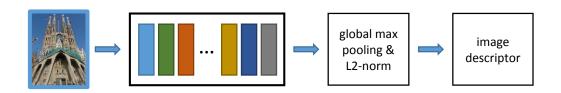


Filip Radenović Giorgos Tolias Ondřej Chum

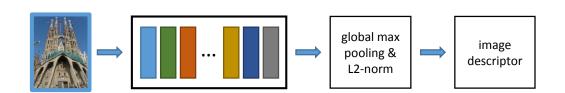
Center for Machine Perception, CTU in Prague

CNN Image Retrieval compact image descriptors
Nearest Neighbor search



#### **CNN Image Retrieval**

compact image descriptors Nearest Neighbor search

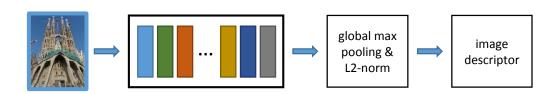


#### **CNN** Learning (Fine-Tuning)

start with CNN trained for different but similar task (reasonable parameters) re-train with data relevant to your task

#### **CNN Image Retrieval**

compact image descriptors Nearest Neighbor search

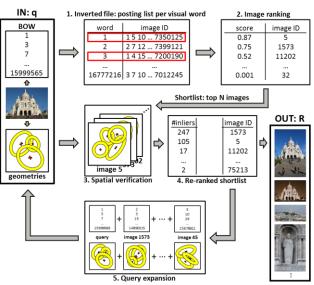


#### **CNN** Learning (Fine-Tuning)

start with CNN trained for different but similar task (reasonable parameters) re-train with data relevant to your task

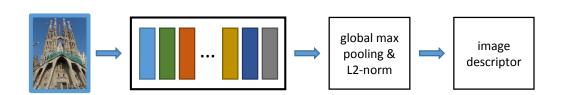
#### Bag of Words

state-of-the-art retrieval performance couples well with SfM



#### **CNN Image Retrieval**

compact image descriptors Nearest Neighbor search



#### **CNN** Learning (Fine-Tuning)

start with CNN trained for different but similar task (reasonable parameters) re-train with data relevant to your task

#### **Bag of Words**

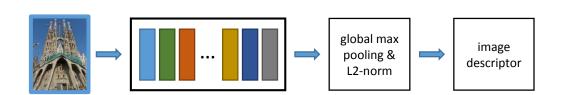
state-of-the-art retrieval performance couples well with SfM

#### Unsupervised training data generation

no human interaction

#### **CNN Image Retrieval**

compact image descriptors Nearest Neighbor search



#### **CNN** Learning (Fine-Tuning)

start with CNN trained for different but similar task (reasonable parameters) re-train with data relevant to your task

#### **Bag of Words**

state-of-the-art retrieval performance couples well with SfM

#### Unsupervised training data generation

no human interaction

#### **Hard Examples**









hard positives

hard negatives

Significant viewpoint and/or scale change Significant illumination change

Severe occlusions

Visually similar but different objects

**BoW:** affine co-variant local features, invariant descriptors











Significant viewpoint and/or scale change

Significant illumination change

Severe occlusions

Visually similar but different objects

**BoW: color-normalized feature descriptors** 









Significant viewpoint and/or scale change Significant illumination change

Severe occlusions

Visually similar but different objects

**BoW:** locality of the features, geometric verification











Significant viewpoint and/or scale change Significant illumination change Severe occlusions



Visually similar but different objects

BoW: discriminability of the features, geometric verification









Significant viewpoint and/or scale change Significant illumination change Severe occlusions



Visually similar but different objects

**BoW:** discriminability of the features, geometric verification











Large Internet photo collection



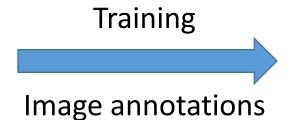
Large Internet photo collection



Convolutional Neural Network (CNN)



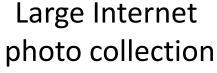
Large Internet photo collection





Convolutional Neural Network (CNN)







Not accurate

Expensive \$\$



Convolutional Neural Network (CNN)

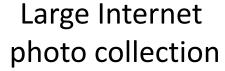
Manual cleaning of the training data done by Researchers



Very expensive \$\$\$\$









Not accurate Expensive \$\$





Convolutional Neural Network (CNN)

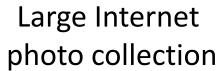
Manual cleaning of the training data done by Researchers



Very expensive \$\$\$\$

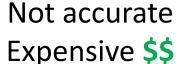
















Convolutional Neural Network (CNN)



Automated extraction of training data

Very accurate Free \$



#### Off-the-shelf CNN

- Target application: classification
- Training dataset: ImageNet
- Architecture: AlexNet & VGG



Images from ImageNet.org

#### Directly applicable to other tasks

#### Fine-grain classification









Images from ImageNet.org

#### Object detection









Images from PASCAL VOC 2012

#### Image retrieval













CNN pre-trained for classification task used for retrieval

[Gong et al. ECCV'14, Babenko et al. ICCV'15, Kalantidis et al. arXiv'15, Tolias et al. ICLR'16]

















CNN pre-trained for classification task used for retrieval

[Gong et al. ECCV'14, Babenko et al. ICCV'15, Kalantidis et al. arXiv'15, Tolias et al. ICLR'16]



















Fine-tuned CNN using a dataset with landmark classes

















CNN pre-trained for classification task used for retrieval

[Gong et al. ECCV'14, Babenko et al. ICCV'15, Kalantidis et al. arXiv'15, Tolias et al. ICLR'16]

















Fine-tuned CNN using a dataset with landmark classes

















 NetVLAD: Weakly supervised fine-tuned CNN using GPS tags



CNN pre-trained for classification task used for retrieval

[Gong et al. ECCV'14, Babenko et al. ICCV'15, Kalantidis et al. arXiv'15, Tolias et al. ICLR'16]

















