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re-train with data relevant to your task
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Instance Retrieval Challenges
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Off-the-shelf CNN

* Target application: classification
* Training dataset: ImageNet
* Architecture: AlexNet & VGG

Images from ImageNet.org

* Directly applicable to other tasks

Fine-grain classification Object detection Image retrieval

Images from PASCAL VOC 2012
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Annotations for CNN Image Retrieval

* CNN pre-trained for classification task used for retrieval

Building class

* NetVLAD: Weakly supervised | spatially closest # matching |

fine-tuned CNN using GPS tags A. .A A.

e We propose automatic annotatlons for CNN training

Hard negatlves
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CNN learns from BoW — Training Data

Camera Orientation Known
Number of Inliers Known

7.4M images > 713 training 3D models
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Negative examples: images from different 3D models than the query
Hard negatives: closest negative examples to the query
Only hard negatives: as good as using all negatives, but faster

the most similar  naive hard negatives diverse hard negatives
CNN descriptor top k by CNN top k: one per 3D model
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Positive examples: images that share 3D points with the query
Hard positives: positive examples not close enough to the query
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Hard Positive Examples

Positive examples: images that share 3D points with the query
Hard positives: positive examples not close enough to the query

random from
query top 1 by CNN top 1byBoW too k bv BoW

used in NetVLAD
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CNN Siamese Learning

Query Convolutional Layers Pooling Descriptor
global max Dx1
) pooling m==) | CNN
& L2-norm desc.
Pair Label 02 l

NON-MATCHING PAIR |g—emve] | = -

global max Dx1
—> pooling m==) [ CNN
& L2-norm desc.

Convolutional Layers Pooling Descriptor

Contrastive vs. Triplet loss: Contrastive better with our data

Contrastive loss more strict, requires accurate training data
Triplet loss less sensitive to inaccurate annotation




Whitening and dimensionality reduction

end-to-end learning

post-processing
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dim reduction

1. PCA,— PCA of an independent set of descriptors
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Experiments — datasets

 Oxford 5k dataset ey

e Paris 6k dataset

* Holidays dataset

Training 3D models do not
100k distractor dataset contain any landmark from
these datasets

* Protocol: mean Average Precision (mAP)
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e Careful choice of positive and negative training
images makes a difference



Experiments — Learning (AlexNet)

e Careful choice of positive and negative training
images makes a difference

44.2

Off-the-shelf ]

Oxford 5k Paris 6k



Experiments — Learning (AlexNet)

e Careful choice of positive and negative training
images makes a difference

63.1

56.2

|top 1 CNN + top k CNN |

44.2

| Off-the-shelf | ] |
Oxford 5k Paris 6k




Experiments — Learning (AlexNet)

e Careful choice of positive and negative training
images makes a difference

63.9
63.1|

56.7

top 1 CNN + top 1 / model CNN 56.2

|top 1 CNN + top k CNN |

44.2

| Off-the-shelf | ] a1

Oxford 5k Paris 6k




Experiments — Learning (AlexNet)

e Careful choice of positive and negative training

images makes a difference

top 1 BoW + top 1 / model CNN

top 1 CNN + top 1 / model CNN

|top 1 CNN + top k CNN |

| Off-the-shelf |

56.7

56.2

44.2

]

Oxford 5k

59.7

67.1

63.9
63.1|

Paris 6k



Experiments — Learning (AlexNet)

 Careful choice of positive and negative training
images makes a difference

67.5
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Experiments — Learning (AlexNet)

 Careful choice of positive and negative training

images makes a difference

| Our learned whitening |

| random(top k BoW) + top 1 / model CNN |

top 1 BoW + top 1 / model CNN

top 1 CNN + top 1 / model CNN

|top 1 CNN + top k CNN |

| Off-the-shelf |

56.7

56.2

44.2

]

