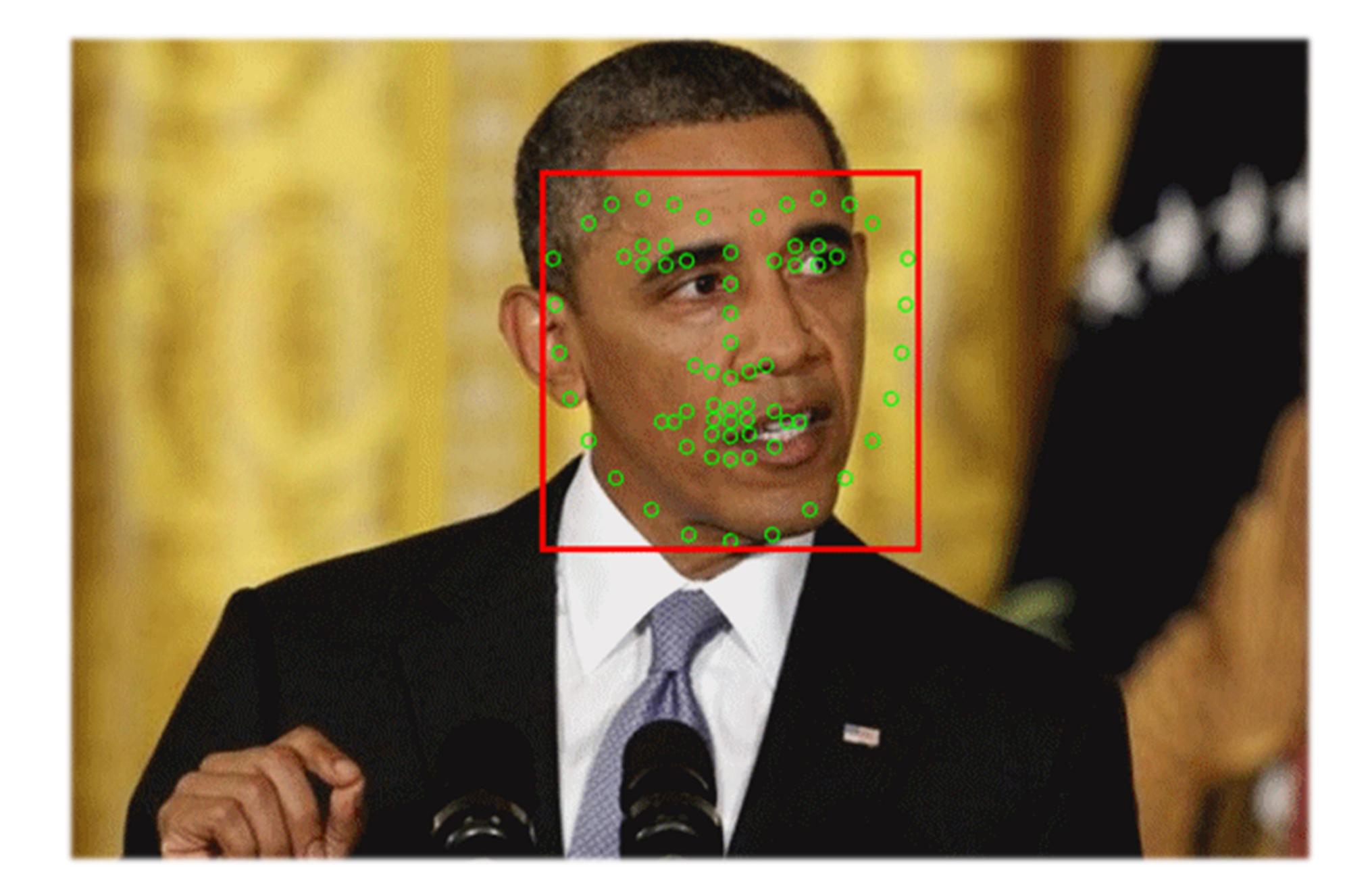
Robust Facial Landmark Detection via Recurrent Attentive-Refinement Networks

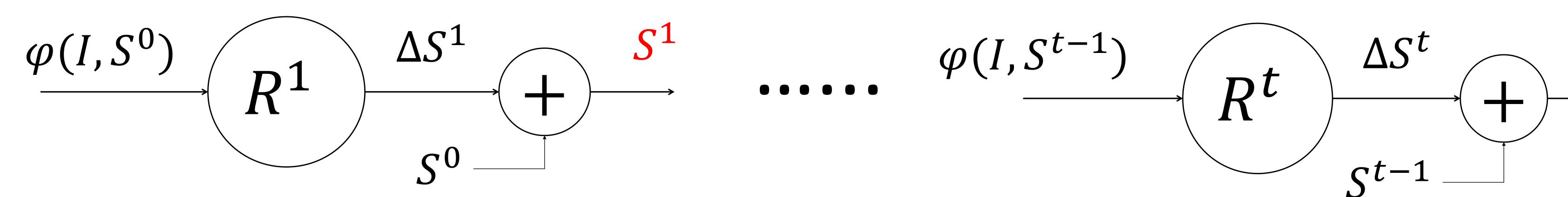
Shengtao XIAO, Jiashi FENG, <u>Junliang XING</u>, Hanjiang LAI, Shuicheng YAN, Ashraf KASSIM

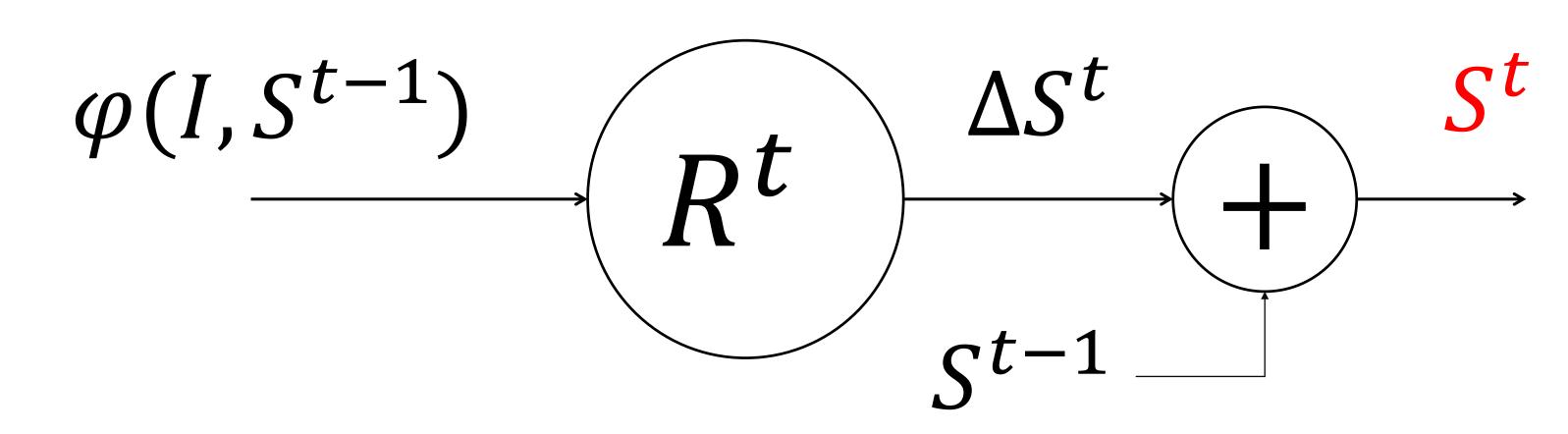
Problem Introduction

Obtain face shape by locating pre-defined facial landmarks.

• Challenges: face occlusions, pose variations, expressions, etc. Solutions: cascaded face shape regression