Fine-tuned CNN using a dataset with landmark classes









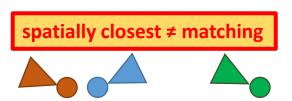








 NetVLAD: Weakly supervised fine-tuned CNN using GPS tags



We propose: automatic annotations for CNN training

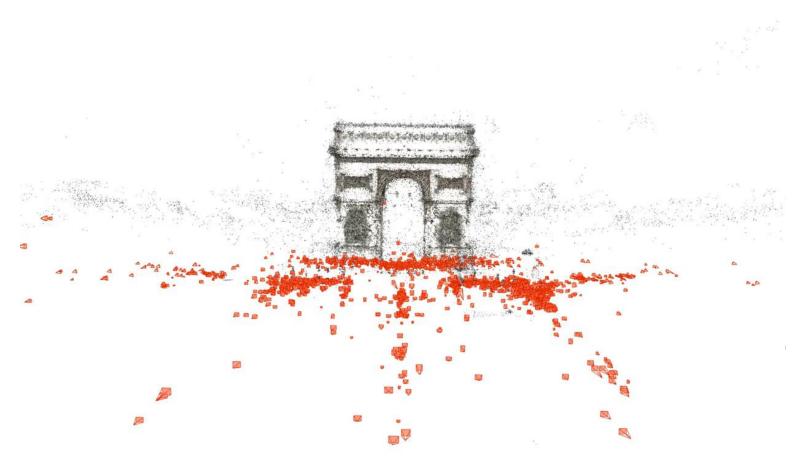








## CNN learns from BoW – Training Data



[Schonberger et al. CVPR'15] [Radenovic et al. CVPR'16]

7.4M images → 713 training 3D models

## CNN learns from BoW – Training Data

**Camera Orientation Known Number of Inliers Known** 



[Schonberger et al. CVPR'15] [Radenovic et al. CVPR'16]

7.4M images → 713 training 3D models

Negative examples: images from different 3D models than the query

Hard negatives: closest negative examples to the query

Only hard negatives: as good as using all negatives, but faster







Negative examples: images from different 3D models than the query

**Hard negatives:** closest negative examples to the query

Only hard negatives: as good as using all negatives, but faster

query

the most similar CNN descriptor











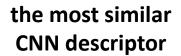


Negative examples: images from different 3D models than the query

Hard negatives: closest negative examples to the query

Only hard negatives: as good as using all negatives, but faster

#### increasing CNN descriptor distance to the query



naive hard negatives top k by CNN



























Negative examples: images from different 3D models than the query

**Hard negatives:** closest negative examples to the query

Only hard negatives: as good as using all negatives, but faster

#### increasing CNN descriptor distance to the query

the most similar CNN descriptor

top k by CNN

diverse hard negatives top k: one per 3D model



























**Positive examples:** images that share 3D points with the query **Hard positives:** positive examples not close enough to the query





Positive examples: images that share 3D points with the query Hard positives: positive examples not close enough to the query

query

top 1 by CNN









used in NetVLAD

**Positive examples:** images that share 3D points with the query **Hard positives:** positive examples not close enough to the query

query

top 1 by CNN

top 1 by BoW







harder positives







used in NetVLAD

**Positive examples:** images that share 3D points with the query **Hard positives:** positive examples not close enough to the query