Oxford 5k

62.2

60.2

597‘

68.9

67.5

67.1
63.9
63.1[7]
51.6

Paris 6k




Experiments — Over-fitting and Generalization

e We added Oxford and Paris landmarks as 3D
models and repeated fine-tuning




Experiments — Over-fitting and Generalization

e We added Oxford and Paris landmarks as 3D
models and repeated fine-tuning

Only +0.3 mAP on average over all
testing datasets



State-of-the-art

_ ] Oxfbk | Oxfl05k | Par6k | ParlO6k | Hol | Hol
Method D
Cropt | Cropy | CropT | Cropy | Cropy |Cropa | Cropy | Cropy 101k
Compact representations
mVoc/BoW [11] 128/48.8) — (414} — | — | — | — | — |65.6] —
Neural codes’ [11] (fA)|128] — |55.7] — [52.3) | | | — |78.9]
MAC* (V)|128]53.5|55.7(43.8 45.6 | 69.5|70.6| 53.4|55.4| 72.6 |56.7
CroW [21] (V)|128|59.2| — |51.6) — |74.6) — [63.2] — - -
* MAC (fV)|128 75.8 76.8/68.6/70.8 77.6 78.8|68.0/69.0|73.2 58.8
* R-MAC (FV)|128 72.5 76.7|64.3|69.7 78.5 80.3/69.3/71.2|79.3 65.2
MAC* (V)|256|54.7|56.9|45.6 |47.8|71.5|72.4|55.7/57.3|76.561.3
SPoC [27] (V)|256| — |53.1| — [50.1| — — - - |80.2] —
R-MAC [25] (A)|256|56.1| — |[47.0) — |72.9| — [60.1] — — —
CroW [21] (V)|256/65.4] — |59.3 — |T7.9] — |67.8) — |83.1] —
NetVlad [45] (V)|256] — |55.5| — — - |67.7] — - |86.0] —
NetVlad [35] (fV)|256| — |63.5| — — - |73.5| — — |84.3] -
* MAC (FA)|256|62.2 65.4|52.8|58.0]68.9|72.2|54.7|58.5|76.2 63.8
* R-MAC (FA)|256|62.5 68.9]53.2|161.2|74.4 76.6 61.8]64.8|81.5 70.8
* MAC (fV)|256 77.4 78.2|70.7|72.6 80.8 81.9|72.2|73.4|77.3 62.9
* R-MAC (fV)|256 74.9 78.2|67.5|72.1 82.3 83.5/74.1|75.6/81.4 69.4
MACH? (V)[512/56.4 |58.3/47.8|149.2|72.3|72.6/58.0|59.1|76.7 |62.7
R-MAC [27] (V)[512/66.9| — |61.6] — |83.0| — |75.7 - - -
CroW [21] (V)[512/68.2] — [63.2 — |79.6| — |7T1.0] — |84.9] —
* MAC (fV)[512 79.7 80.0|73.9|75.1|82.4 82.9|74.6|75.3|79.5 67.0
* R-MAC (fV)|512 77.0 80.1/69.2|74.1 83.8 85.0|/76.4|77.9|82.5 T1.5
Extreme short codes
Neural codes’ [11] (FA)[ 16| — [41.8] — [354] — | — | — | — [60.9] -
* MAC (fV)| 16 56.2 57.4|45.5/47.6 57.3 62.9/43.4|48.5|51.3 25.6
* R-MAC (fV)| 16 46.9 52.1|37.9/41.6 58.8 63.2|/45.6/49.6|54.4 31.7
Neural codes’ [11] (fA)[32]  |51.5]  146.7] | | 729
* MAC (fV)| 32 65.3 69.2/55.6/59.5 63.9 69.5/51.656.3/62.4 41.8
* R-MAC (fV)] 32 58.4 64.250.1|55.1 63.9 67.4|52.755.8|68.0 49.6
Re-ranking (R) and query expansion (QE)
BoW(1IM)+QE [0] — 82,7 — |76.7| — |80.5| - |71.0} - - =
BoW(16M)+QE [50] 84.9| — 795, — |824  |T7.3] - -
HQE(65k) [+] - |88.0] - |84.0 - |828| - - - — -
R-MAC+R+QE [25] (V)|512|77.3] — |73.2 — [86.5| — |79.8| - - =
CroW+QE [21] (V)[h12|72.2] — |67.8] — |85.5| — |79.7| — — -
* MAC+R+4+QE (fV)|512|85.0 85.4|81.8|82.3 86.5 87.0|78.8|79.6| — —
* R-MACHRAQE  (fV)[512|82.9 84.5|77.9|80.4|85.6 86.4|78.3|79.7| — —