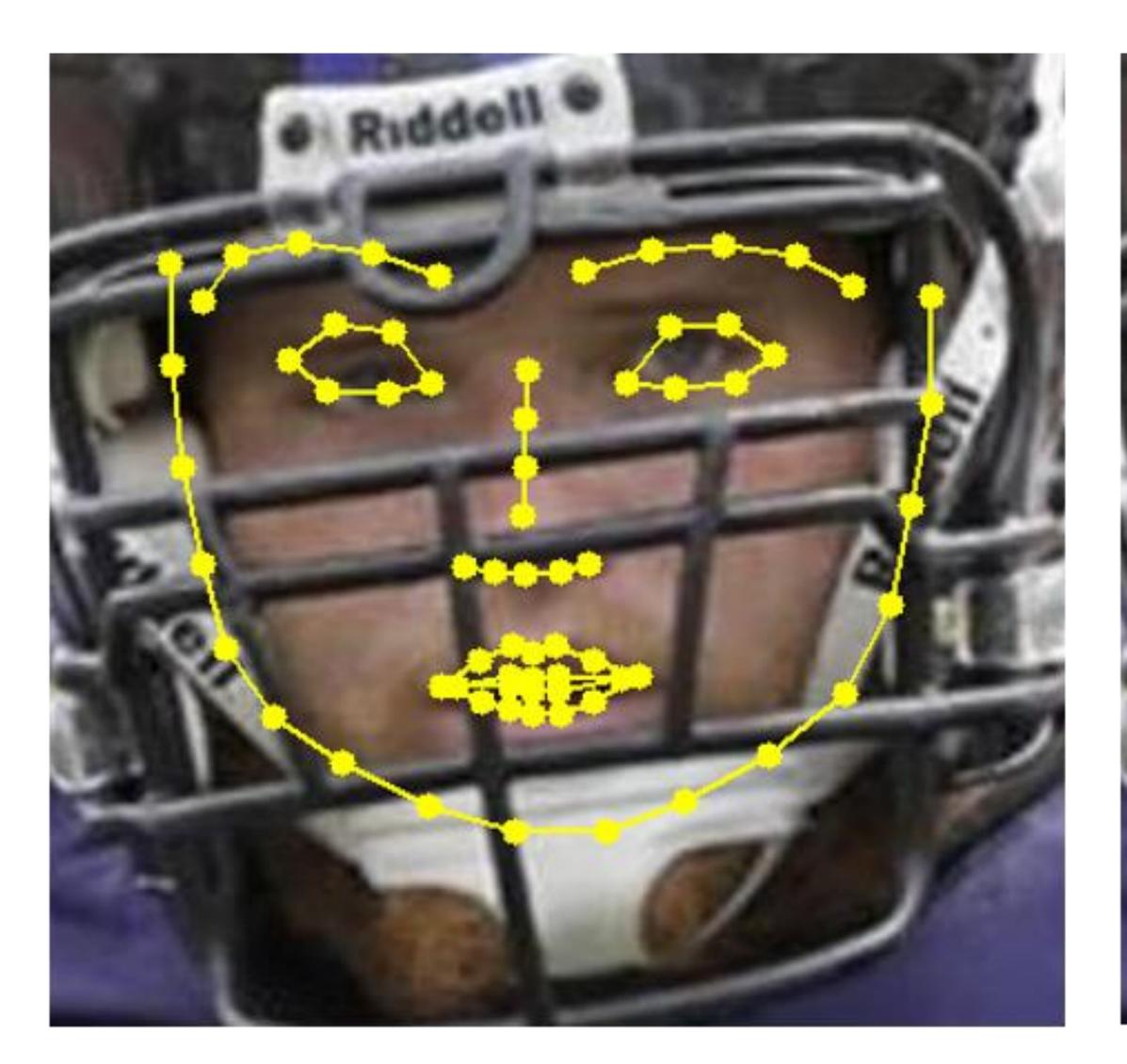




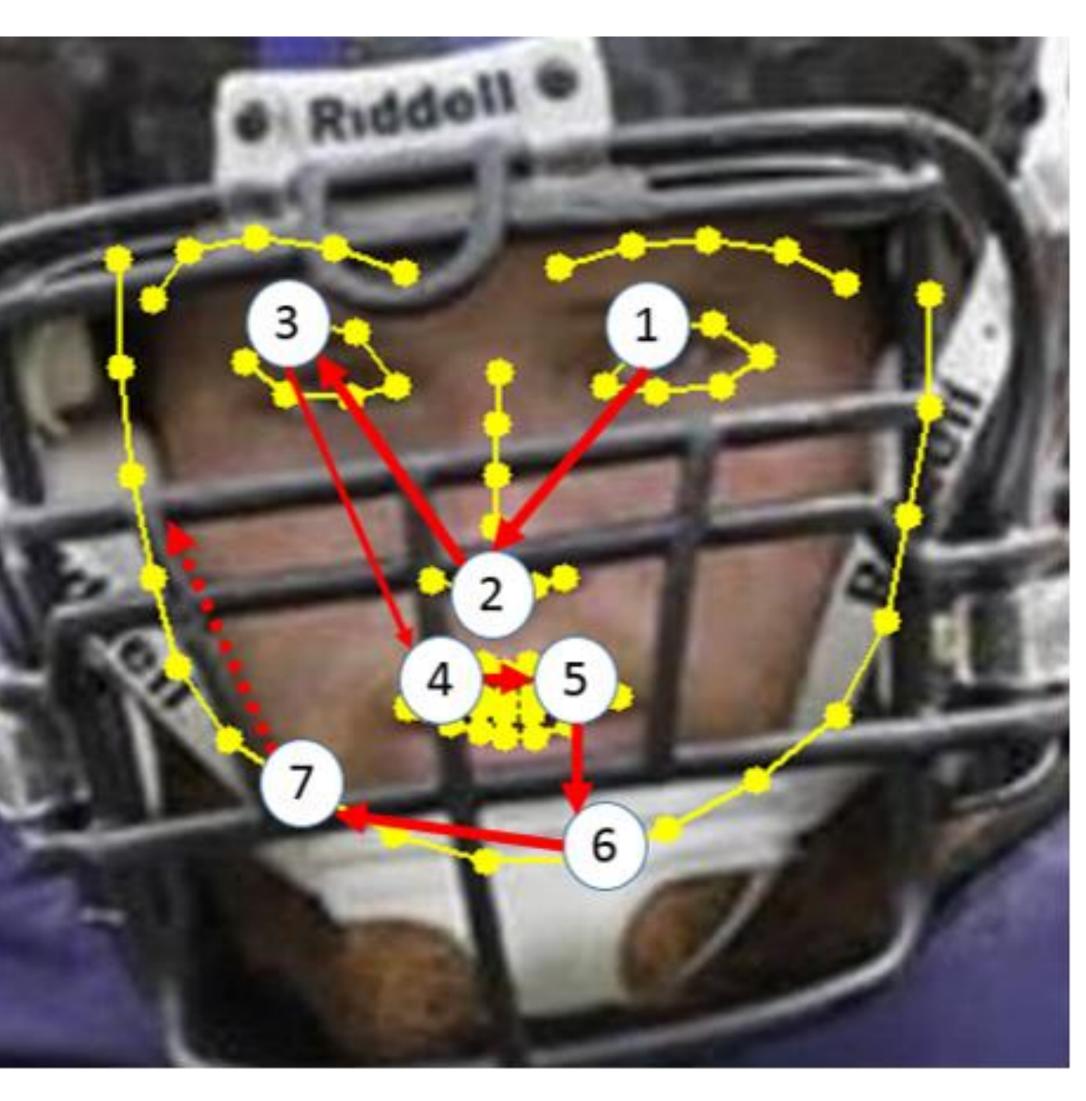
Recurrent Attentive-Refinement (RAR) Network

Deep Feature Learning Robust Shape Initialization Recurrent-Attentive Refinement Attention module Refinement module

Input



Robust Initialization



Attention-driven Refinement

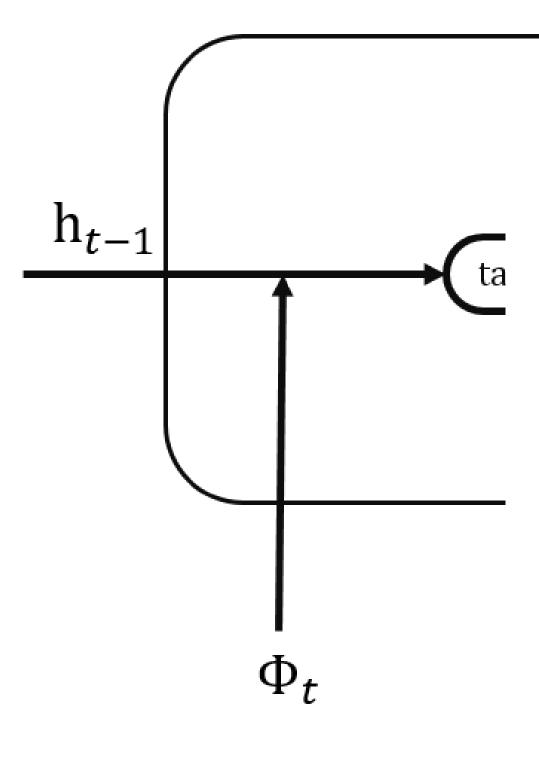
Results

Background

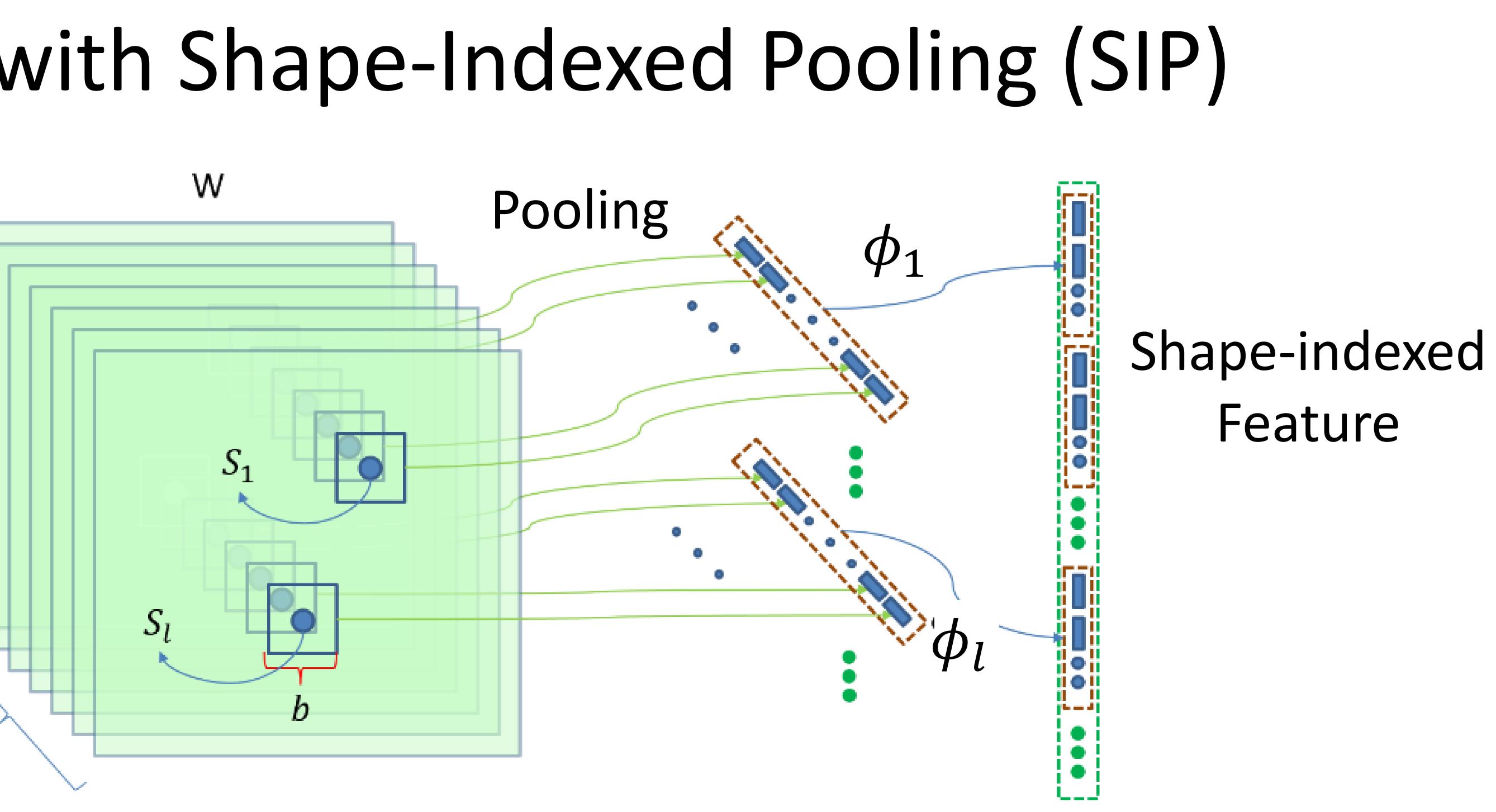
CNN model with Shape-Indexed Pooling (SIP)

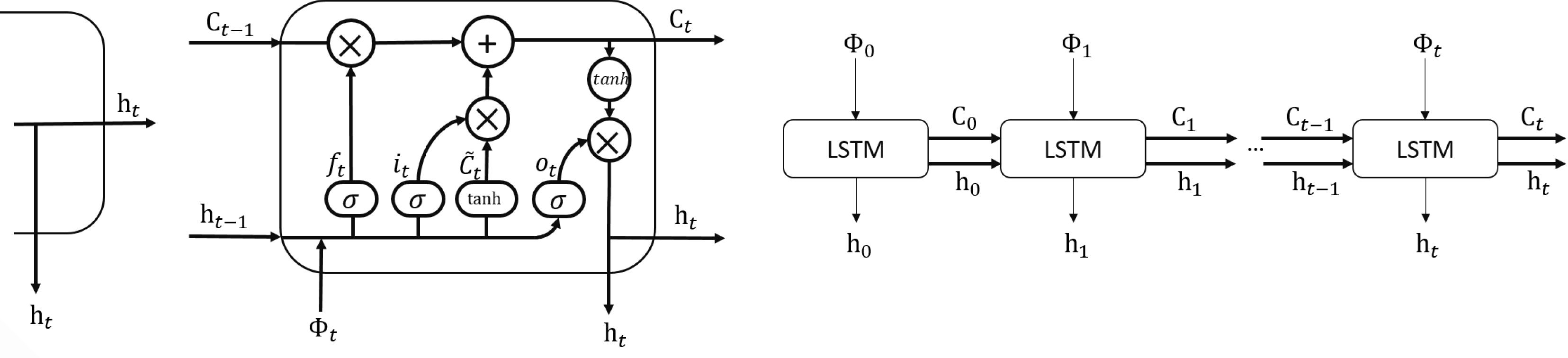
Н

RNN model and Long Short-Term Memory (LSTM)



