be able to compute

P(z]v) =

exp(—F (v, z)) exp(—F(v, 2))

Z(v)

> o exp(—F(v,2})
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Z(v) = Zexp (v, 2)) + Z exp(—

z=1 z=Il+1
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; Bi = Psoft, (b])
Z(v) = Zexp (v, 2)) + Z exp(— s> 1
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= Zexp ) +exp(—F(v,l)) Z exp ( Z (1 — 5)soft+(0))
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Bi = Bsoft, (by)
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Geometric series
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» Can perform Gibbs sampling

o(W;v+b) ifi<z

0 otherwise

P(h; = 1|v,2) = {

» before sampling h, first sample z given v

o exp(gf‘ ‘f)‘”ff)) P(v; = 1|h,z) =0 (Z Wishi + b})
1=1
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* |f can perform Gibbs sampling, can perform contrastive divergence CD training

» Gibbs sampling provides negative samples for update
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» Can perform Gibbs sampling

» before sampling h, first sample z given v

* |f can perform Gibbs sampling, can perform contrastive divergence CD training

» Gibbs sampling provides negative samples for update

» CD training is well defined
» only selected hidden units get a non-zero gradient on their weights

» any amount of regularization ensures that training does not diverge to infinitely many units with non-zero
welghts



Training of IRBM
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* Binarized MNIST and Callech |01 Silhouettes

BINARIZED MNIST

CALTECH101 SILHOUETTES

MODEL  SIZE In(Z =+ 30) Avc. NLL Sz In(Z =+ 30) Avc. NLL
RBM 100  [600.88, 600.95] 98.17 £ 0.52 100 [2511.62, 2512.56] 177.37 + 2.81
RBM 500  [613.24, 613.31] 86.50 &+ 0.44 500 [2385.68, 2386.10] 119.05 + 2.27
RBM 2000 [1098.94, 1099.17] 85.03 &+ 0.42 2000 [3349.85, 3354.15] 118.29 + 2.25

ORBM 500 (39.90, 40.19]  88.15 £ 0.46 500  [1782.88 1783.02] 114.99 + 1.97
IRBM 1208  [40.03, 40.54]  85.65 + 0.44 915  [1999.93, 2000.22] 121.47 + 2.07

» Use adagrad for training

» Training robust to value of

» used 1.0l in all experiments
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» Distribution p(z |v) (Binarized MNIST)
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FUTURE WORK

» Can be extended to other types of representations
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v

v

feed-forward neural networks
RBM with softmax units, for quantization-based fast search
RBM with tree-based representations, for hierarchical topic modeling

word representations (infinite Skip-Gram, Nalisnick and Rawvi, 2015)



http://github.com/MarcCote/IRBM
http://arxiv.org/abs/1502.02476

Cote & Larochelle (2016) An Infinite Restricted Boltzmann Machine. Neural Computation
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Coté & Larochelle (2016) An Infinite Restricted Boltzmann Machine. Neural Computation