top 1 by CNN

top 1 by BoW

random from top k by BoW









harder positives



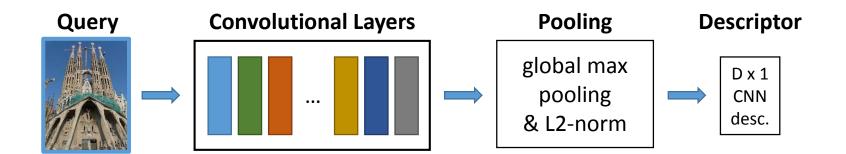




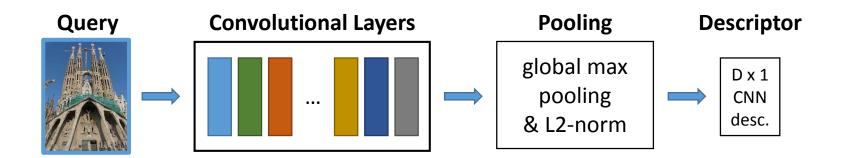


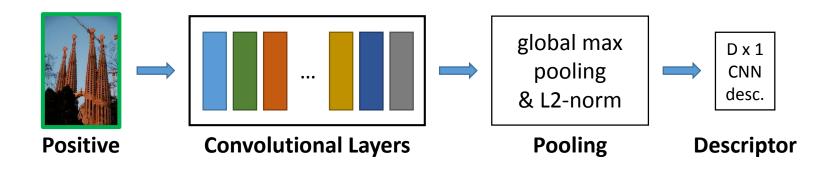
used in NetVLAD

## **CNN Siamese Learning**

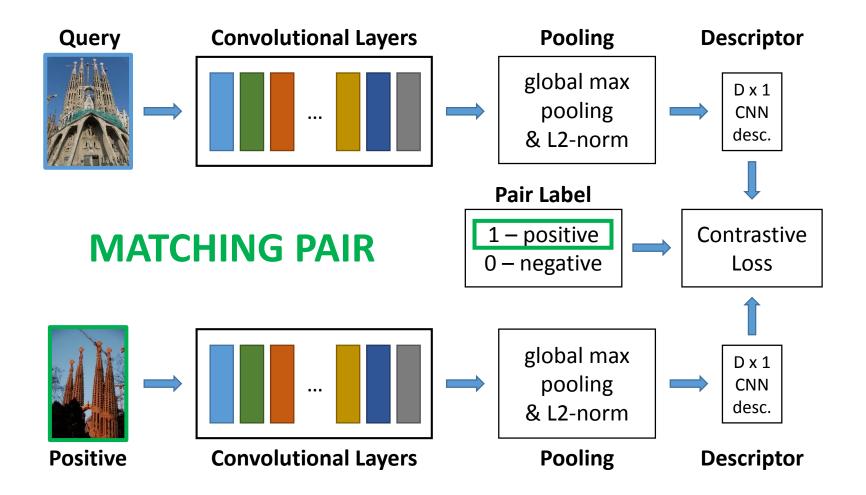


## **CNN Siamese Learning**

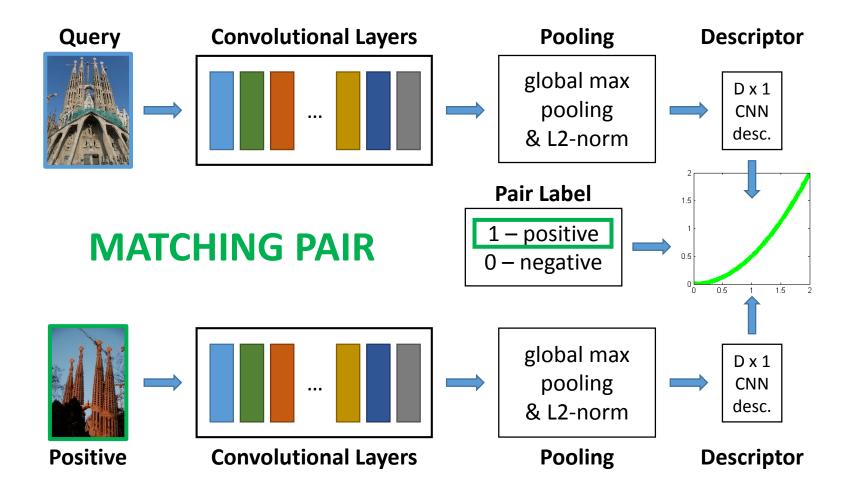




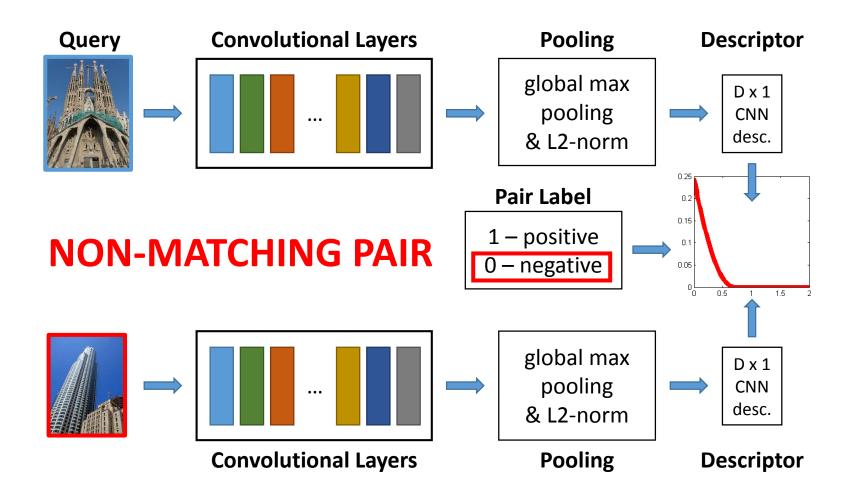
## **CNN Siamese Learning**



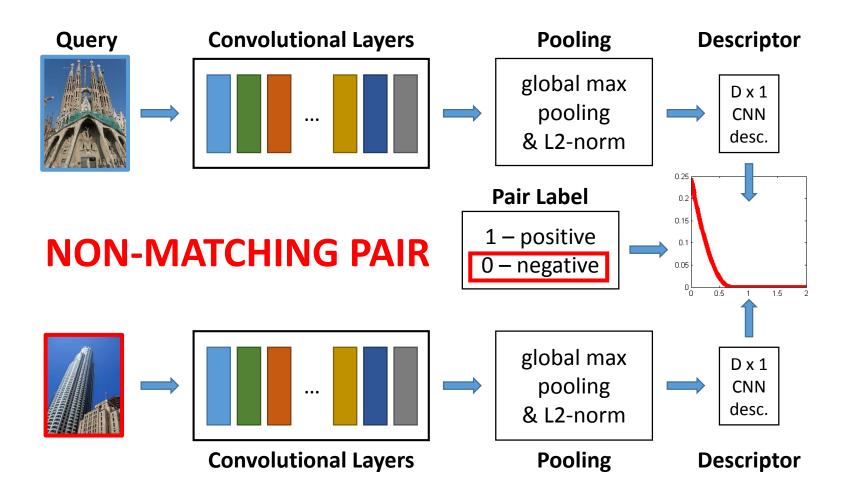
# **CNN Siamese Learning**



# **CNN Siamese Learning**

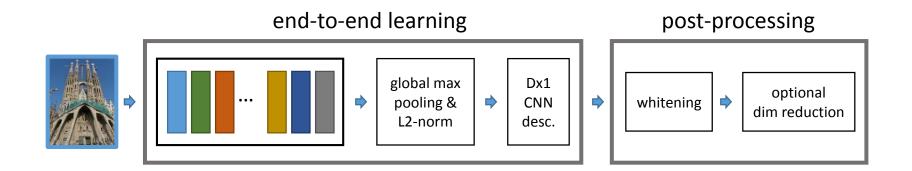


# **CNN Siamese Learning**

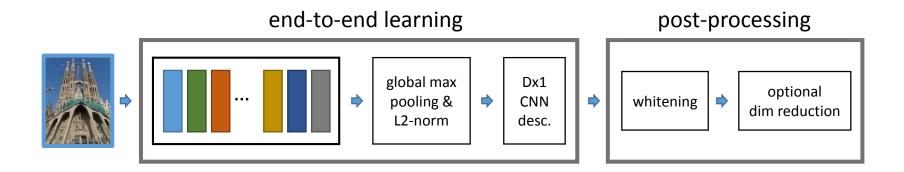


### **Contrastive vs. Triplet loss: Contrastive better with our data**

Contrastive loss more strict, requires accurate training data Triplet loss less sensitive to inaccurate annotation

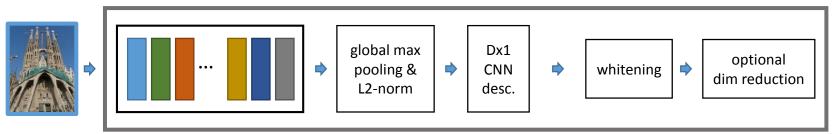


1. PCA<sub>w</sub> – PCA of an independent set of descriptors [Babenko et al. ICCV'15, Tolias et al. ICLR'16]

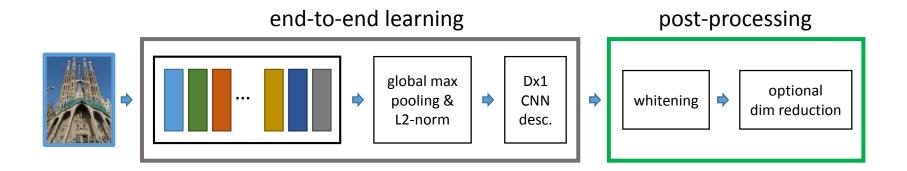


- 1. PCA<sub>w</sub> PCA of an independent set of descriptors [Babenko et al. ICCV'15, Tolias et al. ICLR'16]
- 2.  $L_w$  We propose to learn whitening using labeled training data and linear discriminant projections

end-to-end learning



- 1. PCA<sub>w</sub> PCA of an independent set of descriptors [Babenko et al. ICCV'15, Tolias et al. ICLR'16]
- 2. L<sub>w</sub> We propose to learn whitening using labeled training data and linear discriminant projections [Mikolajczyk & Matas ICCV'07]
- 3. End-to-end Learning Performs comparable or worse than  $L_w$ , while slowing down the convergence