Standaru

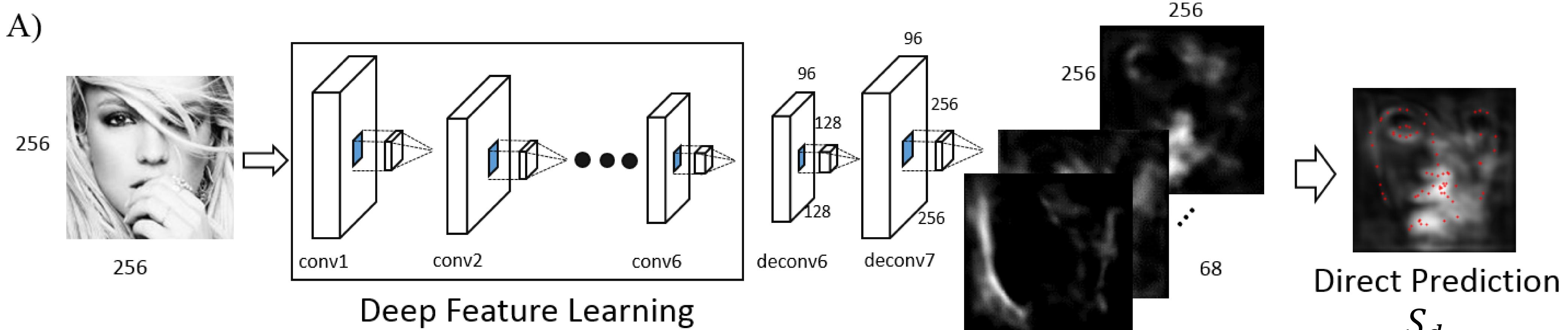




LSTM

Unrolled LSTM

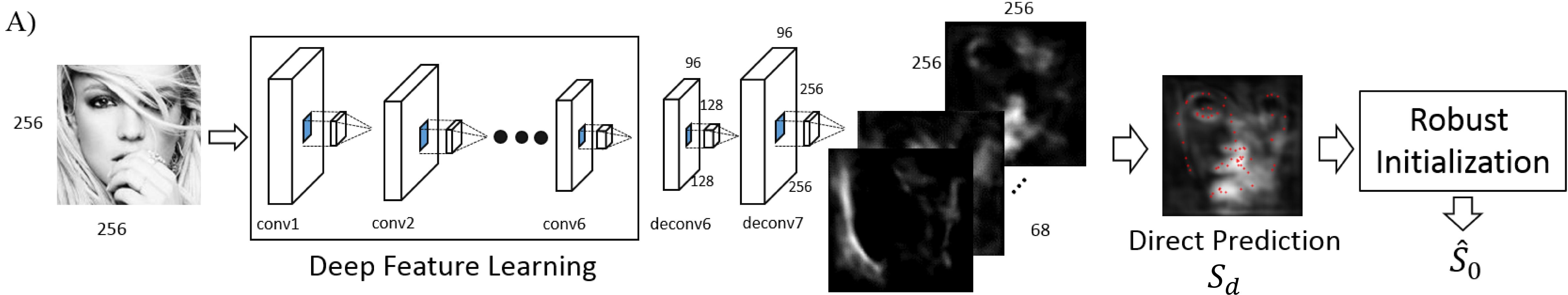
RAR Networks



conv8

Sd

RAR Networks

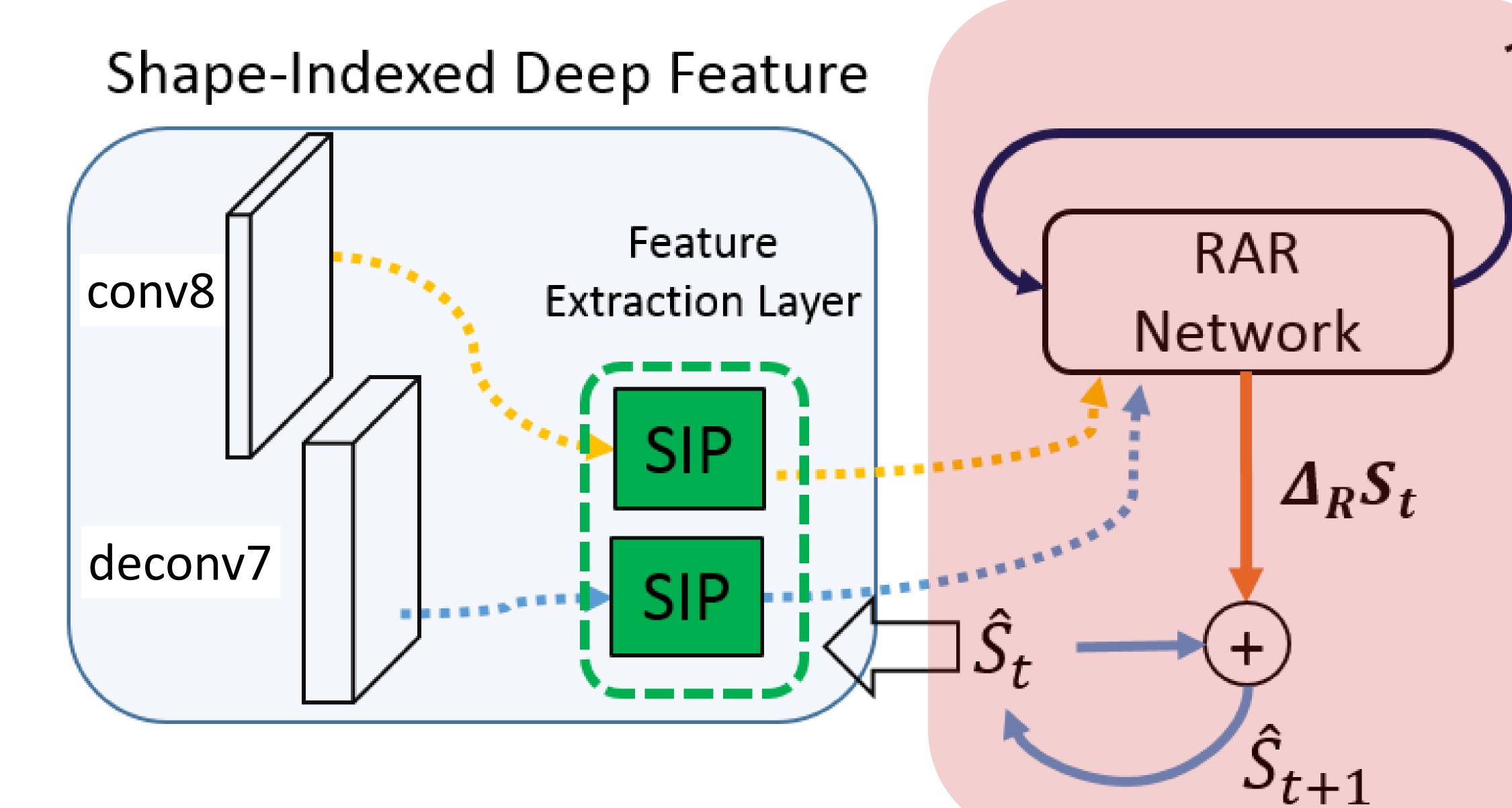


conv8

A). Deep feature extraction, landmark regression and robust initialization.

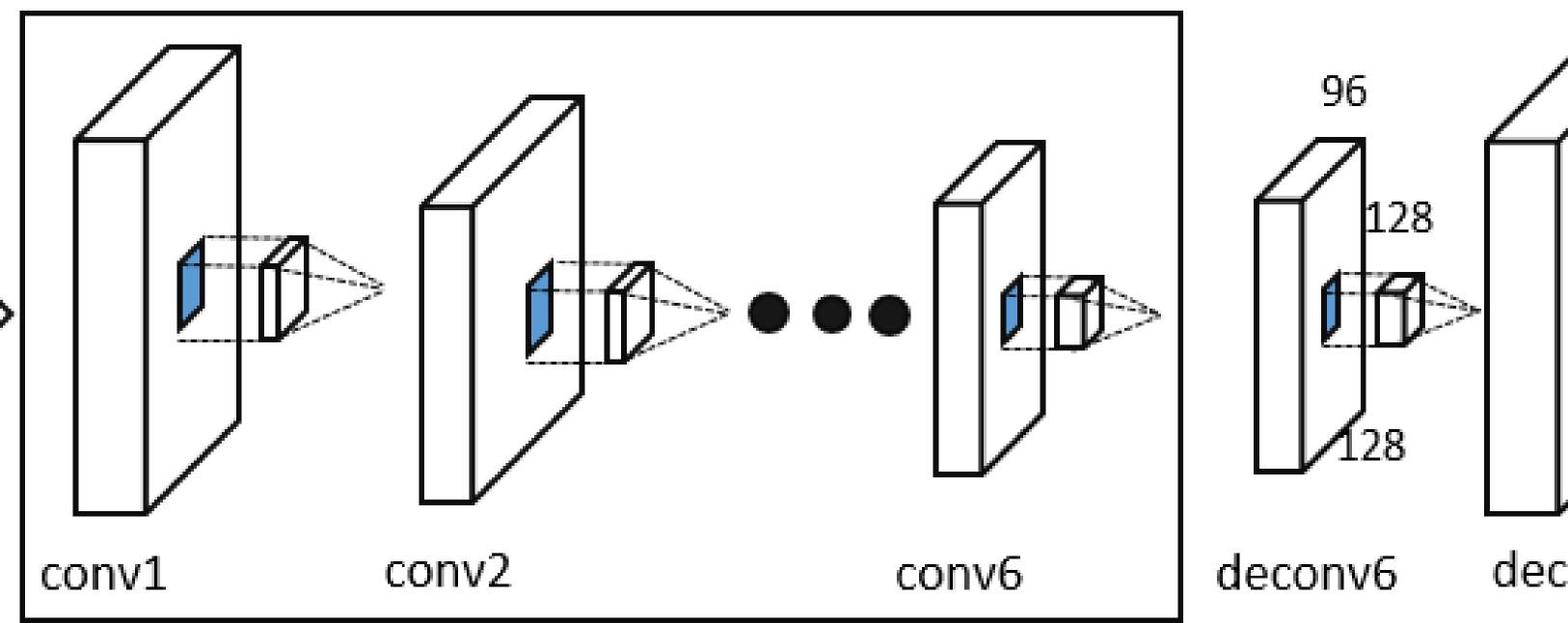
A). Deep feature extraction, landmark regression and robust initialization. B). RAR sequentially refines the landmark estimation.

Recurrent Attentive-Refinement (RAR)



B)

256

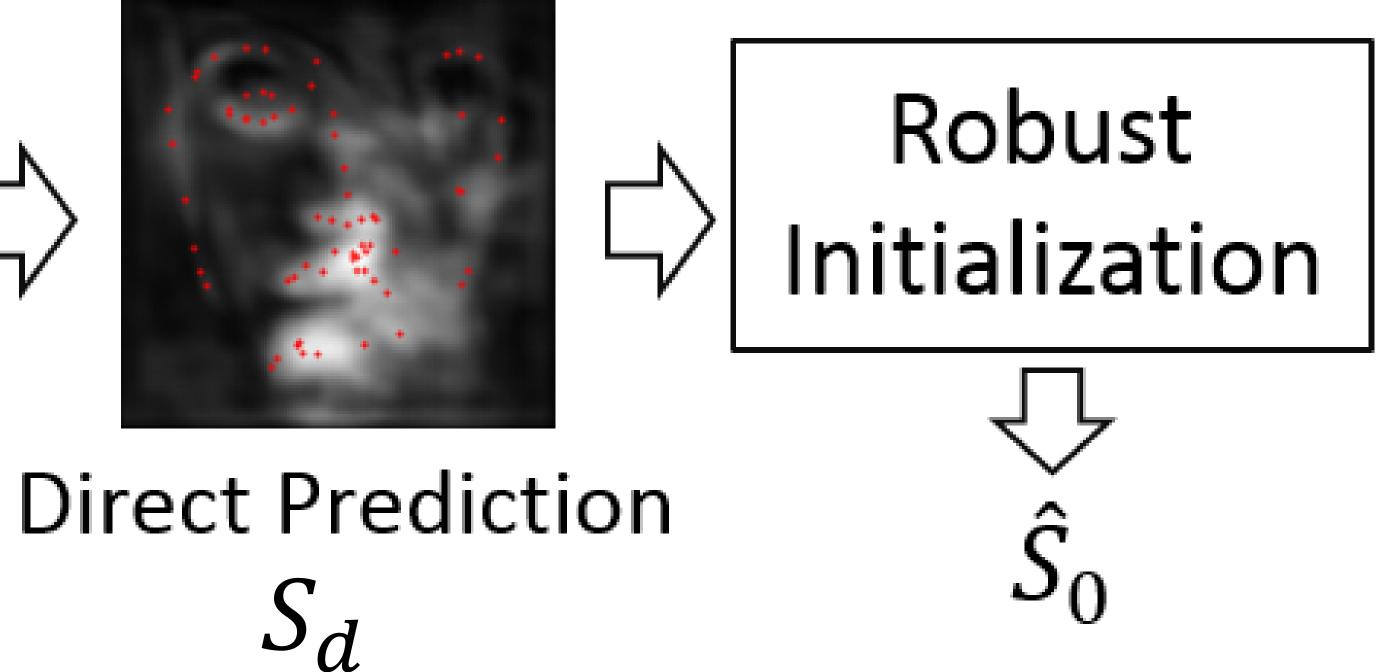


A)

RAR Networks

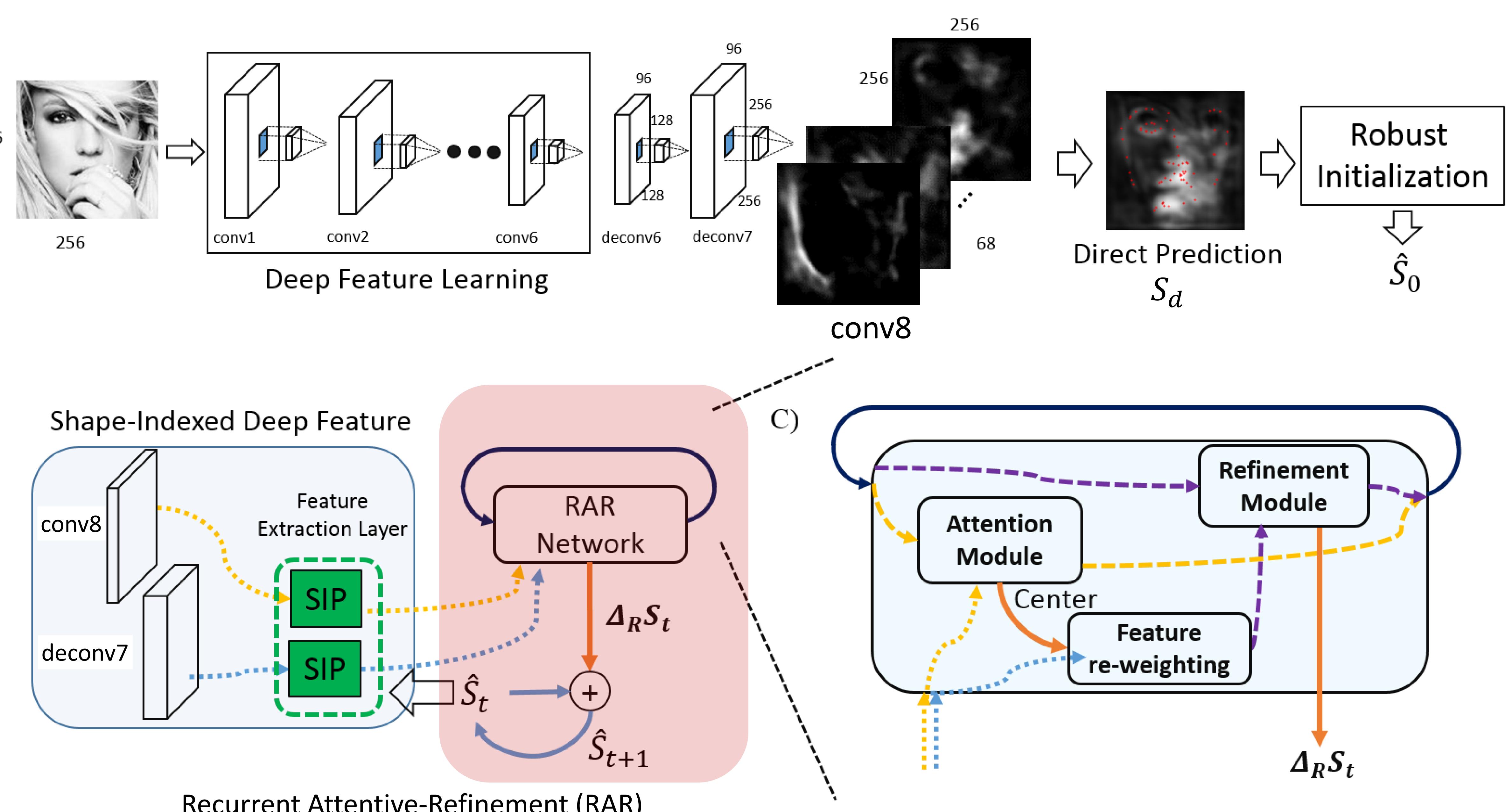
Deep Feature Learning

256 /256 deconv7 68 conv8



A). Deep feature extraction, landmark regression and robust initialization. B). RAR sequentially refines the landmark estimation. C). An attention model in RAR for adaptively selecting key landmark points.

