

Le génie pour l'industrie

Normalized Cut Meets MRF

Meng Tang, Dmitrii Marin, Ismail Ben Ayed, Yuri Boykov

Normalized Cut (NC)

$$NC(S) = -\sum_{k} \frac{assoc(S^k, S^k)}{assoc(S^k, \Omega)}$$

[Arbelaez, Maire, Fowlkes & Malik, 2010]

[Shi & Malik, 2000] [Ng, Jordan & Weiss, 2002] [Belkin & Niyogi, 2003] [Luxburg, 2007]

Normalized Cut (NC)

[Shi & Malik, 2000] [Ng, Jordan & Weiss, 2002] [Belkin & Niyogi, 2003] [Luxburg, 2007]

Markov Random Field (MRF) (graphical models)

 $\sum_{c \in \mathcal{F}} E_c(S_c)$

Markov Random Field (MRF) (graphical models)

 $\sum_{c \in \mathcal{F}} E_c(S_c)$

Potts Model: edge alignment

interactive segmentation [Boykov & Jolly, 2001]

Markov Random Field (MRF) (graphical models)

 $\sum_{c \in \mathcal{F}} E_c(S_c)$

Robust Pⁿ Potts: bin consistency

semantic segmentation [Kohli & Torr 2009] [Gould 2014]

Markov Random Field (MRF) (graphical models)

 $\sum_{c \in \mathcal{F}} E_c(S_c)$

Label Cost: sparsity

geometric model fitting [Delong et al., 2012]

Our proposal: Normalized Cut + MRF

$$E(S) = \sum_{k} -\frac{S^{k'}AS^{k}}{d'S^{k}} + \gamma \sum_{c \in \mathcal{F}} E_{c}(S_{c})$$

balanced clustering regularization constraints

previous NC approach:

weak edge alignment

weak edge alignment

post-processing (e.g. [Arbelaez et al., 2011])

weak edge alignment

post-processing (e.g. [Arbelaez et al., 2011])

Our approach: NC + Potts

weak edge alignment

previous NC approach:

post-processing (e.g. [Arbelaez et al., 2011])

semi-supervision is challenging

reformulation of NC constrained eigen problem

[Yu & Shi 2004] [Eriksson et al. 2010] [Maji et al. 2011] [Chew et al. 2015]

Our approach:

weak edge alignment

previous NC approach:

post-processing (e.g. [Arbelaez et al., 2011])

semi-supervision is challenging

reformulation of NC constrained eigen problem

[Yu & Shi 2004] [Eriksson et al. 2010] [Maji et al. 2011] [Chew et al. 2015]

Our approach:

NC + Potts + seeds

MRF

How to incorporate group priors?

Tags — All Time Most Popular

How to incorporate group priors?

Our approach:

NC + Robust P^n Potts

MRF

How to incorporate group priors?

How many clusters ?

Our approach:

NC + Robust P^n Potts

MRF

How to incorporate group priors?

How many clusters ?

Our approach: NC + Robust P^n Potts NC + label costs MRF MRF

typical MRF for segmentation:

 $\ln P(I_p|\theta^k) + \sum_{pq \in \mathcal{N}} w \cdot [s_p \neq s_q]$ $p \in S^k$ ML term for θ^k

model fitting (e.g. GMM)

GrabCut [Rother, Kolmogorov, Blake, 2004]

model fitting (e.g. GMM)color space clusteringGrabCut [Rother, Kolmogorov, Blake, 2004]

poor clustering (overfitting & local minima)

8

model fitting (e.g. GMM)color space clusteringGrabCut [Rother, Kolmogorov, Blake, 2004]

Normalized Cut

good clustering

Normalized Cut

 $\neq s_q$

color space clustering

Our proposal: Normalized Cut + MRF

$$E(S) = \sum_{k} -\frac{S^{k'}AS^{k}}{d'S^{k}} + \gamma \sum_{c \in \mathcal{F}} E_{c}(S_{c})$$

balanced clustering regularization constraints

we propose *kernel bound* and *spectral bound* for NC
Kernel bound for NC

Lemma 1 (concavity)

$$NC(S) = \sum_{k} -\frac{S^{k'}AS^{k}}{d'S^{k}}$$

first-order Taylor expansion:

$$e(S_t^k) + \nabla e(S_t^k) \cdot (S^k - S_t^k)$$

first-order Taylor expansion:

$$e(S_t^k) + \nabla e(S_t^k) \cdot (S^k - S_t^k)$$

equivalently kernel k-means for NC [Dhillon et al., 2004]