- 1. PCA<sub>w</sub> PCA of an independent set of descriptors [Babenko et al. ICCV'15, Tolias et al. ICLR'16]
- L<sub>w</sub> We propose to learn whitening using labeled training data and linear discriminant projections [Mikolajczyk & Matas ICCV'07]
- 3. End-to-end Learning Performs comparable or worse than  $L_w$ , while slowing down the convergence

## Experiments – datasets

 Oxford 5k dataset [Philbin et al. CVPR'07]



- Paris 6k dataset
- [Philbin et al. CVPR'08]
- Holidays dataset [Jegou et al. ECCV'10]



 100k distractor dataset [Philbin et al. CVPR'07]

Protocol: mean Average Precision (mAP)

## Experiments – datasets

 Oxford 5k dataset [Philbin et al. CVPR'07]











Paris 6k dataset
 [Philbin et al. CVPR'08]











• Holidays dataset [Jegou et al. ECCV'10]









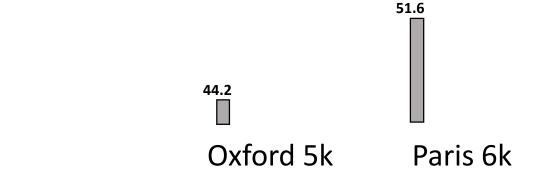


• 100k distractor dataset [Philbin et al. CVPR'07]

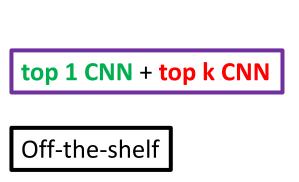
Training 3D models do not contain any landmark from these datasets

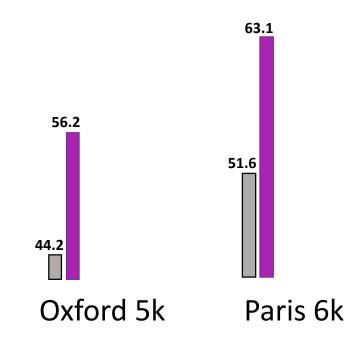
Protocol: mean Average Precision (mAP)

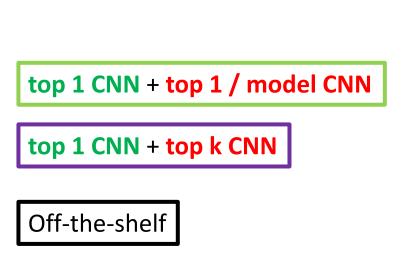
 Careful choice of positive and negative training images makes a difference