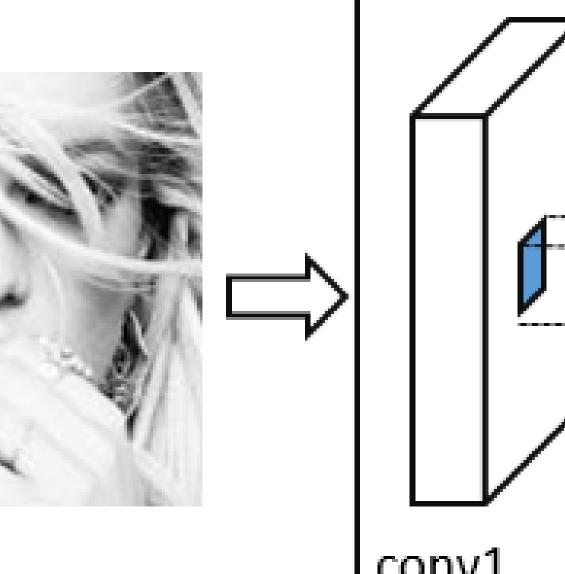
Recurrent Attentive-Refinement (RAR)

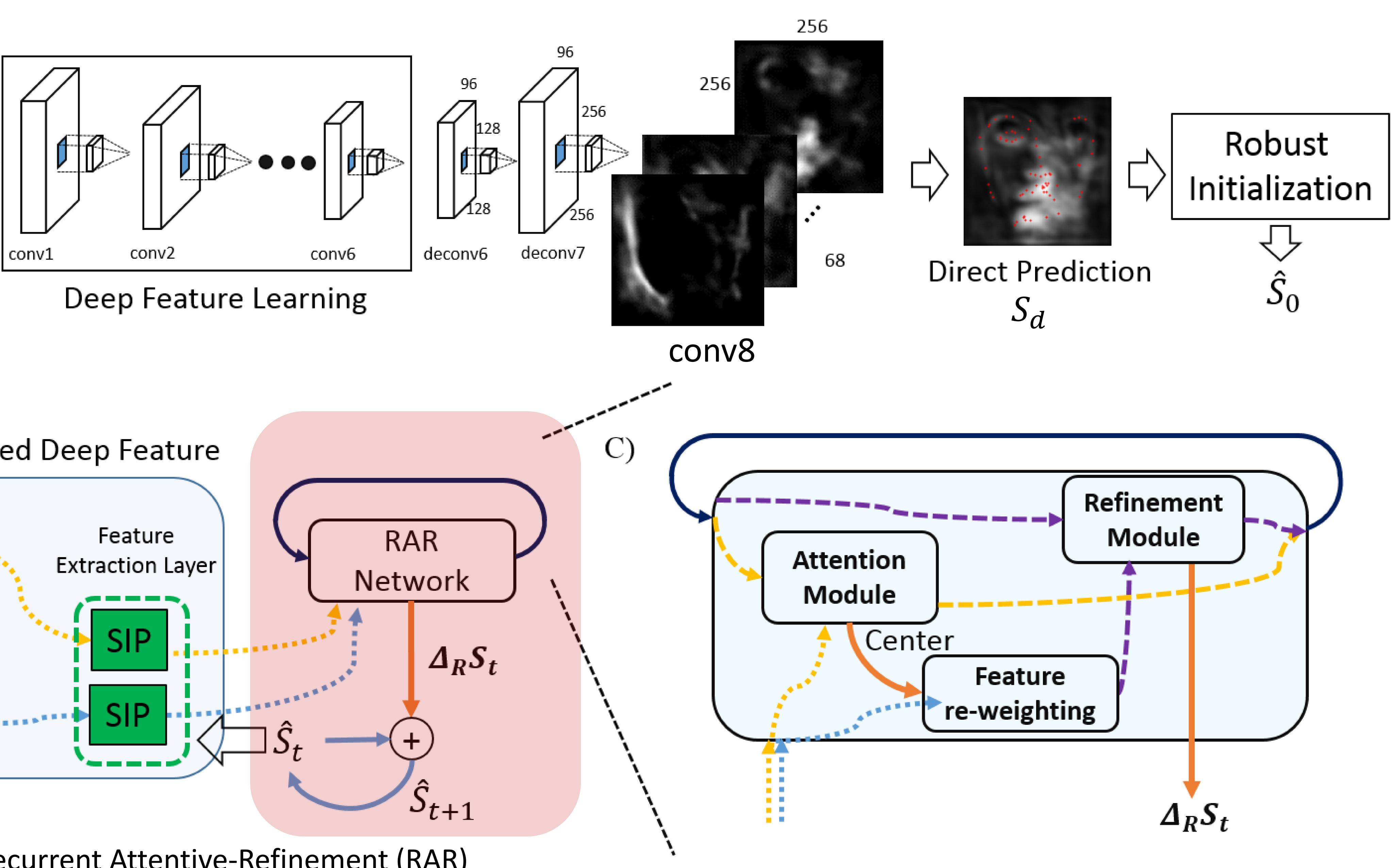


B)

A)

256

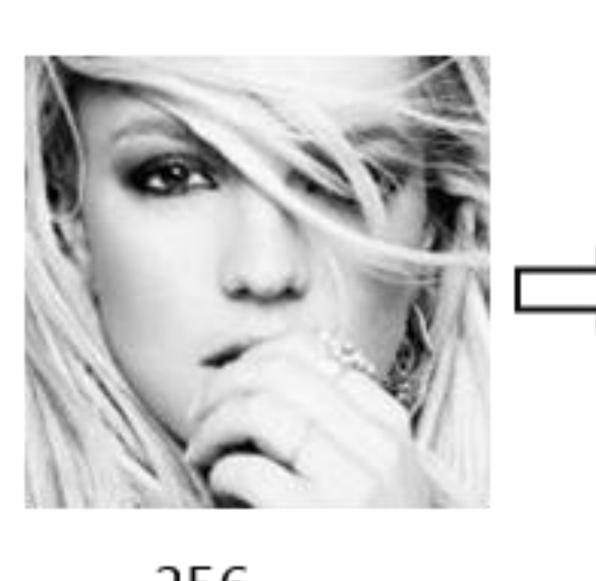


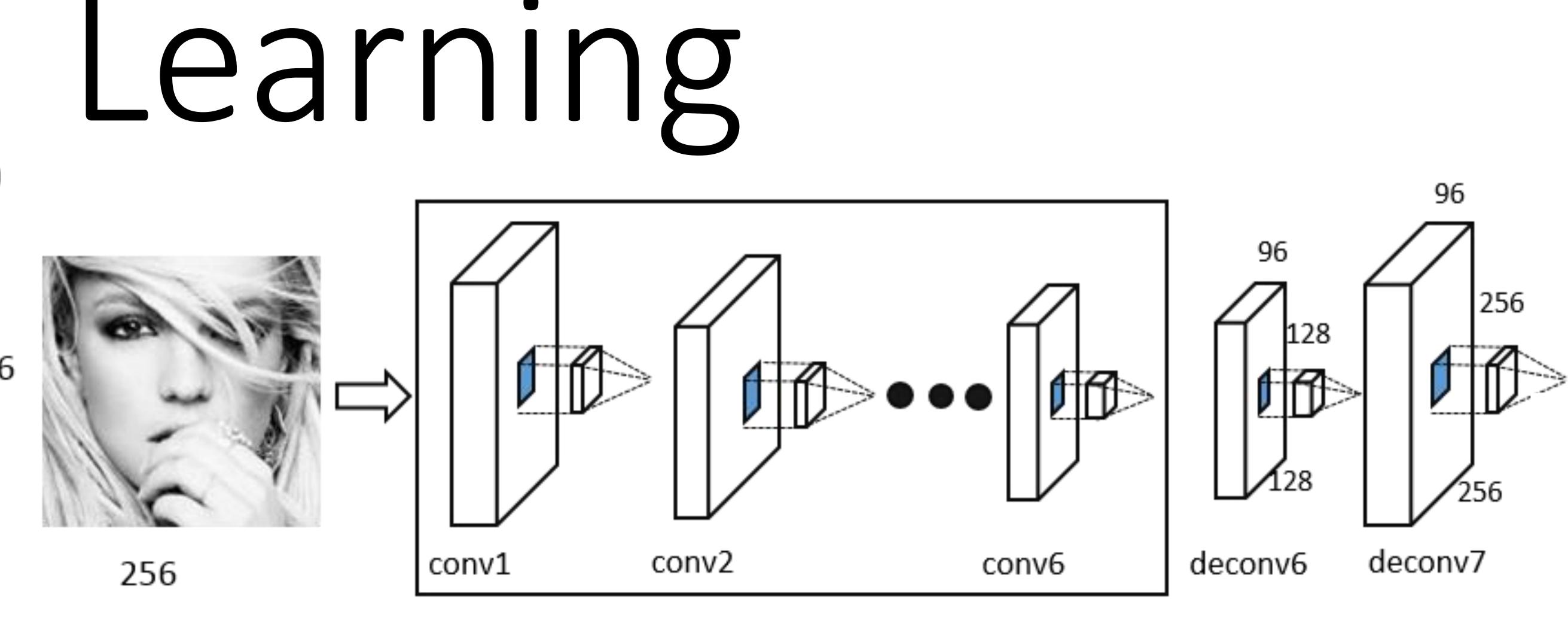


RAR Networks

RAR Networks: Deep Feature Learning

256





256

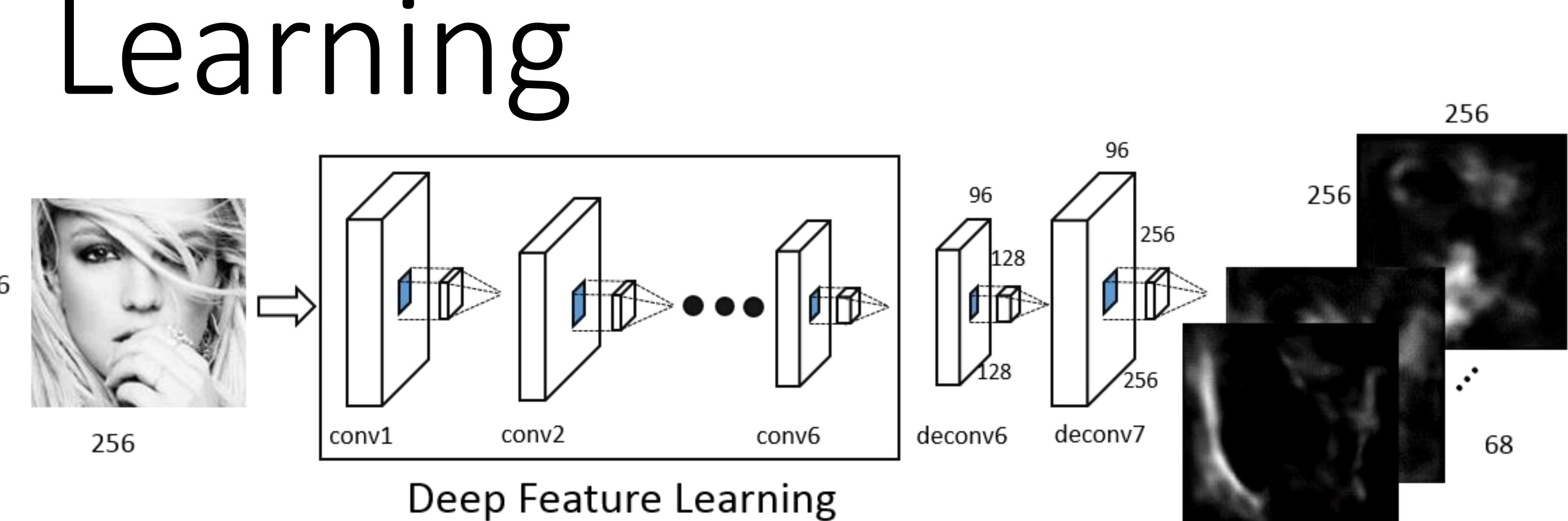
correspondence

Deep Feature Learning

Modified VGG19 Network + two Deconvolution layers to ensure pixel-to-pixel

RAR Networks: Deep Feature Learning 256

256



256

Modified VGG19 Network + two Deconvolution layers to ensure pixel-to-pixel correspondence

