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Multi-label Image Recognition IS Everywhere

 All images can be assigned with multiple labels/tags.
e Better understanding for the images
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high five, pet,
funny...




Multi-label Image Recognition IS Everywhere

 All images can be assigned with multiple labels/tags.
e Better understanding for the images
* More convenient for possible NLP related applications



Image Captioning & Visual
Question Answering



Multi-label Image Recognition IS Everywhere

 All images can be assigned with multiple labels/tags.
e Better understanding for the images
* More convenient for possible NLP related applications
» Easier to retrieve relevant images
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Multi-label learning

* Provides many possibilities

* Poses many challenges



Challenges

* Feature Extraction
* Both global and local level features are important

 Label related challenges
* Large label space
* Noisy labels
* Missing labels

Hao et al. CVPR 2016
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Missing Labels Problem

* Inevitable for multi-label image recognition
 The number of possible labels/tags could be large.
 There often exists ambiguity among labels
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animal, clouds, plantlife,
sky, water
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Missing Labels Problem

* Inevitable for multi-label image recognition
The number of possible labels/tags could be large.
 There often exists ambiguity among labels

grass, green, lake,
landscape,reindeer



Missing Labels Problem

* Naturally many works have been proposed to deal with the problem.
* Instance — label correlations

* Label —label correlations
* |[nstance — instance correlations

Tsoumakas and Katakis IDWM 2007, Bi and Kowk AAAI 2014, Yu et al. ICML 2014, Chen et al. ICML 2013
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* Naturally many works have been proposed to deal with the problem.
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* Instance — instance correlations /Important for missing labels
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Most existing works
* Only consider linear correlations
* |Inefficient for large scale label matrix
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Missing Labels Problem

* Naturally many works have been proposed to deal with the problem.
* Instance — label correlations

4 N
Exploit deeper knowledge
* Label —label correlations — J
* Instance — instance correlations /Important for missing labels
\problem

J

The Correlations are in fact structured

Tsoumakas and Katakis IDWM 2007, Bi and Kowk AAAI 2014, Yu et al. ICML 2014, Chen et al. ICML 2013



Label — Label correlations
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Knowledge graph and
Hierarchical tree
graph can be used to
model structured
label — label
correlations

Jia Deng et al,
ECCV 2014



Instance — Instance Correlations

NN Graph can be

N used to model
S : structured instance
\\ instance correlations
' \.

02

Zhu et al. ACM MM 2010
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Therefore, we want to formulate the problem so that we can

Exploit structured correlations, especially instance — instance
correlations, in an efficient way.



Intultion

* The key to utilize structured instance-instance correlations is to make
use of semantic correlations between images, as

* Semantically similar images should share similar labels

* How to define a good semantic representation
* How to construct a graph and incorporate it efficiently and effectively



Semantic Feature Extraction

e Global Semantic Feature

e Local Semantic Feature



Semantic Feature Extraction

* Global Semantic Descriptor

Convolutional
Layers

Global semantic descriptors
are extracted from relevant
visual concepts from large
scale datasets, e.g. ILSVRC,
Fully Connected | |7 Places.

Layers

& |7

Global Semantic
Vector

Classifier



Semantic Feature Extraction
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Semantic Feature Extraction

* Global Semantic Descriptor

Fully Connected ©
Layers

ik, -

Global Semantic
Vector

Convolutional
Layers

Classifier

“what is the image in general”



Semantic Feature Extraction

* Global Semantic Descriptor “what is the image in general”

according to a large number of concepts
Convolutional .
Layers developed in the general large-scale dataset

Fully Connected I |
Layers |

i -7

Global Semantic
Vector |

Classifier




Local Semantic Descriptor

Local semantic descriptors
are generated from labels of
visual neighbours.

people, bottle

bed, lamp, night, painting, room
wall, window

bed, bedcover, curtain,
lamp, night, picture, side,
room, wall, window

bed, bedcover, curtain,
room, wall,window

bed, bedcover, curtain,
lamp, picture, room,

wall
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Local Semantic Descriptor

“what does the image
specifically look like”.

people, bottle

bed, lamp, night, painting, room
wall, window

bed, bedcover, curtain, bed, bedcover, curtain,
room, wall,window lamp, night, picture, side,
room, wall, window

bed, bedcover, curtain,
lamp, picture, room,

wall



Graph Construction

* Project images into semantic space
* Construct NN graph of semantic representations

 We can then incorporate structured instance - instance correlations
with Laplacian regularization as shown in many related works.

IMIl,, = tr(MTXT L XM)

Where L is the Laplacian of graph G, in the semantic space.

* We can also easily add in label — label correlation if suitable graph is
given



System Architecture

Feature Space

Images with missing labels Classification

Loss

Low-Rank
Regularization

1 ~
Semantic Space A”M”* + ys”M“LS + E ”R.Q(XM) o Y”i'

Semantic Structure
Correlations




Experimental Results

* Datasets

* FLIKR25K

* PASCAL VOC2007
* ESP GAME

* IAPRTC-12



Experimental Results
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Comparison with several
baseline methods on
four multi-label datasets
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Experimental Results

boat, person

Some examples of labels

generated using our
method

man, hat, face, white, metal, silver, white, car, tree tree, green, sky, white, map, red,
black, yellow machine, water wheel, metal water, building chart, diagram