_ ] Oxfbk | Oxfl05k | Par6k | ParlO6k | Hol | Hol
Method D
Cropt | Cropy | CropT | Cropy | Cropy |Cropa | Cropy | Cropy 101k
Sta te—Of—t h e—a rt Compact representations
mVoc/BoW [11] 128/48.8) — (414} — | — | — | — | — |65.6] —
Neural codes’ [11] (fA)|128] — |55.7] — [52.3) | | | — |78.9]
MAC* (V)|128]53.5|55.7(43.8 45.6 | 69.5|70.6| 53.4|55.4| 72.6 |56.7
CroW [21] (V)|128|59.2| — |51.6) — |74.6) — [63.2] — — —
* MAC (fV)|128 75.8 76.8/68.6/70.8 77.6 78.8|68.0/69.0|73.2 58.8
* R-MAC (FV)|128 72.5 76.7|64.3|69.7 78.5 80.3/69.3/71.2|79.3 65.2
MAC* (V)|256|54.7|56.9|45.6 |47.8|71.5|72.4|55.7/57.3|76.561.3
SPoC [27] (V)|256| — |53.1| — [50.1| — — - - |80.2] —
R-MAC [25] (A)|256|56.1| — |[47.0) — |72.9| — [60.1] — — —
CroW [21] (V)[256/65.4, — |59.3 — |T7.9] — |67.8) — |83.1] —
NetVlad [45] (V)|256 — - |67.7] — - |86.0] —
NetVlad [35] (f V25 m - - |73.5] — — |84.3] -
* MAC (FA)|256|( 51 58.068.9|72.2|54.7T|58.5|76.2 63.8
NetVLAD 256D — * R-MAC (FA)|256|62.5 68.9]53.2/61.2|74.4 76.6 61.8]64.8|81.5 70.8
* MAC (fV)|256 77.4 78.2|70.7|72.6 80.8 81.9|72.2|73.4|77.3 62.9
* R-MAC (fV)|256 74.9 78.2|67.5|72.1 82.3 83.5/74.1|75.6/81.4 69.4
MACH? (V)[512/56.4 |58.3/47.8|149.2|72.3|72.6/58.0|59.1|76.7 |62.7
VS R-MAC [27] (V)[512/66.9| — |61.6] — |83.0| — |75.7 - — —
* CroW [21] (V)[512/68.2] — [63.2 — |79.6| — |7T1.0] — |84.9] —
* MAC (fV)[512 79.7 80.0|73.9|75.1|82.4 82.9|74.6|75.3|79.5 67.0
* R-MAC (fV)|512 77.0 80.1/69.2|74.1 83.8 85.0|/76.4|77.9|82.5 T1.5
O u r C N N 3 2 D Extreme short codes
\Netll'al codes' [11] (FA)[16] — [41.8] — [354] — | — | — | — [60.9] -
ps. (fV)| 16 56.2 57.4|45.5/47.6 57.3 62.9/43.4|48.5|51.3 25.6
* R-MAC (fV)| 16 46.9 52.1|37.9/41.6 58.8 63.2|/45.6/49.6|54.4 31.7
Neural codes' | WBQ 46.7) — | | | |T29] -
* MAC (fV).3$ m 5159.5 63.9 69.5/51.6/56.3/62.4 41.8
* R-MAC (fV)] 32 55.1 63.9 67.4|52.7|55.8|68.0 49.6
Re-ranking (R) and query expansion (QE)
BoW(1IM)+QE [0] — 82,7 — |76.7| — |80.5| - |71.0} - - -
BoW(16M)+QE [50] — |84.9) — |795| — |824| — |7T7.3| — - -
HQE(65k) [+] - |88.0] - |84.0 - |828| - - - — -
R-MAC+R+QE [25] (V)|512|77.3] — |73.2 — [86.5| — |79.8| - - =
CroW+QE [21] (V)[h12|72.2] — |67.8] — |85.5| — |79.7| — — -
* MAC+R4+QE (fV)|512|85.0 85.4|81.8|82.3 86.5 87.0|78.8|79.6| — -
* R-MACHRAQE  (fV)[512|82.9 84.5|77.9|80.4|85.6 86.4|78.3|79.7| — -




State-of-the-art

NetVLAD 256D —

VS.