Consider rank *m* approximation $\widetilde{A} \approx A$:

$$\min_{\widetilde{A}} \|A - \widetilde{A}\|_F$$

Consider rank *m* approximation $\widetilde{A} \approx A$:

$$\min_{\widetilde{A}} \|A - \widetilde{A}\|_F$$

using top m eigenvectors and eigenvalues of A:

$$\widetilde{A} = V^{m\prime} \Lambda^m V^m$$

Consider rank *m* approximation $\widetilde{A} \approx A$:

$$\min_{\widetilde{A}} \|A - \widetilde{A}\|_F$$

using top m eigenvectors and eigenvalues of A:

 $\widetilde{A} = V^m {}^{\prime} \Lambda^m V^m$

low-dimensional points:

$$\widetilde{\phi}_p := \sqrt{\Lambda^m} V_p^m \in \mathcal{R}^m$$

Consider rank *m* approximation $\widetilde{A} \approx A$:

$$\min_{\widetilde{A}} \|A - \widetilde{A}\|_F$$

using top m eigenvectors and eigenvalues of A :

 $\widetilde{A} = V^m {}^{\prime} \Lambda^m V^m$

low-dimensional points:

$$\widetilde{\phi}_p := \sqrt{\Lambda^m} V_p^m \in \mathcal{R}^m$$

Consider rank *m* approximation $\widetilde{A} \approx A$:

$$\min_{\widetilde{A}} \|A - \widetilde{A}\|_F$$

using top m eigenvectors and eigenvalues of A:

 $\widetilde{A} = V^m {}^\prime \Lambda^m V^m$

low-dimensional points:

$$\widetilde{\phi}_p := \sqrt{\Lambda^m} V_p^m \in \mathcal{R}^m$$

Consider rank *m* approximation $\widetilde{A} \approx A$:

$$\min_{\widetilde{A}} \|A - \widetilde{A}\|_F$$

using top m eigenvectors and eigenvalues of A:

 $\widetilde{A} = V^m {}^\prime \Lambda^m V^m$

low-dimensional points:

$$\widetilde{\phi}_p := \sqrt{\Lambda^m} V_p^m \in \mathcal{R}^m$$

MDS [Cox & Cox., 2000] Kernel PCA [Schölkopf, Smola, Müller, 1998] 14

 $\begin{array}{ll} \mathbf{NC} & \widetilde{A} \approx A \\ & \swarrow \\ \sum_{k} -\frac{S^{k'}AS^{k}}{d'S^{k}} & \approx \sum_{k} -\frac{S^{k'}\widetilde{A}S^{k}}{d'S^{k}} \end{array}$

$$\begin{split} & \underset{k}{\mathsf{NC}} \quad \widetilde{A} \approx A & \mathsf{K}\text{-means} \\ & \underset{k}{\overset{\sum}{\sum}} - \frac{S^{k'}AS^{k}}{d'S^{k}} \quad \approx \sum_{k} - \frac{S^{k'}\widetilde{A}S^{k}}{d'S^{k}} \quad \stackrel{c}{=} \sum_{k} \sum_{p \in S^{k}} d_{p} \|\widetilde{\phi}_{p} - \mu^{k}\|^{2} \end{split}$$

D NC = K-means for exact embedding $\phi_p \in \mathcal{R}^{|\Omega|}$ [Bach & Jordan 2003, Dhillon et al., 2004]

 \Box NC = K-means for exact embedding $\phi_p \in \mathcal{R}^{|\Omega|}$ [Bach & Jordan 2003, Dhillon et al., 2004]

U We propose NC \thickapprox K-means for low-dimensional embedding $\widetilde{\phi}_p \in \mathcal{R}^m$ for $m \ll |\Omega|$

NC

 $\sum_{l} -\frac{S^{k'}AS^{k}}{d'S^{k}}$ k

K-means

 $\stackrel{c}{\approx} \sum_{k} \sum_{p \in S^{k}} d_{p} \| \widetilde{\phi}_{p} - \mu^{k} \|^{2}$

$$\sum_{k} -\frac{S^{k'}AS^{k}}{d'S^{k}} \stackrel{c}{\approx} \sum_{k} \sum_{p \in S^{k}} d_{p} \|\widetilde{\phi}_{p} - \mu^{k}\|^{2}$$

 $\sum_{k} -\frac{S^{k'}AS^{k}}{d'S^{k}} \stackrel{c}{\approx} \sum_{k} \sum_{p \in S^{k}} d_{p} \|\widetilde{\phi}_{p} - \mu^{k}\|^{2}$