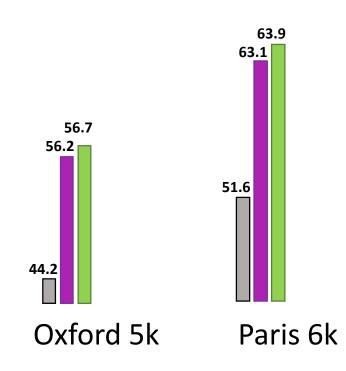


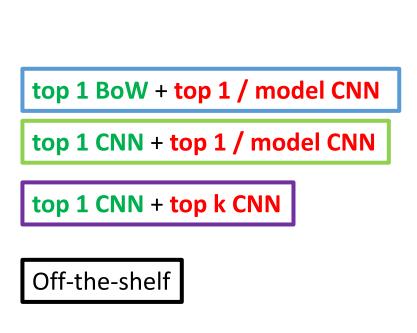
Off-the-shelf

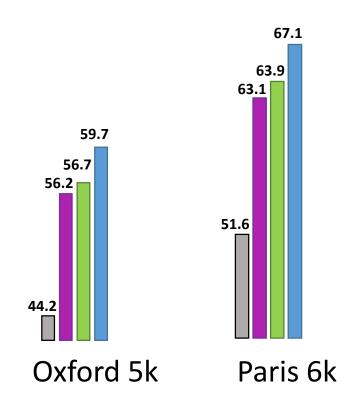


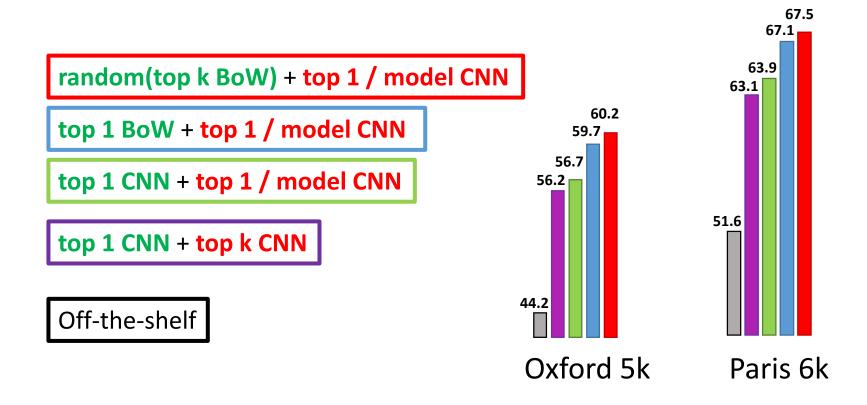


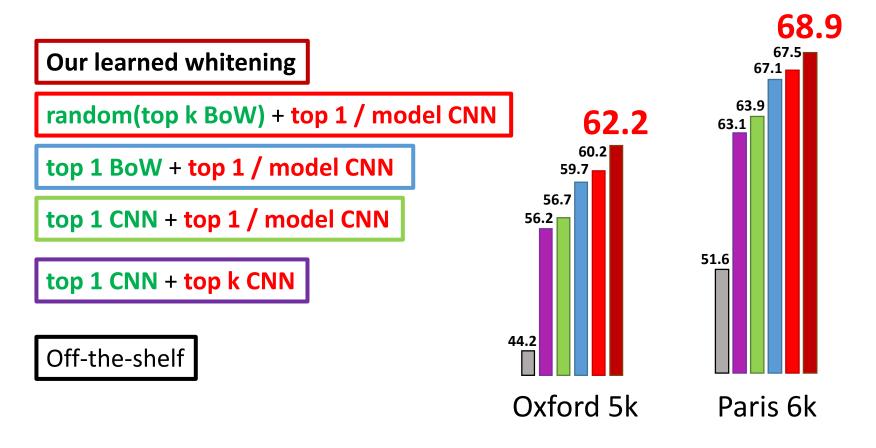








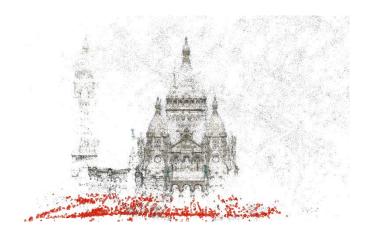




### Experiments – Over-fitting and Generalization

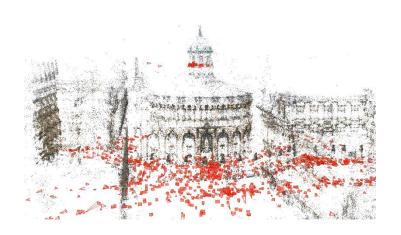
We added Oxford and Paris landmarks as 3D models and repeated fine-tuning

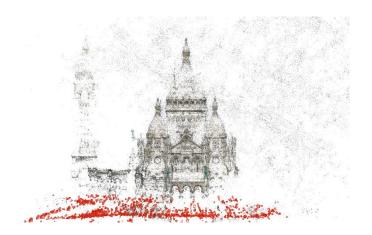




### Experiments – Over-fitting and Generalization

 We added Oxford and Paris landmarks as 3D models and repeated fine-tuning





Only +0.3 mAP on average over all testing datasets

# State-of-the-art

| Method                         |                                     | $\mathbf{D}$ | $O_{X}$                       | f5k                       | Oxf                           | 105k                      | Pa                            | r6k                       | Par                           | 106k                      | Hol  | Н  |
|--------------------------------|-------------------------------------|--------------|-------------------------------|---------------------------|-------------------------------|---------------------------|-------------------------------|---------------------------|-------------------------------|---------------------------|------|----|
| Method                         |                                     |              | $\mathtt{Crop}_{\mathcal{I}}$ | ${\tt Crop}_{\mathcal X}$ |      | 10 |
|                                |                                     | (            | Comp                          | act re                    | eprese                        | ntatio                    | ons                           |                           |                               |                           |      |    |
| mVoc/BoW [11]                  |                                     | 128          | 48.8                          | _                         | 41.4                          | _                         | _                             | _                         | _                             | _                         | 65.6 | -  |
| Neural codes <sup>†</sup> [14] | (fA)                                | 128          | _                             | 55.7                      | _                             | 52.3                      | _                             | _                         | _                             | _                         | 78.9 |    |
| $MAC^{\ddagger}$               |                                     |              |                               | 55.7                      | 43.8                          | 45.6                      | 69.5                          | 70.6                      | 53.4                          | 55.4                      | 72.6 | 56 |
| CroW [24]                      | $(\mathbf{V})$                      | 128          | 59.2                          | _                         | 51.6                          | _                         | 74.6                          | _                         | 63.2                          | _                         | _    | -  |
| ⋆ MAC                          | $(\mathbf{fV})$                     | 128          | 75.8                          | 76.8                      | 68.6                          | 70.8                      | 77.6                          | 78.8                      | 68.0                          | 69.0                      | 73.2 | 58 |
| ★ R-MAC                        |                                     |              |                               |                           |                               |                           |                               |                           |                               | 71.2                      |      |    |
| $MAC^{\ddagger}$               |                                     |              |                               |                           |                               |                           |                               |                           |                               | 57.3                      |      |    |
| SPoC [23]                      | $(\mathbf{V})$                      | 256          | _                             | 53.1                      | _                             | 50.1                      | _                             | _                         | _                             | _                         | 80.2 | -  |
| R-MAC [25]                     |                                     |              | 56.1                          | _                         | 47.0                          | _                         | 72.9                          | _                         | 60.1                          | _                         | _    | -  |
| CroW [24]                      | $(\mathbf{V})$                      | 256          | 65.4                          | _                         | 59.3                          | _                         | 77.9                          | _                         | 67.8                          | _                         | 83.1 |    |
| NetVlad [35]                   | $(\mathbf{V})$                      | 256          | _                             | 55.5                      | _                             | _                         | _                             | 67.7                      | _                             | _                         | 86.0 |    |
| NetVlad [35]                   | $(\mathbf{fV})$                     | 256          | _                             | 63.5                      | _                             | _                         | _                             | 73.5                      | _                             | _                         | 84.3 | -  |
| ⋆ MAC                          | $(\mathbf{f}\mathbf{A})$            | 256          | 62.2                          | 65.4                      | 52.8                          | 58.0                      | 68.9                          | 72.2                      | 54.7                          | 58.5                      | 76.2 | 63 |
| ★ R-MAC                        |                                     |              |                               |                           |                               |                           |                               |                           |                               | 64.8                      |      |    |
| ⋆ MAC                          |                                     |              |                               |                           |                               | 72.6                      |                               |                           |                               |                           | 77.3 |    |