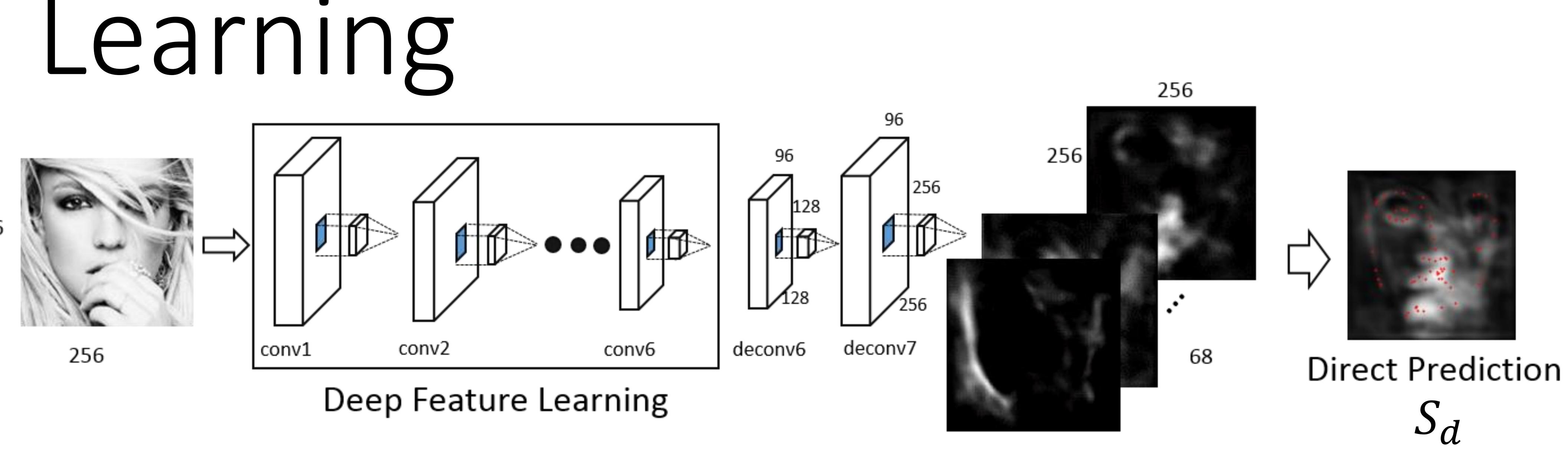
SoftMax regression loss on conv8

conv8

RAR Networks: Deep Feature Learning 256

Modified VGG19 Network + two Deconvolution lby selecting location of maximum response from *v*—th channel of **conv8**

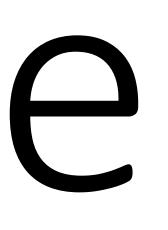
SoftMax regression loss on conv8

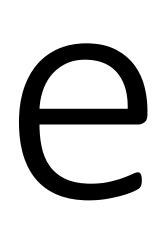


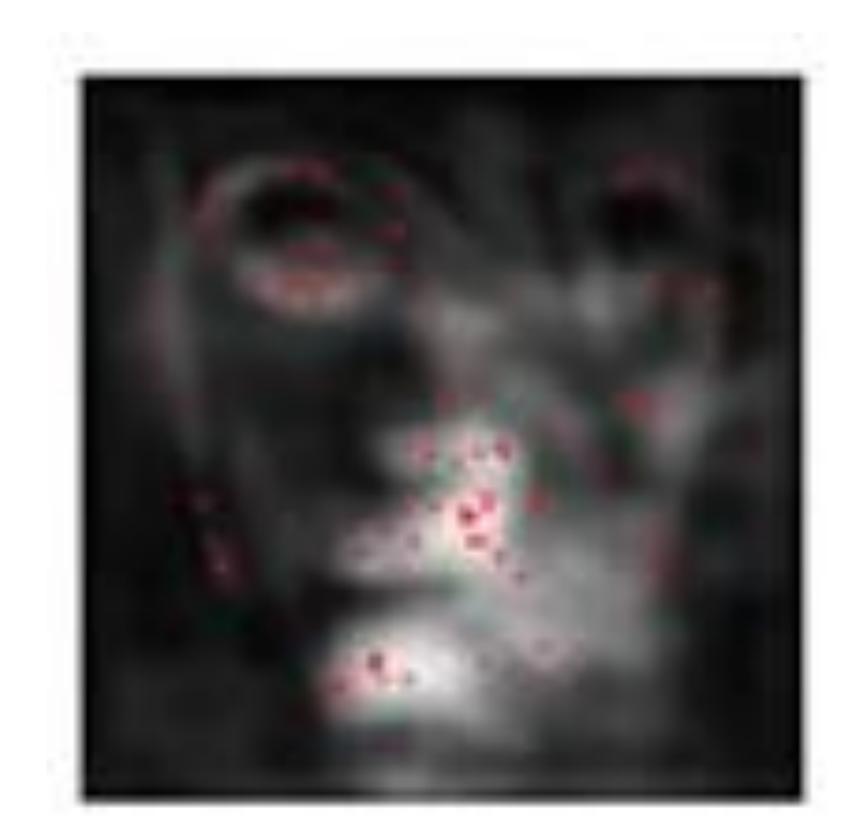
location of maximum response from v—th channel of conv8

conv8

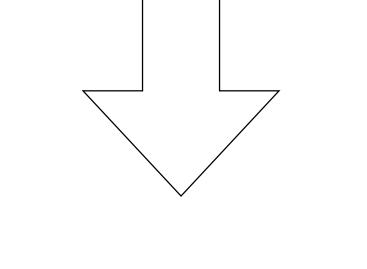
• Directly estimate landmark location S d v d v d v d v d v by selecting



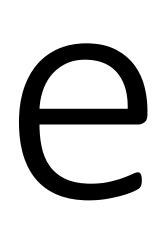


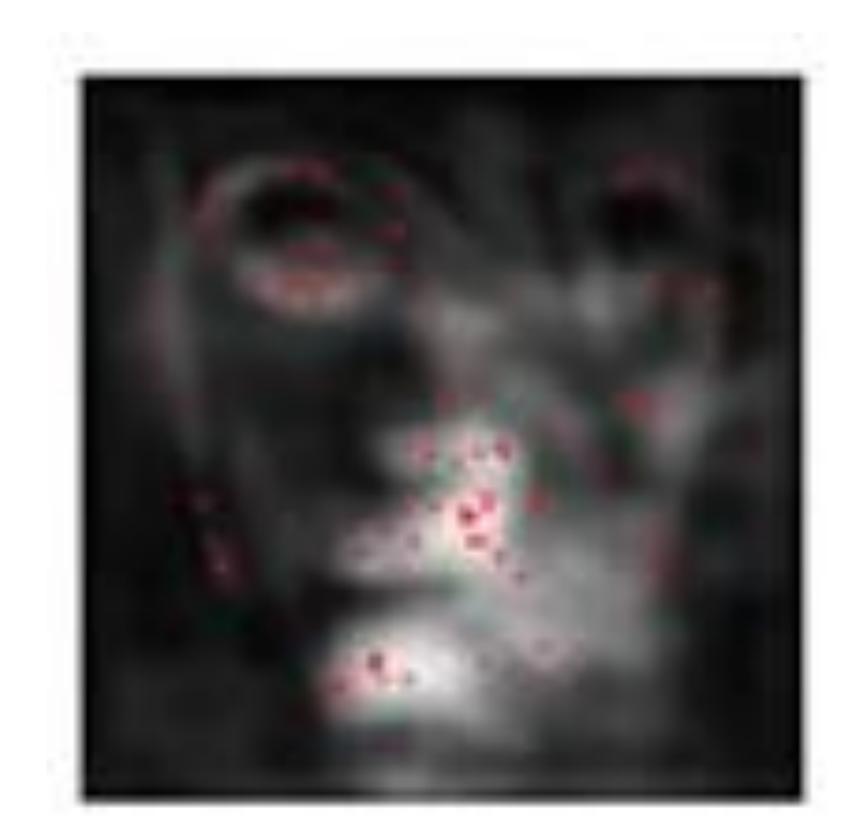


Robust Initial Shape Selection:



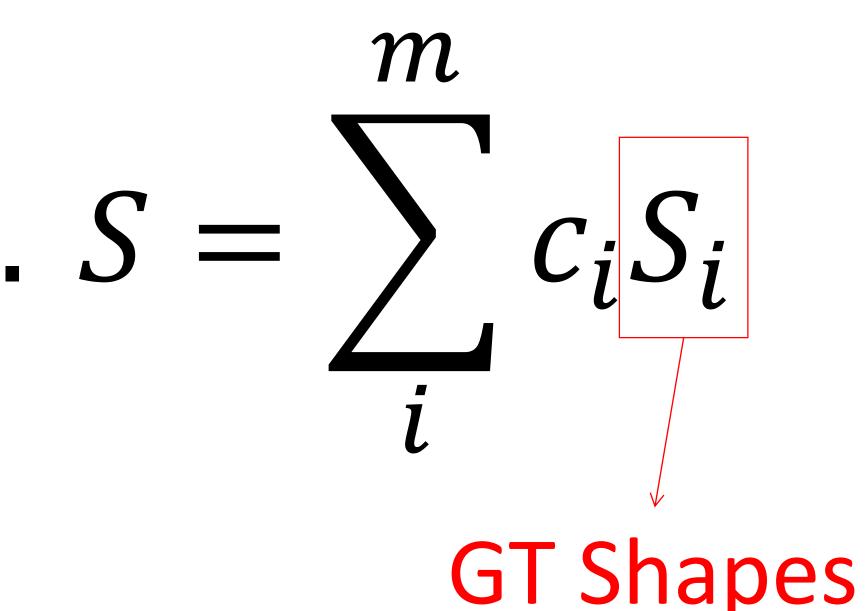
$S_0 = \arg \min ||S - S_d||, \text{ s.t. } S \in \mathcal{F}$ Detected Shape

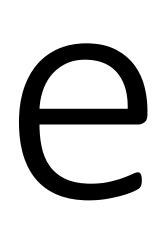


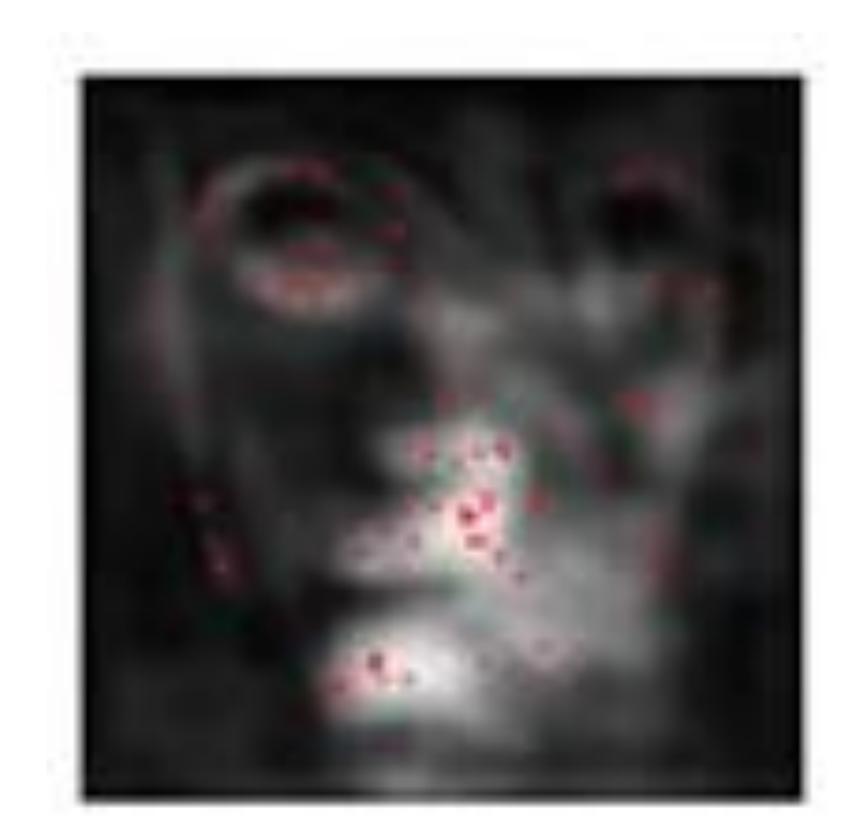


Robust Initial Shape Selection: $S_0 = \arg \min ||S - S_d||$, s.t. $S \in \mathcal{F}$

