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Visual Grounding: Task

The two girls in hats in the middle
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Visual Grounding: Task
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Visual Grounding: Task

Hat detector
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Visual Grounding: Task
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Visual Grounding: Applications

= Tl p Bl AnnaRohrbach | Grounding of Textual Phrases in Images by Reconstruction

* Human-robot interaction
- “Give me the middle blue book!”

» Supports other language-vision tasks
- Captioning, VQA

» Text-image co-reference resolution

- Resolve ambiguities

black cat
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Visual Grounding: Test Time

a small boy
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Visual Grounding: Training Time

a small boy,

a man,
their small white
dog,
a toy

Supervised
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Visual Grounding: Training Time

a small boy, a small boy,

a man, a man,

their small white their small white

dog, dog,

a toy a toy
Unsupervised Supervised
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Visual Grounding: Training Time
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Visual Grounding: Related work

Karpathy NIPS'14 Plummer ICCV’15
Karpathy CVPR’15 Wang CVPR’16
Hu CVPR’16
Mao CVPR’16
ABC ABC ABC
Unsupervised Semi-supervised Supervised
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Visual Grounding: Related work

This work This work This work
Karpathy NIPS'14 Plummer ICCV’15
Karpathy CVPR’15 Wang CVPR’16
Hu CVPR’16
Mao CVPR’16
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Main Result

Accuracy

Unsupervised Semi-supervised Su pervisea
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Grounding approach

Berkeley 12
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Grounding approach

a small boy
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a small boy
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GroundeR: Grounding by Reconstruction

a small boy

Bounding box proposals
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GroundeR: Grounding by Reconstruction

7%
a small boy .
Predict | |22
attention
AN
Bounding box proposals
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GroundeR: Grounding by Reconstruction

rj: j = argmax; ;
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GroundeR: Grounding by Reconstruction

a small boy

rj: J = argmax; ;

Bounding box proposals
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GroundeR: Grounding by Reconstruction

rj: J = argmax; ;
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GroundeR: Grounding by Reconstruction
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GroundeR: Grounding by Reconstruction
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GroundeR: Grounding by Reconstruction

rj: J = argmax; ;

|

SuperAvision

@y
a small boy Predict a

re '_C B Attention Loss |

attention | | - : :

AN : E K

y |

- ABC

Attended Lo C ]

generate | ————+—

Reconstruction | |

—| asmall o | I

Bounding box proposals boy i A < |

- ABC

____________
"\ in p BI AnnaRohrbach | Grounding of Textual Phrases in Images by Reconstruction Berke]ey 14




GroundeR: Grounding by Reconstruction
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GroundeR: Grounding by Reconstruction
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GroundeR: Grounding by Reconstruction
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GroundeR: Grounding by Reconstruction
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GroundeR: Grounding by Reconstruction
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GroundeR: Grounding by Reconstruction
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GroundeR: Grounding by Reconstruction
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GroundeR: Grounding by Reconstruction
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GroundeR: Grounding by Reconstruction
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Experimental evaluation
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Datasets and Experimental setup

* Flickr30k Entities [Plummer ICCV‘15]

- 275k bounding boxes & noun phrases

A little brown and white dog
emerged from a yellow collapsible
toy tunnel onto the lawn.

* Experimental setup

- 100 object proposals
- Fast R-CNN [Girshick ICCV’15]
* Accuracy

- % phrases: IOU(predicted box, ground-truth box) >= 0.5
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Evaluation: GroundeR on Flickr30k Entities
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Evaluation: GroundeR on Flickr30k Entities
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Evaluation: GroundeR on Flickr30k Entities
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Semi-supervised

Evaluation: GroundeR on Flickr30k Entities better than

v_ supervised
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Semi-supervised

Evaluation: GroundeR on Flickr30k Entities better than

v_ supervised
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Datasets and Experimental setup

» ReferltGame [Kazemzadeh EMNLP’14]

- 99K regions & referring expressions

* The blue truck in the bottom right corner
* The light blue truck

* The blue truck on the right

* Experimental setup

- 100 object proposals
- VGG16 + spatial feat [Hu CVPR’16]
* Accuracy

- % phrases: IOU(predicted box, ground-truth box) >= 0.5

-
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Evaluation: GroundeR on ReferltGame
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Evaluation: GroundeR on ReferltGame
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Evaluation: GroundeR on ReferltGame
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Evaluation: GroundeR on ReferltGame
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Qualitative results on Flickr30k Entities

GroundeR unsupervised GroundeR supervised

A woman is riding a bicycle on the pavement.
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Qualitative results on Flickr30k Entities

GroundeR unsupervised GroundeR supervised

A woman is riding a bicycle on the pavement.
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Qualitative results on Flickr30k Entities

GroundeR unsupervised GroundeR supervised

A woman is riding a bicycle on the pavement.
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Qualitative results on Flickr30k Entities

SCRC [Hu CVPR 16] GroundeR semi-supervised
(3.12% annot.)

A man in orange pants and brown vest is playing tug-of-war with a dog.
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Qualitative results on Flickr30k Entities

SCRC [Hu CVPR 16] GroundeR semi-supervised
(3.12% annot.)

A man in orange pants and brown vest is playing tug-of-war with a dog.
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Qualitative results on Flickr30k Entities

SCRC [Hu CVPR 16] GroundeR semi-supervised
(3.12% annot.)

A man in orange pants and brown vest is playing tug-of-war with a dog.
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Qualitative results on ReferltGame

GroundeR semi-supervised (12.5% annot.)

picture to the left on the wall

Prediction & ground-truth
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Qualitative results on ReferltGame

GroundeR semi-supervised (12.5% annot.)

person in blue

b
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Qualitative results on ReferltGame

GroundeR semi-supervised (12.5% annot.)

white horse right of brown horse in middle

b
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Conclusions

* Unsupervised grounding possible
- GroundeR with reconstruction objective

* Semi-supervised GroundeR works best
- Efficient with little annotations
- Outperforms fully supervised
- Outperforms the state-of-the-art

* Possible extensions
- Jointly reason about multiple phrases
- Model spatial relations between them
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. challenge!
[

B GroundeR ® GroundeR + MCB [EM NLP’1 6]

\, J
.
%\ in p B0 AnnaRohrbach | Grounding of Textual Phrases in Images by Reconstruction Berkeley 38




Poster #0-1B-02 GroundeR Demo

Roof Garden

Drop image here

Type a query and hit enter...

rMultimodal Compact Bilinear pooling A

Winner of VQA
challenge!

B GroundeR ® GroundeR + MCB [EM N LP’ 1 6]
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