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• Obtain face shape by locating pre-defined facial landmarks.

• Challenges: face occlusions, pose variations, expressions, etc.

• Solutions: cascaded face shape regression
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• Deep Feature Learning 

• Robust Shape Initialization 

• Recurrent-Attentive Refinement
• Attention module

• Refinement module
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• CNN model with Shape-Indexed Pooling (SIP)

• RNN model and Long Short-Term Memory (LSTM)
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Recurrent Attentive-Refinement (RAR)

A). Deep feature extraction, landmark regression and robust initialization.
B). RAR sequentially refines the landmark estimation.
C). An attention model in RAR for adaptively selecting key landmark points.

conv8

deconv7



• Modified VGG19 Network + two Deconvolution layers to ensure pixel-to-pixel
correspondence
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• Modified VGG19 Network + two Deconvolution layers to ensure pixel-to-pixel
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• Modified VGG19 Network + two Deconvolution lby selecting location of maximum
response from 𝑣−th channel of conv8

• SoftMax regression loss on conv8

• Directly estimate landmark location 𝑆 𝑑 𝑣 𝑑 𝑣 𝑑 𝑣 𝑑 𝑣 𝑑 𝑣 by selecting
location of maximum response from 𝑣−th channel of conv8
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Detected Shape

Robust Initial Shape Selection:

𝑆0 = argmin ||𝑆 − 𝑆𝑑||, s. t. 𝑆 ∈ ℱ
𝑆
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GT Shapes
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Solve: get K representative shapes via K-meanings clustering +
RANSAC method to filter out significant outliers
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• A-LSTM (attention module) selects attention center 
with top confidence at each  recurrent stage

•

Update=

Deep SIP
Feature

𝐶∗ = argmax
𝑐∈{1,…,𝐿}

A−LSTM(𝛷𝑎 𝐼𝑡, መ𝑆𝑡 ;𝑊𝑎, 𝑐)



• ℛ 𝑎 𝑎𝑎 ℛ 𝑎

• A-LSTM (attention module) selects attention center 
with top confidence at each  recurrent stage

• A typical attention center is selected based on 
maximize reward ℛ 𝑎
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• Feature re-weighting based on distance to 
attention center:

Update=

Deep SIP
Feature at 𝑆𝑡
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• Feature re-weighting based on distance to 
attention center:

• Refinement Module to get shape update 
such:
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Δ𝑅𝑆𝑡 is the R-LSTM output Δ𝑅𝑆𝑡 = 𝛼Γ𝑡R−LSTM(Φ𝑟)

Overall Training Objective of RAR:

Regression LossAttention Loss
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Methods
300-W Dataset

Common Challenging Full

Zhu et.al [2012] 8.22 18.33 12.0

RCPR [Burgos,2013] 6.18 17.26 8.35

SDM [Xiong,2013] 5.57 15.40 7.50

LBF [Ren,2014] 4.95 11.98 6.32

LBF Fast [Ren,2014] 5.38 15.50 7.37

CFAN[Zhang, 2014] 5.50 - -

CFSS [Zhu, 2015] 4.73 9.98 5.76

Ours (RAR) 4.12 8.35 4.94

Zhu: Face detection, pose estimation, and landmark localization in the wild. CVPR 2012

RCPR: Robust face landmark estimation under occlusion. ICCV 2013

SDM: Supervised descent method and its applications to face alignment. CVPR 2013

LBF: Face alignment at 3000 fps via regressing local binary features. ECCV 2014

CFAN: Coarse-to-ne auto-encoder networks(cfan) for real-time face alignment. ECCV2014

CFSS: Face alignment by coarse-to-fine shape searching. CVPR 2015
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RCPR: Robust face landmark estimation under occlusion. ICCV 2013

HPM: Hierarchical part model. CVPR 2014.
RPP: Regional Predictive Power. TIP 2015.

TCDCN: Task constraint deep convolutional nets. PAMI 2015. 

SDM: Supervised descent method and its applications to face alignment. CVPR 2013

CFAN: Coarse-to-ne auto-encoder networks(cfan) for real-time face alignment. ECCV2014

CFSS: Face alignment by coarse-to-fine shape searching. CVPR 2015

Methods Normalized ME Failure Rate

RCPR 8.50 20.00%

HPM 7.46 13.24%

RPP 7.52 16.20%

TCDCN 8.05 -

RAR 6.03 4.14%

Methods Normalized ME

RCPR 11.6

SDM 8.50

CFAN 10.95

TCDCN 7.60

RAR 7.23

COFW Dataset ALFW Dataset



Conv8: Prediction from conv8
Direct:   RAR trained with initial shape as conv8
Mean Shape: RAR trained with mean shape as initial shape
Random Shape: RAR trained with random shape as initial shape
Robust: RAR trained with the proposed robust initialization 

Dataset Conv8 Mean Shape Random Shape Direct
Robust 

Initialization

300-W 6.24 5.26 5.22 6.66 4.94

COFW 30.14 6.24 6.12 11.52 6.03

AFLW 8.14 7.36 7.42 8.15 7.23

Mean Shape Random Shape Direct

RAR

Attentionless
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