 $S_0 = \arg\min ||S - S_d||_0 + \lambda ||c||_0, \text{ s. t. } S = \sum_{i=1}^{n} c_i S_i$ S, c \delta [c_i]



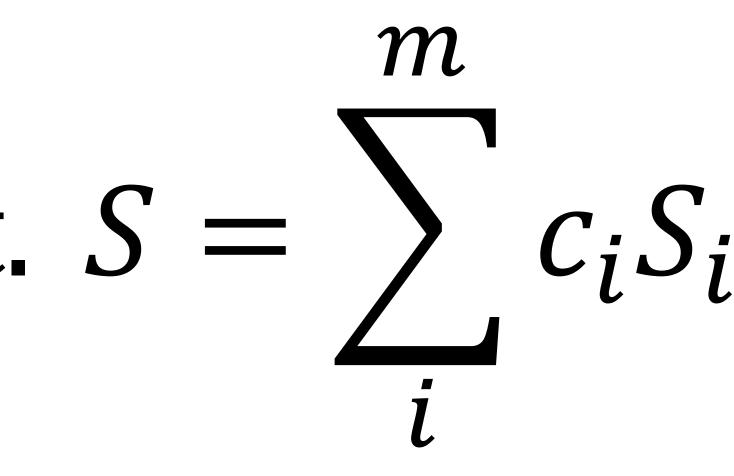


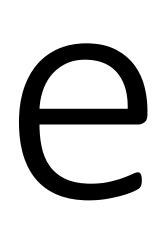


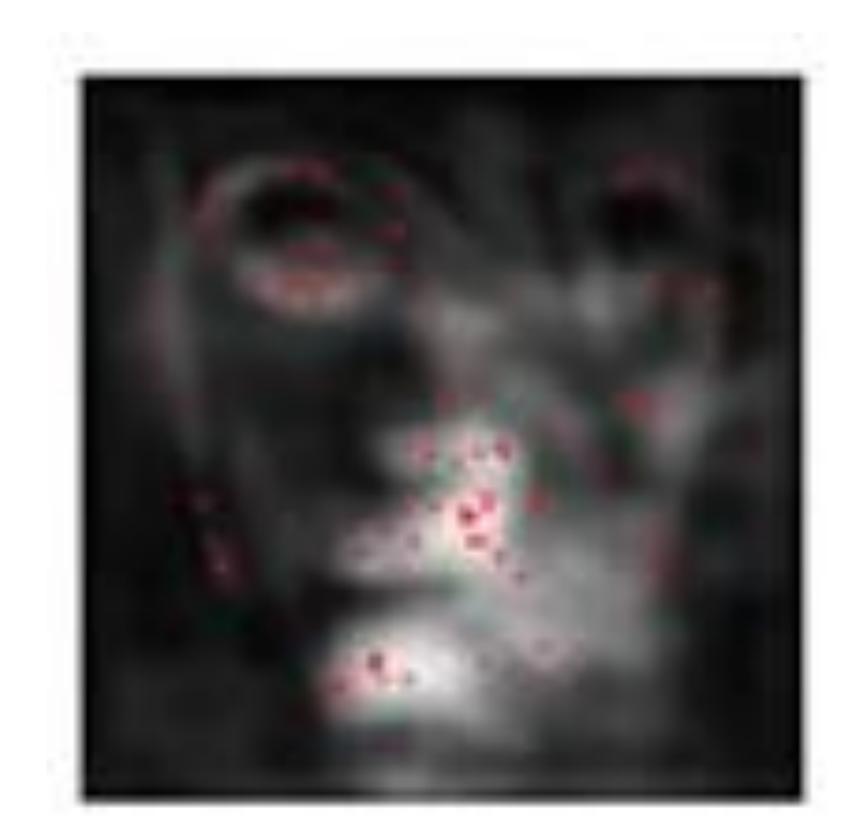
Robust Initial Shape Selection: $S_0 = \arg \min ||S - S_d||$, s.t. $S \in \mathcal{F}$

Solve: get K representative shapes via K-meanings clustering + RANSAC method to filter out significant outliers

 $S_{0} = \arg\min ||S - S_{d}||_{0} + \lambda ||c||_{0}, \text{ s. t. } S = \sum_{i=1}^{m} c_{i}S_{i}$ S, c \delta [c_{i}]



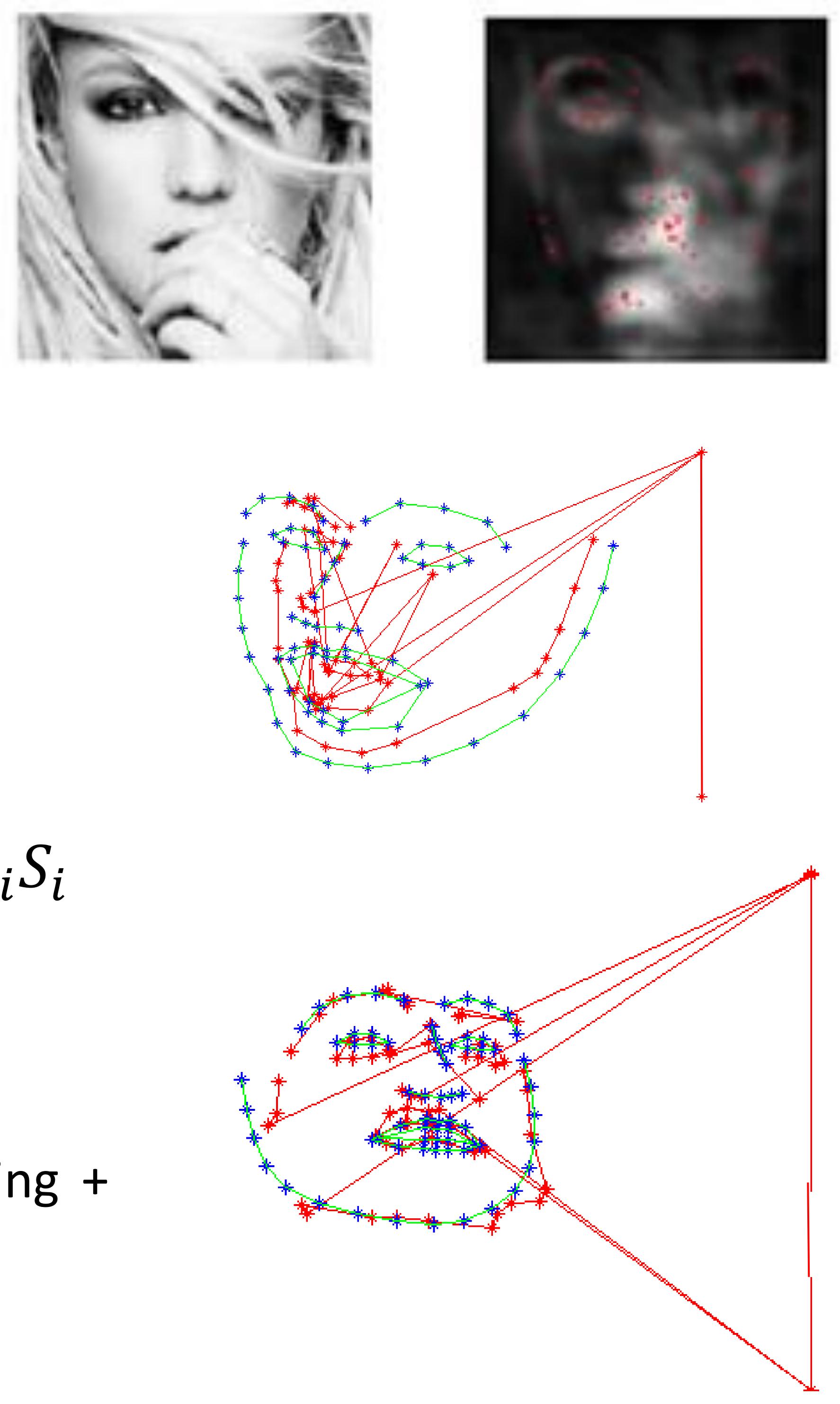


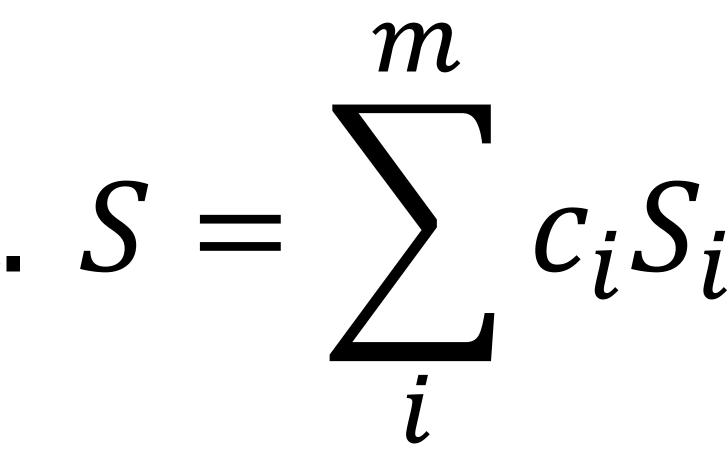


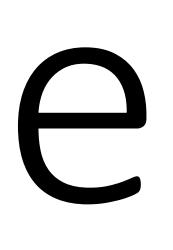
Robust Initial Shape Selection: $S_0 = \arg \min ||S - S_d||$, s.t. $S \in \mathcal{F}$

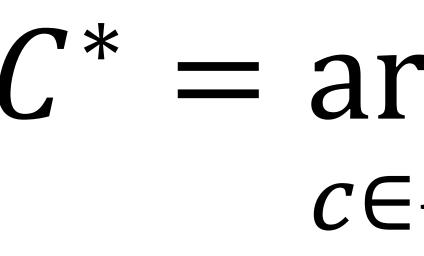
Solve: get K representative shapes via K-meanings clustering + RANSAC method to filter out significant outliers

 $S_0 = \arg\min ||S - S_d||_0 + \lambda ||c||_0, \text{ s. t. } S = \sum c_i S_i$ S, c \delta [c_i]





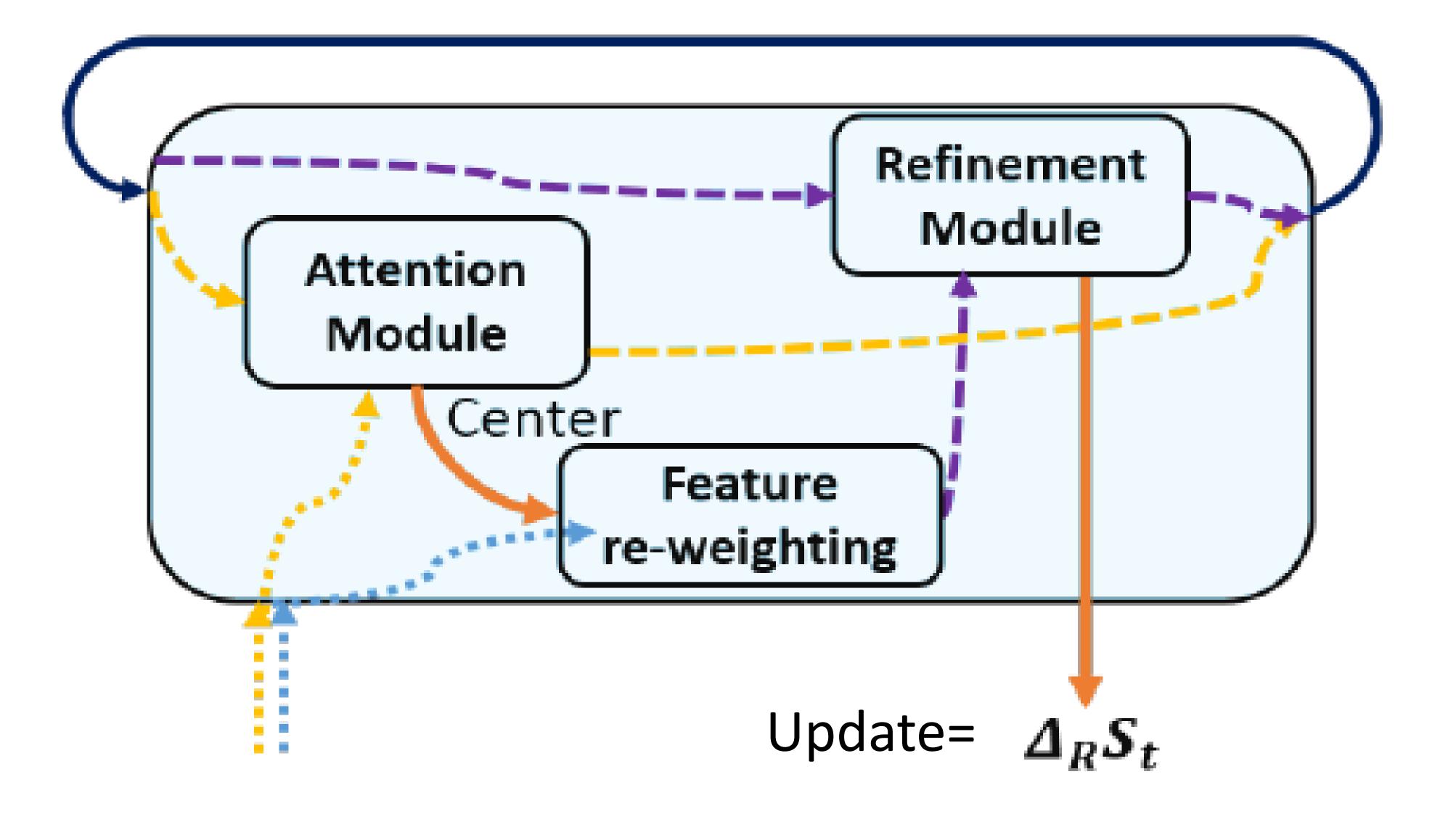




 A-LSTM (attention module) selects attention center with top confidence at each recurrent stage

