

Colorful Image Colorization Richard Zhang, Phillip Isola, Alexei (Alyosha) Efros

richzhang.github.io/colorization

Color information: *ab* channels $\widehat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$

Color information: *ab* channels $\widehat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$

Inherent Ambiguity

Grayscale

Inherent Ambiguity

Our Output

Inherent Ambiguity

Our Output

Ground Truth

Colors in *ab* space (continuous)

• Regression with L2 loss inadequate $L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}\|_2^2$

- Regression with L2 loss inadequate $L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h, w} \|\mathbf{Y}_{h, w} - \widehat{\mathbf{Y}}_{h, w}\|_2^2$
- Use multinomial classification

$$\mathbf{L}(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h, w} \sum_{q} \mathbf{Z}_{h, w, q} \log(\widehat{\mathbf{Z}}_{h, w, q})$$

- Regression with L2 loss inadequate $L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h, w} \|\mathbf{Y}_{h, w} - \widehat{\mathbf{Y}}_{h, w}\|_2^2$
- Use multinomial classification

$$L(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h, w} \sum_{q} \mathbf{Z}_{h, w, q} \log(\widehat{\mathbf{Z}}_{h, w, q})$$

- Regression with L2 loss inadequate $L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}\|_2^2$
- Use multinomial classification

$$\mathcal{L}(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h, w} \sum_{q} \mathbf{Z}_{h, w, q} \log(\widehat{\mathbf{Z}}_{h, w, q})$$

• Class rebalancing to encourage learning of *rare* colors

$$L(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h, w} v(\mathbf{Z}_{h, w}) \sum_{q} \mathbf{Z}_{h, w, q} \log(\widehat{\mathbf{Z}}_{h, w, q})$$

Hertzmann et al. In SIGGRAPH, 2001. Welsh et al. In TOG, 2002. Irony et al. In Eurographics, 2005. Liu et al. In TOG, 2008. Chia et al. In ACM 2011. Gupta et al. In ACM, 2012.

Parametric

Regression

2

Parametric

Hertzmann et al. In SIGGRAPH, 2001. Welsh et al. In TOG, 2002. Irony et al. In Eurographics, 2005. Liu et al. In TOG, 2008. Chia et al. In ACM 2011. Gupta et al. In ACM, 2012.

Hand-engineered Features

L2 Regression

Hertzmann et al. In SIGGRAPH, 2001. Welsh et al. In TOG, 2002. Irony et al. In Eurographics, 2005. Liu et al. In TOG, 2008. Chia et al. In ACM 2011. Gupta et al. In ACM, 2012.

Hand-engineered Features

Deep Networks

Parametric

Regression

L2

Hertzmann et al. In SIGGRAPH, 2001. Welsh et al. In TOG, 2002. Irony et al. In Eurographics, 2005. Liu et al. In TOG, 2008. Chia et al. In ACM 2011. Gupta et al. In ACM, 2012.

Hand-engineered Features

Deep Networks

Dahl. Jan 2016. lizuka et al. In SIGGRAPH, 2016.

Classification

Regression

2

Charpiat et al. In ECCV 2008.

Parametric

Hertzmann et al. In SIGGRAPH, 2001. Welsh et al. In TOG, 2002. Irony et al. In Eurographics, 2005. Liu et al. In TOG, 2008. Chia et al. In ACM 2011. Gupta et al. In ACM, 2012.

Hand-engineered Features

Deep Networks

Dahl. Jan 2016. lizuka et al. In SIGGRAPH, 2016.

Charpiat et al. In ECCV 2008.

Parametric

Classification

Regression

2

ramet Nonba

Hertzmann et al. In SIGGRAPH, 2001. Welsh et al. In TOG, 2002. Irony et al. In Eurographics, 2005. Liu et al. In TOG, 2008. Chia et al. In ACM 2011. Gupta et al. In ACM, 2012.

Hand-engineered Features

Deep Networks

Dahl. Jan 2016. lizuka et al. In SIGGRAPH, 2016.

Charpiat et al. In ECCV 2008.

Parametric

Classification

Regression

2

[1] Chen *et al.* In arXiv, 2016.[2] Yu and Koltun. In ICLR, 2016

[1] Chen *et al.* In arXiv, 2016.[2] Yu and Koltun. In ICLR, 2016

Input

Input

L2 Regression

Input L2 Regression Class w/ Rebalancing Imput Imput

L2 Regression

L2 Regression

L2 Regression

Ground Truth

L2 Regression

Failure Cases

© 2002 Painmaltero

Biases

Evaluation		
	Visual Quality	
Quantitative	Per-pixel accuracy	
	Perceptual realism	
	Semantic interpretability	
Qualitativo	Low-level stimuli	
Quantative	Legacy grayscale photos	

Evaluation

	Visual Quality	Representation Learning	
Quantitative	Per-pixel accuracy	Task generalization ImageNet classification Task & dataset generalization PASCAL classification, detection, segmentation	
	Perceptual realism		
	Semantic interpretability		
Qualitative	Low-level stimuli	Hidden unit activations	
	Legacy grayscale photos		

	Visual Quality	Representation Learning	
Quantitative	Per-pixel accuracy	Task generalizationImageNet classificationTask & dataset generalizationPASCAL classification, detection, segmentation	
	Perceptual realism		
	Semantic interpretability		
Qualitative	Low-level stimuli	Hidden unit activations	
	Legacy grayscale photos		