 $= \sum_{k} \sum_{p \in \Omega} d_p \| \widetilde{\phi}_p - \mu^k \|^2 \cdot S_p^k$

$$\sum_{k} -\frac{S^{k'}AS^{k}}{d'S^{k}} \stackrel{c}{\approx} \sum_{k} \sum_{p \in S^{k}} d_{p} \|\widetilde{\phi}_{p} - \mu^{k}\|^{2}$$

unary spectral bound for NC

$$\leq \sum_{k} \sum_{p \in \Omega} d_p \|\widetilde{\phi}_p - \mu_t^k\|^2 \cdot S_p^k$$

$$\sum_{k} -\frac{S^{k'}AS^{k}}{d'S^{k}} \stackrel{c}{\approx} \sum_{k} \sum_{p \in S^{k}} d_{p} \|\widetilde{\phi}_{p} - \mu^{k}\|^{2}$$

unary spectral bound for NC

$$\leq \sum_{k} \sum_{p \in \Omega} d_p \| \widetilde{\phi}_p - \mu_t^k \|^2 \cdot S_p^k$$

Characterization K-means on $\phi_p^* \in \mathcal{R}^K$ - discretization heuristic for a spectral relaxation of **NC** [Shi & Malik 2000, Yu & Shi 2003]

$$\sum_{k} -\frac{S^{k'}AS^{k}}{d'S^{k}} \stackrel{c}{\approx} \sum_{k} \sum_{p \in S^{k}} d_{p} \|\widetilde{\phi}_{p} - \mu^{k}\|^{2}$$

unary spectral bound for NC

$$\leq \sum_{k} \sum_{p \in \Omega} d_p \| \widetilde{\phi}_p - \mu_t^k \|^2 \cdot S_p^k$$

Constraints on $\phi_p^* \in \mathcal{R}^K$ - discretization heuristic for a spectral relaxation of **NC** [Shi & Malik 2000, Yu & Shi 2003]

 \Box We justify NC \approx K-means via low-rank (*m*) approximation using $\widetilde{\phi}_p \in \mathcal{R}^m$

unary spectral bound for NC

 \Box We justify NC pprox K-means via low-rank (*m*) approximation using $\phi_p \in \mathcal{R}^m$

Iteration

unary spectral bound for NC

 \Box We justify NC pprox K-means via low-rank (*m*) approximation using $\phi_p \in \mathcal{R}^m$

Iteration

$$E(S) = \underbrace{\sum_{k} -\frac{S^{k'}AS^{k}}{d'S^{k}}}_{\text{(more-making and graph cuts [Boykov, Veksler, Zabih, 2001]}} + \underbrace{\gamma \sum_{c \in \mathcal{F}} E_{c}(S_{c})}_{\text{(more-making and graph cuts [Boykov, Veksler, Zabih, 2001]}}$$

Our Kernel Cut and Spectral Cut

$$E(S) = \underbrace{\sum_{k} -\frac{S^{k'}AS^{k}}{d'S^{k}}}_{M} + \underbrace{\gamma \sum_{c \in \mathcal{F}} E_{c}(S_{c})}_{M}$$

$$M \text{ unary bound for NC} \quad \text{(Kernel Bound or Spectral Bound)}$$

$$A_{t}(S) = \underbrace{\sum_{p \in \Omega} U_{p}(S_{p})}_{\text{(terate)}} + \underbrace{\gamma \sum_{c \in \mathcal{F}} E_{c}(S_{c})}_{\text{(terate)}}$$

$$S_{t+1} = \arg\min_{S} A_{t}(S) \text{ (move-making and graph cuts [Boykov, Veksler, Zabih, 2001])}$$

Experiments: MRF helps Normalized Cut

using image tags (e.g. beach, car) to help image clustering

Experiments: MRF helps Normalized Cut

using image tags (e.g. beach, car) to help image clustering

NC + robust *Pⁿ* Potts

Experiments: MRF helps Normalized Cut

using image tags (e.g. beach, car) to help image clustering

NC + robust P^n Potts

⁺with *knn* kernel on deep features

Experiments: Normalized Cut helps MRF

(a) Video frames

(b) Optical flow

(c) Our Kernel Cut (NC + Potts)

Fig. motion segmentation using RGB, location (XY) and motion (M). "+xy" means with MRF

Experiments: Normalized Cut helps MRF

Fig. motion segmentation using RGB, location (XY) and motion (M). "+xy" means with MRF

More Experiments

Potts model improves edge alignment

Spectral ClusteringOur Kernel CutOur Spectral Cut(no Potts)(NC with Potts)(NC with Potts)

NC with increasing label cost

Fig. 1. RGBD segmentation

Conclusion

Conclusion

□ new unary kernel and spectral bounds for NC
Conclusion

new unary kernel and spectral bounds for NC

□ can combine NC with any MRF constraints

Conclusion

- □ new unary kernel and spectral bounds for NC
- □ can combine NC with any MRF constraints
- □ can combine MRF with balanced clustering

Conclusion

- new unary kernel and spectral bounds for NC
- □ can combine NC with any MRF constraints
- □ can combine MRF with balanced clustering
- □ MRF with features of any dimension (RGBD, RGBM, RGBXYM, deep,...)