 $C^* = \underset{c \in \{1,...,L\}}{\operatorname{argmax}} A - \operatorname{LSTM}(\Phi_a(I_t, \hat{S}_t); W_a, c)$

Deep SIP Feature

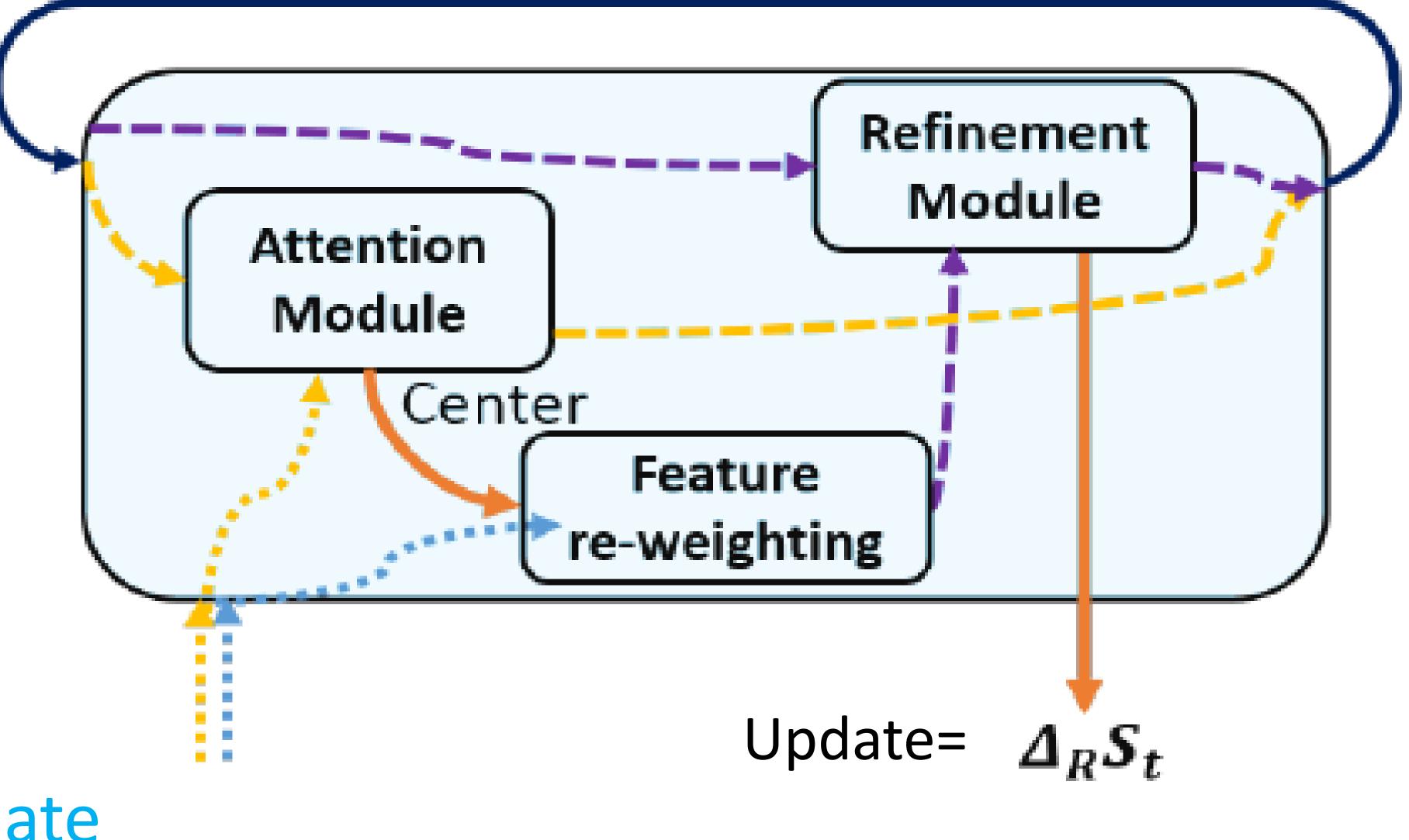


• RaaaRa

maximize reward $\mathcal{R} a$

 A typical attention center is selected based on \mathbf{O} $\gamma^{t-1} R(\hat{S}_{t-1}, \hat{S}_{t})$ \mathcal{R}_{a} t = 1Discount Factor

A-LSTM (attention module) selects attention center with top confidence at each $W(\Psi_a(I_t, S_t), W_a, c)$ *c*∈{1,...,*L*}



Intermediate Reward

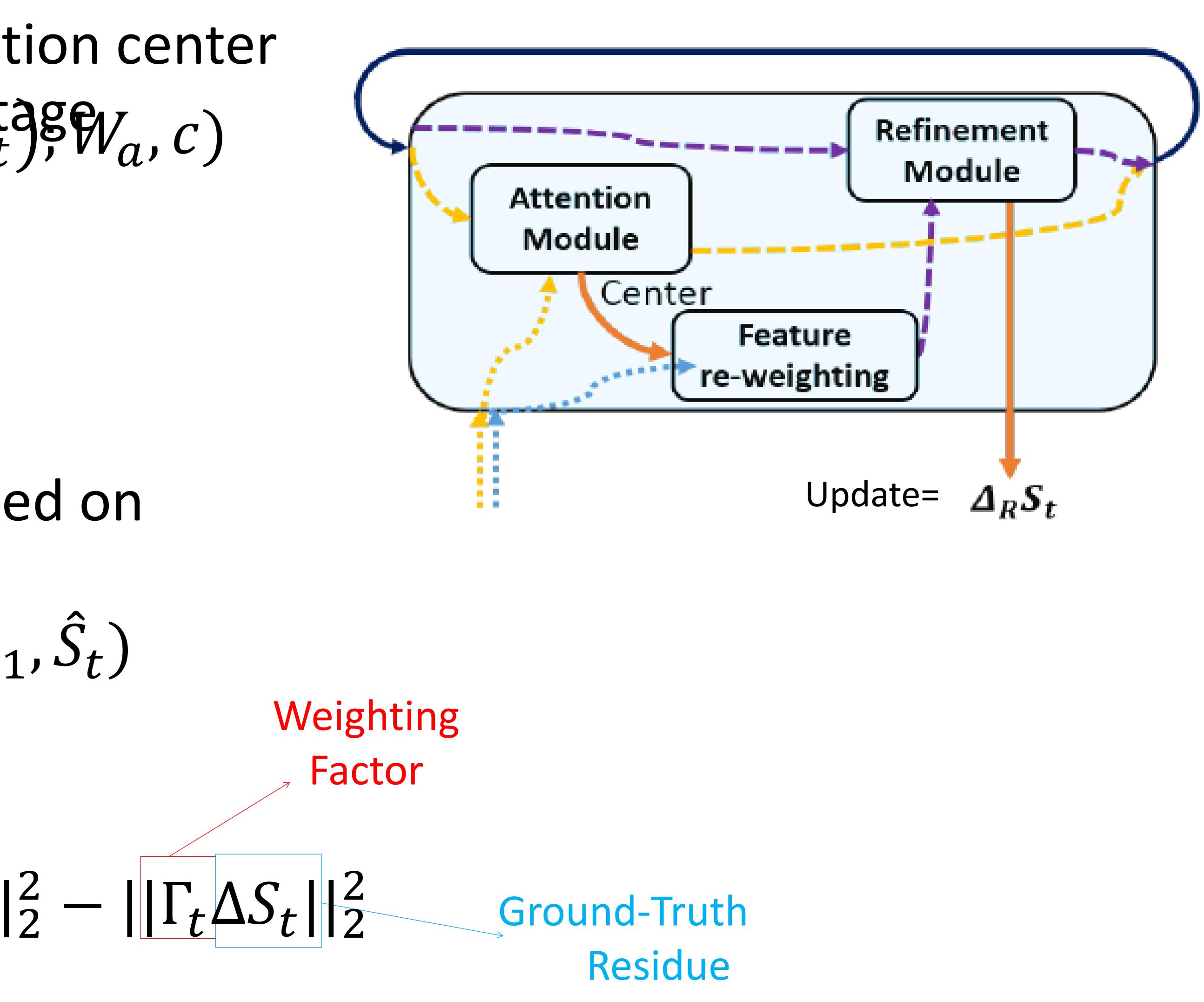
• RaaaRa

maximize reward \mathcal{R} a

A-LSTM (attention module) selects attention center with top confidence at each $M(\Psi_a(I_t, S_t), W_a, c)$ *c*∈{1,...,*L*}

 A typical attention center is selected based on $\mathcal{R}_a = \sum \eta^{t-1} R(\hat{S}_{t-1}, \hat{S}_t)$ t = 1

 $R(\hat{S}_{t-1}, \hat{S}_t) = \||\Gamma_t \Delta S_{t-1}\||_2^2 - \||\Gamma_t \Delta S_t\||_2^2$



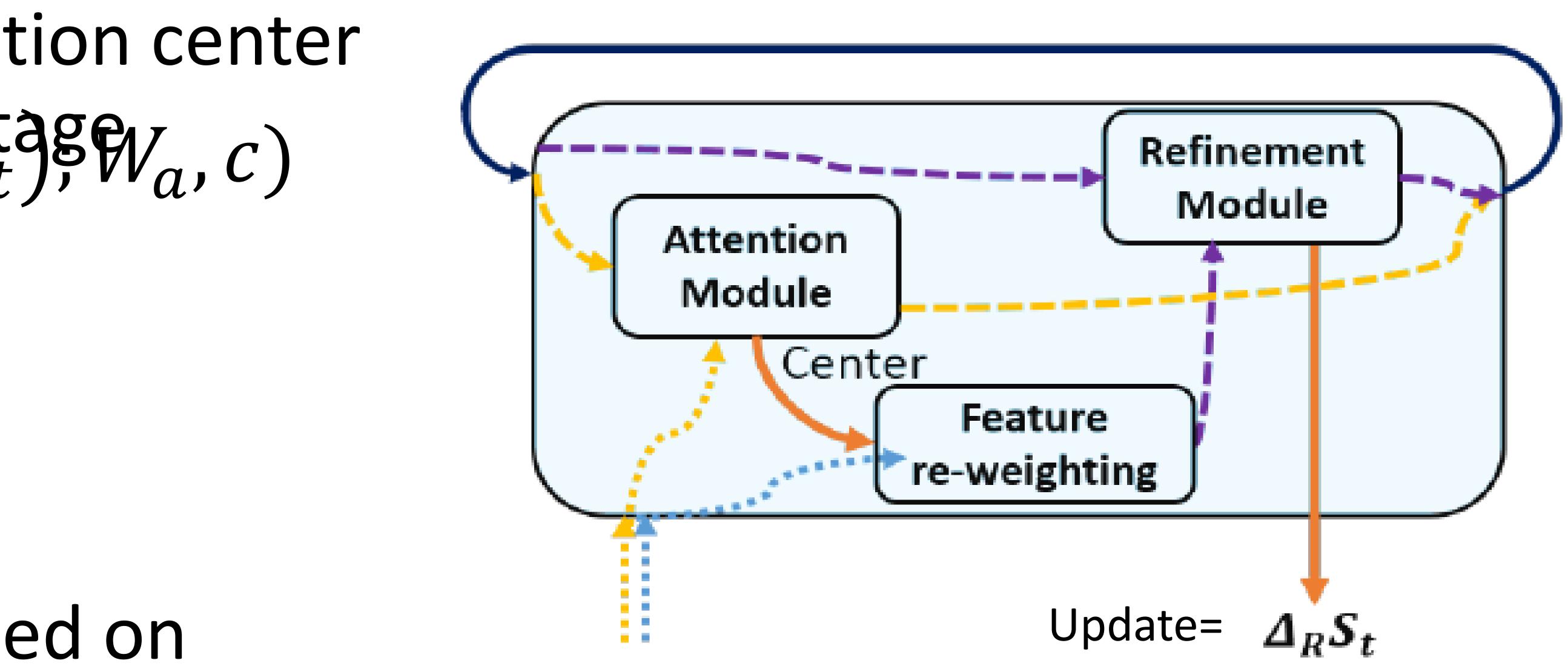
• RaaaRa

maximize reward $\mathcal{R}a$

A-LSTM (attention module) selects attention center with top ε on fidence at each $W(\Psi_a(P_t, S_t), W_a, c)$ *c*∈{1,...,*L*}