Eva	luat	ion

	Visual Quality	Representation Learning	
	Per-pixel accuracy	Task generalization	
Quantitative	Perceptual realism	ImageNet classification Task & dataset generalization PASCAL classification, detection, segmentation	
	Semantic interpretability		
Qualitative	Low-level stimuli	Hidden unit activations	
	Legacy grayscale photos		

Perceptual Realism / Amazon Mechanical Turk Test

Fake, 0% fooled

Fake, 55% fooled

from Reddit /u/SherySantucci

Recolorized by Reddit ColorizeBot

Photo taken by Reddit /u/Timteroo, Mural from street artist Eduardo Kobra

Recolorized by Reddit ColorizeBot

Ground Truth

Ground Truth

Output

Ground Truth

Output

Input

Ground Truth

Output

Predicting Labels from Data

Predicting Data from Data

Cross-Channel Encoder

[1] Chen *et al.* In arXiv, 2016.[2] Yu and Koltun. In ICLR, 2016

Cross-Channel Encoder

[1] Chen *et al.* In arXiv, 2016.[2] Yu and Koltun. In ICLR, 2016

Cross-Channel Encoder

[1] Chen *et al.* In arXiv, 2016.[2] Yu and Koltun. In ICLR, 2016

sky

trees

water

faces

dog faces

flowers

Does the feature representation *transfer* to other datasets and tasks?

Does the feature representation *transfer* to other datasets and tasks?

Classification

Krähenbühl et al. In ICLR, 2016.

Detection Fast R-CNN. Girshick. In ICCV, 2015.

Segmentation FCNs. Long et al. In CVPR, 2015.

Classification

Detection

Segmentation

Does the method work on *legacy* black and white photos?

Additional Information

- Demo
 - <u>http://demos.algorithmia.com/colorize-photos/</u>
- Reddit ColorizeBot
 - Type "colorizebot" under any image post
- Code
 - <u>https://github.com/richzhang/colorization</u>
- Website full paper, user examples, visualizations
 - <u>http://richzhang.github.io/colorization</u>

Lukas Graham – 7 Years

Submitted by Ron Zohar

For the full paper, code, and live demo: richzhang.github.io/colorization

For the full paper, additional examples and our model: richzhang.github.io/colorization

Backup

• Directly training on labels provides "oracle"

• Directly training on labels provides "oracle"

- Directly training on labels provides "oracle"
- Stacked k-means provides strong baseline

- Directly training on labels provides "oracle"
- Stacked k-means provides strong baseline
- Constant 6% gap from grayscale handicap

- Directly training on labels provides "oracle"
- Stacked k-means provides strong baseline
- Constant 6% gap from grayscale handicap

- Directly training on labels provides "oracle"
- Stacked k-means provides strong baseline
- Constant 6% gap from grayscale handicap

- Directly training on labels provides "oracle"
- Stacked k-means provides strong baseline
- Constant 6% gap from grayscale handicap
 - Our *conv1* suffers from input handicap

- Directly training on labels provides "oracle"
- Stacked k-means provides strong baseline
- Constant 6% gap from grayscale handicap
 - Our *conv1* suffers from input handicap
- Our *conv2-5* performs competitively throughout

Predicting Labels from Data

Alexnet Krizhevsky et al. In *NIPS*, 2012.

Predicting Labels from Data

Predicting Data from Data

Predicting Data from Data

Visually Indicated Sounds

Owens et al. Visually Indicated Sounds. In CVPR, 2016.

Context Encoders

Pathak et al. Context Encoders: Feature Learning by Inpainting. In CVPR, 2016.

Colourful Image Colourizsation

Richard Zhang, Phillip Isola, Alexei A. Efros

In ArXiv, March 2016.

richzhang.github.io/colorization

Predicting Labels from Data

Alexnet Krizhevsky et al. In *NIPS*, 2012.

Predicting Labels from Data

Low-level Perturbations

Common Confusions

jacamar

Ground truth

standard schnauzer

Common Confusions

jacamar bulbul

standard schnauzer irish terrier

Future steps

- Perceptual Losses
- Back-propagate end-to-end
- Train on "infinite" data
- Domain gap to legacy black and white images

Example Output distribution

Color statistics

Histogram over *ab* space Conditioned on *L*

- Regression with L2 loss will not address inherent ambiguity
- Use *multinomial classification*
 - quantize *ab* space into grid size 10
 - cross entropy loss
- Class rebalancing at train time to encourage learning of rare colors $\mathbf{w} \propto ((1 - \lambda)(\mathbf{G}_{\sigma} \circ \mathbf{p}) + \lambda)^{-1}$

Reweighting factor

empirical distribution combine with uniform

Probability Distribution to Point Estimate $\mathcal{H}(\mathbf{Z}_{h,w}) = \mathbb{E}(f_T(\log \mathbf{Z}_{h,w})), \quad f_T(\mathbf{z}) = \frac{\exp(\mathbf{z}/T)}{\sum_q \exp(\mathbf{z}_q/T)}$ Mode Mean T=1 T=.77 T=.58 T=.38 T=.29 T=.14 T→0

Lowering softmax temperature T

Network Architecture

 $\widehat{\mathbf{Z}} = \mathcal{G}(\mathbf{X})$

Network Architecture