Our CNN 32D ~_

Concurrent work:
[Gordo et al. ECCV’16]

_ ] Oxfbk | Oxfl05k | Par6k | ParlO6k | Hol | Hol
Method D
Cropt | Cropy | CropT | Cropy | Cropy |Cropa | Cropy | Cropy 101k
Compact representations
mVoc/BoW [11] 128/48.8) — (414} — | — | — | — | — |65.6] —
Neural codes’ [11] (fA)|128] — |55.7| — [52.3 - (78.9]
MAC* (V)|128]53.5|55.7(43.8 45.6 | 69.5|70.6| 53.4|55.4| 72.6 |56.7
CroW [21] (V)|128|59.2| — |51.6) — |74.6) — [63.2] — — —
* MAC (fV)|128 75.8 76.8/68.6/70.8 77.6 78.8|68.0/69.0|73.2 58.8
* R-MAC (FV)|128 72.5 76.7|64.3|69.7 78.5 80.3/69.3/71.2|79.3 65.2
MAC* (V)|256|54.7|56.9|45.6 |47.8|71.5|72.4|55.7/57.3|76.561.3
SPoC [27] (V)|256| — |53.1| — [50.1| — — - - |80.2] —
R-MAC [25] (A)|256|56.1| — |[47.0) — |72.9| — [60.1] — — -
CroW [21] (V)[256/65.4, — |59.3 — |T7.9] — |67.8) — |83.1] —
NetVlad [45] (V)|256 — - |67.7] — - |86.0] —
NetVlad [35] (f V25 m - - |73.5] — - |84.3] —
* MAC (FA)|256|( 51 58.068.9|72.2|54.7T|58.5|76.2 63.8
* R-MAC (FA)|256|62.5 68.9]53.2/61.2|74.4 76.6 61.8]64.8|81.5 70.8
* MAC (fV)|256 77.4 78.2|70.7|72.6 80.8 81.9|72.2|73.4|77.3 62.9
* R-MAC (fV)|256 74.9 78.2|67.5|72.1 82.3 83.5/74.1|75.6/81.4 69.4
MACH? (V)[512/56.4 |58.3/47.8|149.2|72.3|72.6/58.0|59.1|76.7 |62.7
R-MAC [27] (V)[512/66.9| — |61.6] — |83.0| — |75.7 - - -
CroW [21] (V)[512/68.2] — [63.2 — |79.6| — |7T1.0] — |84.9] —
* MAC (fV)[512 79.7 80.0|73.9|75.1|82.4 82.9|74.6|75.3|79.5 67.0
* R-MAC (fV)|512 77.0 80.1/69.2|74.1 83.8 85.0|/76.4|77.9|82.5 T1.5
Extreme short codes
Neural codes’ [11] (FA)[ 16| — [41.8] — [354] — | - | — | — [60.9] -
* AL (fV)| 16 56.2 57.4|45.5/47.6 57.3 62.9/43.4|48.5|51.3 25.6
* R-MAC (fV)| 16 46.9 52.1|37.9/41.6 58.8 63.2|/45.6/49.6|54.4 31.7
Neural codes' | 32 46.7) — | | | |T29] -
* MAC (fV)‘S’ m 5159.5 63.9 69.5/51.6/56.3/62.4 41.8
* R-MAC (fV)] 32 55.1 63.9 67.4|52.7|55.8|68.0 49.6
Re-ranking (R) and query expansion (QE)
BoW(1IM)+QE [0] — 82,7 — |76.7| — |80.5| - |71.0} - - -
BoW(16M)+QE [50] — 849 — |795] — 824 T3 - -
HQE(65k) [+] - |88.0] - |84.0 - |828| - - - — -
R-MAC+R+QE [25] (V)|512|77.3] — |73.2 — [86.5| — |79.8| - - =
CroW+QE [21] (V)[h12|72.2] — |67.8] — |85.5| — |79.7| — — -
* MAC+R+4+QE (fV)|512|85.0 85.4|81.8|82.3 86.5 87.0|78.8|79.6| — -
* R-MACHRAQE  (fV)[512|82.9 84.5|77.9|80.4|85.6 86.4|78.3|79.7| — -




Teacher vs. Student

" Method | xSk | Oxf10sk | Parck | ariosic

Bow(16M)+R+QE  84.9 79.5 824 77.3
CNN(512D) 79.7 /3.9 824 746



Teacher vs. Student

" Method | xSk | Oxf10sk | Parck | ariosic

Bow(1eM)+R+QE 84,9 79.5 824 77.3

CNN(512D) 79.7 /3.9 824 746
CNN(512D)+R+QE  85.0 81.8 86.5 78.8

Our CNN with re-ranking (R) and query expansion(QE)
surpasses its teacher on all datasets!!!
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first incorrect at rank 127
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