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interactive segmentation [Boykov & Jolly , 2001]

Potts Model: edge alignment 
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Markov Random Field (MRF)
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semantic segmentation [Kohli & Torr 2009] [Gould 2014]

Robust Pn Potts: bin consistency

(graphical models)
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Markov Random Field (MRF)
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geometric model fitting [Delong et al., 2012]

Label Cost: sparsity

(graphical models)

Sc



Our proposal: Normalized Cut +   MRF

5

balanced clustering regularization constraints
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Our approach: NC + Potts

MRF

NC + Potts + seeds

MRF
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Why MRF for Normalized Cut?
How to incorporate group priors? How many clusters ?

8 clusters
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Our approach: NC + Robust Pn Potts

MRF

NC + label costs

MRF
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Why Normalized Cut for MRF?
poor clustering

(overfitting & local minima)

model fitting (e.g. GMM) color space clustering

typical MRF for segmentation:

ML term for θk

8 (probabilistic k-means [Kearns, Mansour & Ng, UAI’97])

GrabCut [Rother, Kolmogorov, Blake, 2004]
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Why Normalized Cut for MRF?
good clustering

Normalized Cut

NC for colors

9

color space clustering



Our proposal: Normalized Cut +   MRF

balanced clustering regularization constraints
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guaranteed energy 
decrease

E(S)

St St+1
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E(St+1)

Bound optimization, in general

At+1(S)

At(S)
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Bound for our joint energy

unary bound for NC
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unary bound for NC

we propose kernel bound and spectral bound for NC
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Kernel bound for NC
Lemma 1 (concavity) 

Function e : R|Ω| → R is concave over region Sk > 0 given p.s.d. affinity matrix A := [Apq].

at(S)(I)

(II)

at+1(S)
e(Sk)

first-order Taylor expansion:

equivalently kernel k-means for NC [Dhillon et al., 2004]
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Low-rank Approximation

using top m eigenvectors and eigenvalues of      :

MDS [Cox & Cox., 2000] 

Kernel PCA [Schölkopf, Smola, Müller, 1998]

Consider rank m approximation                  :

low-dimensional points:
isometric Euclidean Embedding
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 NC= K-means for exact embedding                         [Bach & Jordan 2003, Dhillon et al., 2004] 

 We propose NC ≈ K-means for low-dimensional embedding
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(move-making and graph cuts [Boykov, Veksler, Zabih, 2001])

iterate
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Our Kernel Cut and Spectral Cut

(move-making and graph cuts [Boykov, Veksler, Zabih, 2001])

iterate

(Kernel Bound or Spectral Bound)
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unary bound for NC



Experiments: MRF helps Normalized Cut 
using image tags (e.g. beach, car) to help image clustering

18



Experiments: MRF helps Normalized Cut 
using image tags (e.g. beach, car) to help image clustering

NC + robust Pn Potts

18



Experiments: MRF helps Normalized Cut 
using image tags (e.g. beach, car) to help image clustering

NC + robust Pn Potts

+with knn kernel on deep features
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More Experiments

Spectral Clustering
(no Potts)

Our Kernel Cut
(NC with Potts)

Our Spectral Cut
(NC with Potts)

Potts model improves edge alignment

20

NC with increasing label cost

separating similar objects

GrabCut

Kernel Cut

seeds

ground truth

A

A

B

B
C
C

A B C

Fig. 1. RGBD segmentation

GrabCut

Kernel Cut
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Conclusion

 new unary kernel and spectral bounds for NC

 can combine NC with any MRF constraints

 can combine MRF with balanced clustering

MRF with features of any dimension (RGBD, RGBM, RGBXYM, deep,…)

+
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