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“Active recognition”: 
The recognition system can select which views to see.
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Difficulty: unconstrained visual input
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Active vs. passive recognition
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• Not restricted to a single snapshot.
• Strategically acquiring new views.

Image credit: Bo Xiong
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Perception Action selection Evidence fusion

- Verification
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Weakness: Independent, often heuristic solutions for the three 
active recognition components.
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Multi-task training of active recognition components + look-ahead.
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[Nene 1996, Schiele 1998, Denzler 2003, Ramanathan 2011…]

Instance recognition from 
turn-table scans

Toy category recognition 
with custom robot



Towards real-world active recognition
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Directing a camera for 
scene category recognition

Manipulation for object 
recognition

[Malmir et al, 2015]



High-level architecture

10



SENSOR

High-level architecture

10



SENSOR

High-level architecture

10

AGGREGATOR



SENSOR

High-level architecture

10

AGGREGATOR

CLASSIFIER



SENSOR

High-level architecture

10

AGGREGATOR

ACTOR

CLASSIFIER

sample



SENSOR

High-level architecture

10

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD

sample



Unrolled architecture

11

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD

Time 𝑡 Time 𝑡+1



Unrolled architecture

11

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD

SENSOR

Time 𝑡 Time 𝑡+1



Unrolled architecture

11

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD

Time 𝑡 Time 𝑡+1



Unrolled architecture

11

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD

Time 𝑡 Time 𝑡+1



The modules

12

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD



Perception module - SENSOR

13

SE
N

SO
R

pose image

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD



Perception module - SENSOR

13

SE
N

SO
R

pose image

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD



Perception module - SENSOR

13

“camera facing 
down 30°”

SE
N

SO
R

pose image

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD



Perception module - SENSOR

13

“camera facing 
down 30°”

SE
N

SO
R

pose image

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD



Evidence fusion - AGGREGATOR

14

A
G

G
R

EG
A

TO
R

+ DELAY 1 step

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD



Evidence fusion - AGGREGATOR

14

A
G

G
R

EG
A

TO
R

+ DELAY 1 step

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD

History



Evidence fusion - AGGREGATOR

14

A
G

G
R

EG
A

TO
R

+ DELAY 1 step

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD

History



Evidence fusion - AGGREGATOR

14

A
G

G
R

EG
A

TO
R

+ DELAY 1 step

SENSOR

AGGREGATOR

ACTOR

CLASSIFIER

LOOK-AHEAD

History



Future prediction – LOOKAHEAD

15

LO
O

K
A

H
EA

D

Look-ahead ℓ2 error

SENSOR

AGGREGATOR

CLASSIFIER

LOOK-AHEAD

ACTOR

action aggregate feature



Future prediction – LOOKAHEAD

15

LO
O

K
A

H
EA

D

Look-ahead ℓ2 error

Time 𝑡 − 1
SENSOR

AGGREGATOR

CLASSIFIER

LOOK-AHEAD

ACTOR

action aggregate feature



Future prediction – LOOKAHEAD

15

LO
O

K
A

H
EA

D

Look-ahead ℓ2 error

Time 𝑡 − 1
SENSOR

AGGREGATOR

CLASSIFIER

LOOK-AHEAD

ACTOR

action aggregate feature

?



Future prediction – LOOKAHEAD

15

LO
O

K
A

H
EA

D

Look-ahead ℓ2 error

Time 𝑡 − 1 Time 𝑡
SENSOR

AGGREGATOR

CLASSIFIER

LOOK-AHEAD

ACTOR

action aggregate feature

? −



Future prediction – LOOKAHEAD

15

LO
O

K
A

H
EA

D

Look-ahead ℓ2 error

Time 𝑡 − 1 Time 𝑡
SENSOR

AGGREGATOR

CLASSIFIER

LOOK-AHEAD

ACTOR

action aggregate feature

Jayaraman et al, Learning image representations tied to egomotion, ICCV 2015
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Training

18[Williams 1992, Mnih 2014] 
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CLASSIFIER
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sample

softmax loss

classification reward

Look-ahead loss

Trained through a combination of gradient descent and REINFORCE.
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Quantitative results

20

Our method strongly outperforms representative traditional 
active recognition approaches.
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More examples in paper and supplementary material!

T=2

Predicted 
label:

T=1 T=3



Summary

• Joint end-to-end active recognition.
• Improvement with auxiliary look-ahead task.
• Realistic but reproducible experimental settings.
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mug?

bowl?

pan?

mug

Data and code soon at 
http://www.cs.utexas.edu/~dineshj/

http://www.cs.utexas.edu/~dineshj/
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Training all 3 components jointly is most critical to performance.