| ★ R-MAC                        | $(\mathbf{fV})$                     | 256          | 74.9                          | 78.2                      | 67.5                          | 72.1                      | 82.3                          | 83.5                      | 74.1                          | 75.6                      | 81.4 | 69 |
| MAC <sup>‡</sup>               | $(\mathbf{V})$                      | 512          | 56.4                          | 58.3                      | 47.8                          | 49.2                      | 72.3                          | 72.6                      | 58.0                          | 59.1                      | 76.7 | 62 |
| R-MAC [25]                     | $(\mathbf{V})$                      | 512          | 66.9                          | _                         | 61.6                          | _                         | 83.0                          | _                         | 75.7                          | _                         | _    |    |
| CroW [24]                      | $(\mathbf{V})$                      | 512          | 68.2                          | _                         | 63.2                          | _                         | 79.6                          | _                         | 71.0                          | _                         | 84.9 | -  |
| ⋆ MAC                          | $(\mathbf{fV})$                     | 512          | 79.7                          | 80.0                      | 73.9                          | 75.1                      | 82.4                          | 82.9                      | 74.6                          | 75.3                      | 79.5 | 6  |
| ★ R-MAC                        | $(\mathbf{fV})$                     | 512          | 77.0                          | 80.1                      | 69.2                          | 74.1                      | 83.8                          | 85.0                      | 76.4                          | 77.9                      | 82.5 | 71 |
|                                |                                     |              | Ext                           | reme                      | short                         | codes                     | S                             |                           |                               |                           |      |    |
| Neural codes <sup>†</sup> [14] | $\overline{(\mathbf{f}\mathbf{A})}$ | 16           | _                             | 41.8                      | _                             | 35.4                      | _                             | _                         | _                             | _                         | 60.9 | -  |
| ⋆ MAC                          | $(\mathbf{fV})$                     | 16           | 56.2                          | 57.4                      | 45.5                          | 47.6                      | 57.3                          | 62.9                      | 43.4                          | 48.5                      | 51.3 | 25 |
| ★ R-MAC                        | $(\mathbf{fV})$                     | 16           | 46.9                          | 52.1                      | 37.9                          | 41.6                      | <b>58.8</b>                   | 63.2                      | 45.6                          | 49.6                      | 54.4 | 31 |
| Neural codes <sup>†</sup> [14] | $\overline{(\mathbf{f}\mathbf{A})}$ | 32           | _                             | 51.5                      | _                             | 46.7                      | _                             | _                         | _                             | _                         | 72.9 |    |
| ★ MAC                          | $(\mathbf{fV})$                     | 32           | 65.3                          | 69.2                      | 55.6                          | 59.5                      | 63.9                          | 69.5                      | 51.6                          | 56.3                      |      |    |
| ★ R-MAC                        | $(\mathbf{fV})$                     |              |                               |                           |                               |                           |                               |                           |                               | 55.8                      |      |    |
|                                | Re-ra                               | nkin         | g (R)                         | and                       | query                         | expa                      | ansion                        | ı (QE                     | )                             |                           |      |    |
| BoW(1M)+QE [6]                 |                                     |              |                               |                           |                               | _                         |                               |                           | ,                             | _                         | _    |    |
| BoW(16M) + QE[50]              |                                     | _            | 84.9                          | _                         | 79.5                          | _                         | 82.4                          | _                         | 77.3                          | _                         | _    |    |
| HQE(65k) [8]                   |                                     | _            | 88.0                          | 1                         | 84.0                          | _                         | 82.8                          | _                         | _                             | _                         | _    | -  |
| R-MAC+R+QE [25]                | $(\mathbf{V})$                      | 512          | 77.3                          | _                         | 73.2                          | _                         | 86.5                          | _                         | 79.8                          | _                         | _    | -  |
| CroW+QE  [24]                  |                                     |              | 72.2                          | 1                         | 67.8                          | _                         | 85.5                          | _                         | 79.7                          | _                         | _    | -  |
|                                | . ,                                 | 1            |                               | 85.4                      | 81.8                          | 82.3                      | 86.5                          | 87.0                      | 78.8                          | 79.6                      | _    | -  |
| ★ R-MAC+R+QE                   | $(\mathbf{fV})$                     | 512          | 82.9                          | 84.5                      | 77.9                          | 80.4                      | 85.6                          | 86.4                      | 78.3                          | 79.7                      | _    | -  |

# State-of-the-art

### VS.

NetVLAD 256D

Our CNN 32D

|                                |                          |      | 1 1         | 17.         | · L         | 11     | TT          | FA          | 1 L  | 11          |      |           |
|--------------------------------|--------------------------|------|-------------|-------------|-------------|--------|-------------|-------------|------|-------------|------|-----------|
|                                |                          | (    | Comp        | act re      | prese       | ntatio | ons         |             |      |             |      |           |
| mVoc/BoW [11]                  |                          |      | 48.8        | _           | 41.4        |        | _           | _           | _    | _           | 65.6 | _         |
| Neural codes <sup>†</sup> [14] | (fA)                     | 128  | _           | 55.7        | _           | 52.3   | _           | _           | _    | _           | 78.9 | -         |
| MAC <sup>‡</sup>               | $(\mathbf{V})$           | 128  |             |             |             | 45.6   | 69.5        | 70.6        | 53.4 | 55.4        | 72.6 | <b>56</b> |
| CroW [24]                      | $(\mathbf{V})$           | 128  | 59.2        | _           | 51.6        | _      | 74.6        | _           | 63.2 | _           | _    | _         |
| ★ MAC                          | $(\mathbf{fV})$          | 128  | <b>75.8</b> | <b>76.8</b> | 68.6        | 70.8   | 77.6        | 78.8        | 68.0 | 69.0        | 73.2 | 58        |
| ★ R-MAC                        | $(\mathbf{fV})$          | 128  | 72.5        | 76.7        | 64.3        | 69.7   | <b>78.5</b> | 80.3        | 69.3 | 71.2        | 79.3 | <b>65</b> |
| MAC <sup>‡</sup>               | $(\mathbf{V})$           | 256  | 54.7        | 56.9        | 45.6        | 47.8   | 71.5        | 72.4        | 55.7 | 57.3        | 76.5 | 61        |
| SPoC [23]                      | $(\mathbf{V})$           | 256  | _           | 53.1        | _           | 50.1   | _           | _           | _    | _           | 80.2 | _         |
| R-MAC [25]                     | $(\mathbf{A})$           | 256  | 56.1        | _           | 47.0        | _      | 72.9        | _           | 60.1 | _           | _    | _         |
| CroW [24]                      | $(\mathbf{V})$           | 256  | 65.4        | _           | <u>59.3</u> | _      | 77.9        | _           | 67.8 | _           | 83.1 | _         |
| NetVlad [35]                   | $(\mathbf{V})$           | 256  |             |             |             | _      | _           | 67.7        | _    | _           | 86.0 | -         |
| NetVlad [35]                   | $(\mathbf{fV})$          | 250  | - 6         | 53.         | 5           | _      | _           | 73.5        | _    | _           | 84.3 | _         |
| * MAC                          | (fA)                     | 256  | (           |             | 3           | 58.0   | 68.9        | 72.2        | 54.7 | 58.5        | 76.2 | 63        |
| ★ R-MAC                        |                          |      |             |             |             | 61.2   |             |             |      |             | 81.5 | <b>70</b> |
| ★ MAC                          | (fV)                     | 256  | 77.4        | <b>78.2</b> | 70.7        | 72.6   | 80.8        | 81.9        | 72.2 | 73.4        | 77.3 |           |
| ★ R-MAC                        | (fV)                     | 256  | 74.9        | <b>78.2</b> | 67.5        | 72.1   | 82.3        | 83.5        | 74.1 | <b>75.6</b> | 81.4 | 69        |
| MAC <sup>‡</sup>               | $(\mathbf{V})$           | 512  | 56.4        | 58.3        | 47.8        | 49.2   | 72.3        | 72.6        | 58.0 | 59.1        | 76.7 | <b>62</b> |
| R-MAC [25]                     | $(\mathbf{V})$           | 512  | 66.9        | _           | 61.6        | _      | 83.0        | _           | 75.7 | _           | _    | -         |
| $\operatorname{CroW}[24]$      | $(\mathbf{V})$           | 512  | 68.2        | _           | 63.2        | _      | 79.6        | _           | 71.0 | _           | 84.9 | _         |
| ★ MAC                          | (fV)                     | 512  | 79.7        | 80.0        | 73.9        | 75.1   | 82.4        | 82.9        | 74.6 | 75.3        | 79.5 | 67        |
| ★ R-MAC                        | $(\mathbf{fV})$          | 512  | 77.0        | 80.1        | 69.2        | 74.1   | 83.8        | <b>85.0</b> | 76.4 | 77.9        | 82.5 | 71        |
|                                |                          |      | Ext         | reme        | short       | codes  | 3           |             |      |             |      |           |
| Neural codes <sup>†</sup> [14] | (fA)                     | 16   |             | 41.8        |             | 35.4   |             | _           | _    | _           | 60.9 | _         |
| * MAC                          | $(\mathbf{fV})$          |      |             | 57.4        | 45.5        | 47.6   | 57.3        | 62.9        | 43.4 | 48.5        | 51.3 | 25        |
| ⋆ R-MAC                        | $(\mathbf{fV})$          | 16   | 46.9        | 52.1        | 37.9        | 41.6   | 58.8        | 63.2        | 45.6 | 49.6        | 54.4 | 31        |
| Neural codes <sup>†</sup> [14] | $(\mathbf{f}\mathbf{A})$ | 32   |             |             |             | 46.7   | _           | _           | _    | _           | 72.9 | _         |
| ★ MAC                          | $(\mathbf{fV})$          | 32   | 6           | 59.2        | 6           | 59.5   | 63.9        | 69.5        | 51.6 | 56.3        | 62.4 | 41        |
| ★ R-MAC                        | $(\mathbf{fV})$          | 32   | L           | <i>-</i>    |             | 55.1   | 63.9        | 67.4        | 52.7 | 55.8        | 68.0 | 49        |
|                                | Re-ra                    | nkin | g (R)       | and         | auery       | expa   | nsion       | (QE         | )    |             |      |           |
| BoW(1M)+QE [6]                 |                          | _    | 82.7        | _           | 76.7        |        | 80.5        |             | 71.0 | _           |      | l –       |
| BoW(16M) + QE [50]             | ]                        | _    | 84.9        | _           | 79.5        |        | 82.4        |             | 77.3 | _           | _    | _         |
| HQE(65k) [8]                   | 1                        | _    | 88.0        | _           | 84.0        |        | 82.8        |             | _    | _           | _    | _         |
| R-MAC+R+QE [25]                | $(\mathbf{V})$           | 512  |             |             | 73.2        |        | 86.5        |             | 79.8 | _           | _    | _         |
| CroW + QE  [24]                |                          |      | 72.2        | _           | 67.8        | I      | 85.5        |             | 79.7 | _           | _    | _         |
| ★ MAC+R+QE                     | \                        | 1    |             | 85.4        |             | 82.3   |             | ı           | ı    | 79.6        | _    | _         |
| ★ R-MAC+R+QE                   |                          |      |             |             |             | 80.4   |             |             |      | 79.7        | _    | _         |
| · · · •                        | \ /                      |      | L           |             |             |        | L           |             |      |             | 1    |           |

Oxf5k

 $Crop_{\mathcal{I}}$   $Crop_{\mathcal{X}}$ 

Method

Hol

Par106k

 $Crop_{\mathcal{X}}$ 

Par6k

 $Crop_{\mathcal{I}} | Crop_{\mathcal{X}}$ 

 $Crop_{\mathcal{X}}$ 

Hol

101k

# State-of-the-art

# VS.

NetVLAD 256D

# Our CNN 32D

Concurrent work: [Gordo et al. ECCV'16]

mVoc/BoW [11] 41.4 65.6Neural codes<sup>†</sup> [14]  $({\bf f}{\bf A})|128$ 55.7 52.378.9 MAC<sup>‡</sup>  $(\mathbf{V})$  128 53.5 **55.7** 43.8 | 45.6 | 69.5 | **70.6** | 53.4 | **55.4** | 72.6 | **56.7** (V) 128 59.2 51.6 74.6 63.2 CroW [24] ★ MAC  $(\mathbf{fV})$  128 **75.8 76.8 68.6 70.8** 77.6 78.8 **68.0 69.0 73.2** 58.8 ★ R-MAC  $(\mathbf{fV})$  | 128 | 72.5 | 76.7 | 64.3 | 69.7 | **78.5 | 80.3 | 69.3 | 71.2 | 79.3 | 65.2**  $MAC^{\ddagger}$ 56.9 45.6 47.8 71.5 | 72.4 | 55.7 | **57.3** 76.5 **61.3** (V)|25653.1 50.1 80.2 SPoC [23] R-MAC [25]  $(\mathbf{A})|256|56.1$ 47.0 72.9 60.1CroW [24]  $(\mathbf{V})|256|\mathbf{65.4}$ |59.3|77.9 67.8 83.1 NetVlad [35] (V)|256|67.786.0 (fV) 25% 73.5 NetVlad [35] 84.3 58.0 | 68.9 | 72.2 | 54.7 \* MAC  $({\bf f}{\bf A})|256|$ 76.2 63.8 ⋆ R-MAC (fA)|256|62.5|68.9|53.2|61.2|74.4|76.6|61.8|64.8|81.5|70.8 ★ MAC  $(\mathbf{fV})|256|77.4|78.2|70.7|72.6|80.8|81.9|72.2$ ★ R-MAC  $(\mathbf{fV})|256|74.9|\mathbf{78.2}|67.5|72.1|\mathbf{82.3}|\mathbf{83.5}|\mathbf{74.1}|\mathbf{75.6}|81.4$ MAC<sup>‡</sup> (V) | 512 | 56.4 | 58.3 | 47.8 | 49.2 | 72.3 | 72.6 | 58.0 | 59.1 | 76.7 | 62.7 R-MAC [25]  $(\mathbf{V})|512|66.9$ 61.6 83.0 75.7  $(\mathbf{V})|512|\mathbf{68.2}|$ 63.2 79.6 CroW [24] 71.0 84.9  $(\mathbf{fV})|512|79.7|80.0|73.9|75.1|82.4|82.9|74.6|75.3|79.5|67.0$ ★ MAC ★ R-MAC  $(\mathbf{fV})|512|77.0|80.1|69.2|74.1|83.8|85.0|76.4|77.9|82.5|71.5$ Extreme short codes Neural codes<sup>†</sup> [14]  $(\mathbf{f}\mathbf{A})$ 41.8 60.9 \* IVIAC 16 **56.2 57.4 45.5 47.6** 57.3 62.9 43.4 48.5 51.3 25.6 ★ R-MAC 16 46.9 52.1 37.9 41.6 **58.8 63.2 45.6 49.6** 54.4 **31.7** Neural codes<sup>†</sup>  $(\mathbf{f}\mathbf{A})$  32 72.9 46.7 ★ MAC **59.5 63.9 69.5** 51.6 **56.3** 62.4 41.8  $(\mathbf{fV})$  32 32 55.1 **63.9** 67.4 **52.7** 55.8 68.0 **49.6** ★ R-MAC  $(\mathbf{fV})$ Re-ranking (R) and query expansion (QE)

82.7

84.9

88.0

 $(\mathbf{V})|512|77.3$ 

 $(\mathbf{V})|512|72.2$ 

76.7

79.5

84.0

73.2

67.8  $(\mathbf{fV})|512|85.0|85.4|81.8|82.3|86.5|87.0|78.8|79.6$ 

 $(\mathbf{fV})|512|82.9|84.5|77.9|80.4|85.6|86.4|78.3|$ 79.7

Oxf105k

 $\operatorname{Crop}_{\mathcal{I}}$   $\operatorname{Crop}_{\mathcal{X}}$   $\operatorname{Crop}_{\mathcal{I}}$   $\operatorname{Crop}_{\mathcal{X}}$   $\operatorname{Crop}_{\mathcal{I}}$   $\operatorname{Crop}_{\mathcal{X}}$ 

Compact representations

Oxf5k

Method

BoW(1M)+QE [6]

HQE(65k) [8]

CroW+QE [24]

★ MAC+R+QE

★ R-MAC+R+QE

BoW(16M) + QE[50]

R-MAC+R+QE [25]

Par6k

80.5

82.4

82.8

86.5

85.5

71.0

77.3

79.8

79.7

Par106k

 $Crop_{\mathcal{I}}$   $Crop_{\mathcal{X}}$ 

Hol Hol

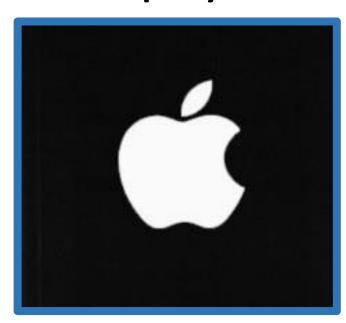
101k

| Method        | Oxf5k | Oxf105k | Par6k | Par106k |
|---------------|-------|---------|-------|---------|
| BoW(16M)+R+QE | 84.9  | 79.5    | 82.4  | 77.3    |
| CNN(512D)     | 79.7  | 73.9    | 82.4  | 74.6    |

| Method         | Oxf5k | Oxf105k | Par6k | Par106k |
|----------------|-------|---------|-------|---------|
| BoW(16M)+R+QE  | 84.9  | 79.5    | 82.4  | 77.3    |
| CNN(512D)      | 79.7  | 73.9    | 82.4  | 74.6    |
| CNN(512D)+R+QE | 85.0  | 81.8    | 86.5  | 78.8    |

Our CNN with re-ranking (R) and query expansion(QE) surpasses its teacher on all datasets!!!

### query



### top 10 (correct | incorrect)

#### query



**BoW** 























first incorrect at rank 127

### top 10 (correct | incorrect)

#### query



























first incorrect at rank 127























query



#### query



### top 10 (correct | incorrect)



first incorrect at rank 159

### query





top 10 (correct | incorrect)





















first incorrect at rank 159

























top 10 (correct | incorrect) query **BoW Fine-tuning** at rank 159 might not be enough **CNN** 

## Conclusions

 We propose a method to generate the necessary "lots of training examples" without any human interaction

 Strong supervision for hard negative, hard positive mining, and supervised whitening

 Data and trained networks available at: cmp.felk.cvut.cz/~radenfil/projects/siamac.html

For more details about the paper visit Poster O-1A-01

## Conclusions

 We propose a method to generate the necessary "lots of training examples" without any human interaction

 Strong supervision for hard negative, hard positive mining, and supervised whitening

 Data and trained networks available at: cmp.felk.cvut.cz/~radenfil/projects/siamac.html

For more details about the paper visit Poster O-1A-01

## Conclusions

 We propose a method to generate the necessary "lots of training examples" without any human interaction

 Strong supervision for hard negative, hard positive mining, and supervised whitening

 Data and trained networks available at: cmp.felk.cvut.cz/~radenfil/projects/siamac.html

For more details about the paper visit Poster O-1A-01