 A typical attention center is selected based on $\mathcal{R} a = \sum_{k=1}^{\infty} \eta^{t-1} R(\hat{S}_{t-1}, \hat{S}_{t})$ t = 1

 $R(\hat{S}_{t-1}, \hat{S}_t) = \||\Gamma_t \Delta S_{t-1}\||_2^2 - \||\Gamma_t \Delta S_t\||_2^2$



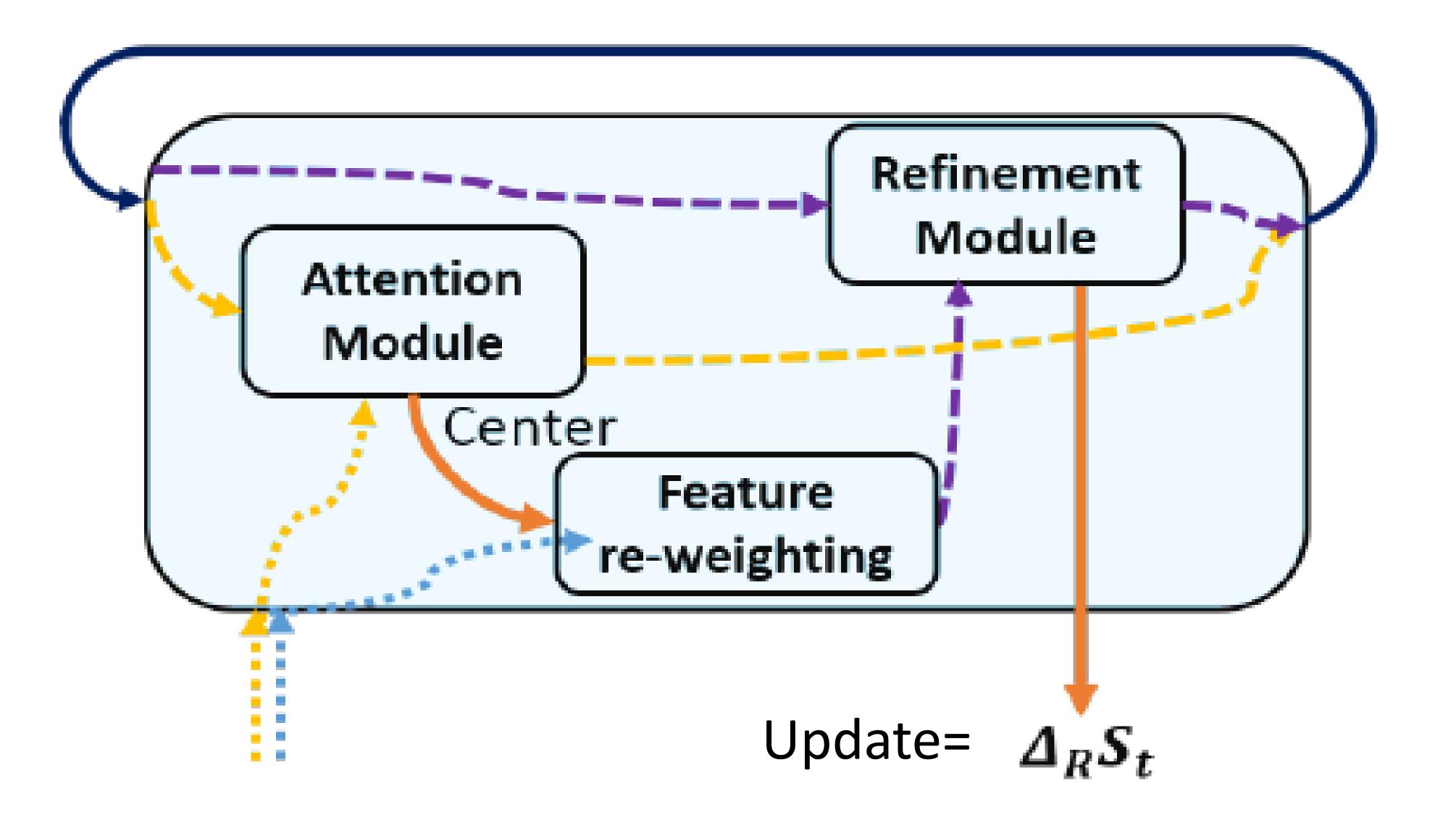
- $\Gamma_{t} = [\gamma_{t}^{1}, \gamma_{t}^{2}, \dots, \gamma_{t}^{L}], \text{ with } \gamma_{t}^{l} = \kappa \exp(\frac{-||\hat{s}_{t}^{l} \hat{s}_{t}^{c^{*}}||_{l_{2}}^{2}}{4D_{t}^{2}})$

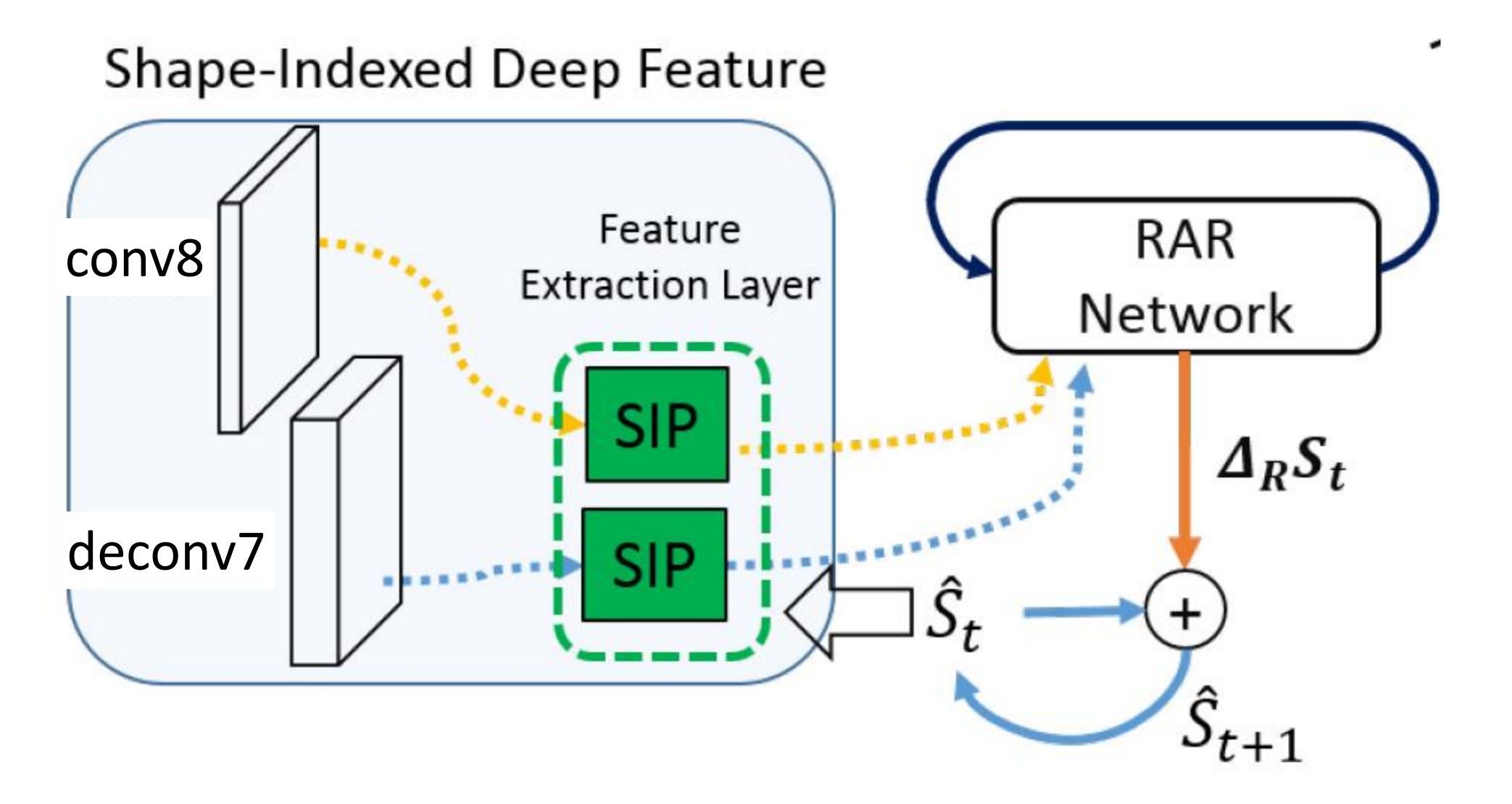
RAR Networks: Refinement Module

attention center:

• Feature re-weighting based on distance to Weighting Factor $\Phi_r(I_t, \hat{S}_t) = [\gamma_t^1 \phi_t^1, \gamma_t^2 \phi_t^2, \dots, \gamma_t^L \phi_t^L]$

Deep SIP Feature at S_t^2





RAR Networks: Refinement Module

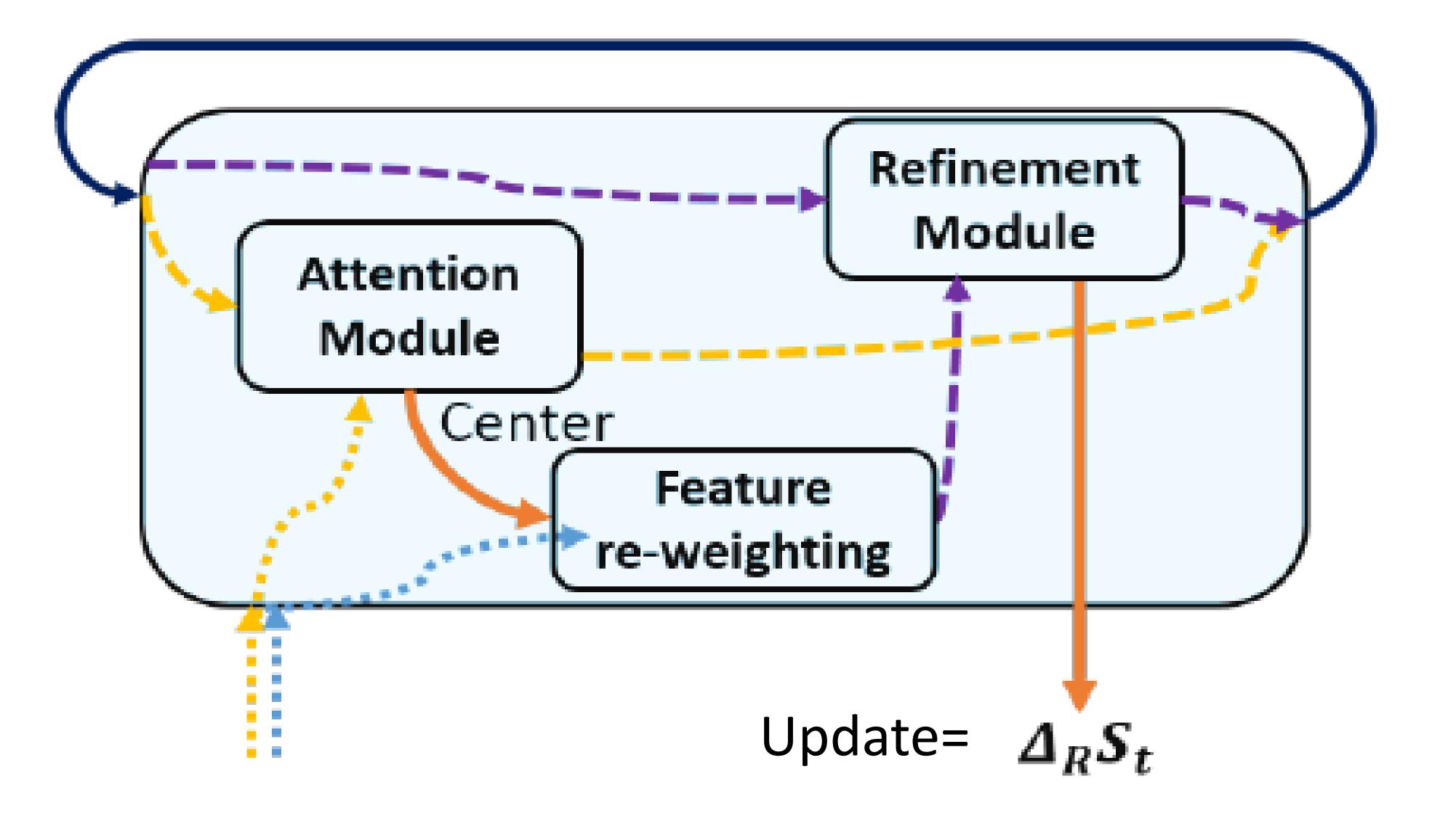
• Feature re-weighting based on distance to attention center:

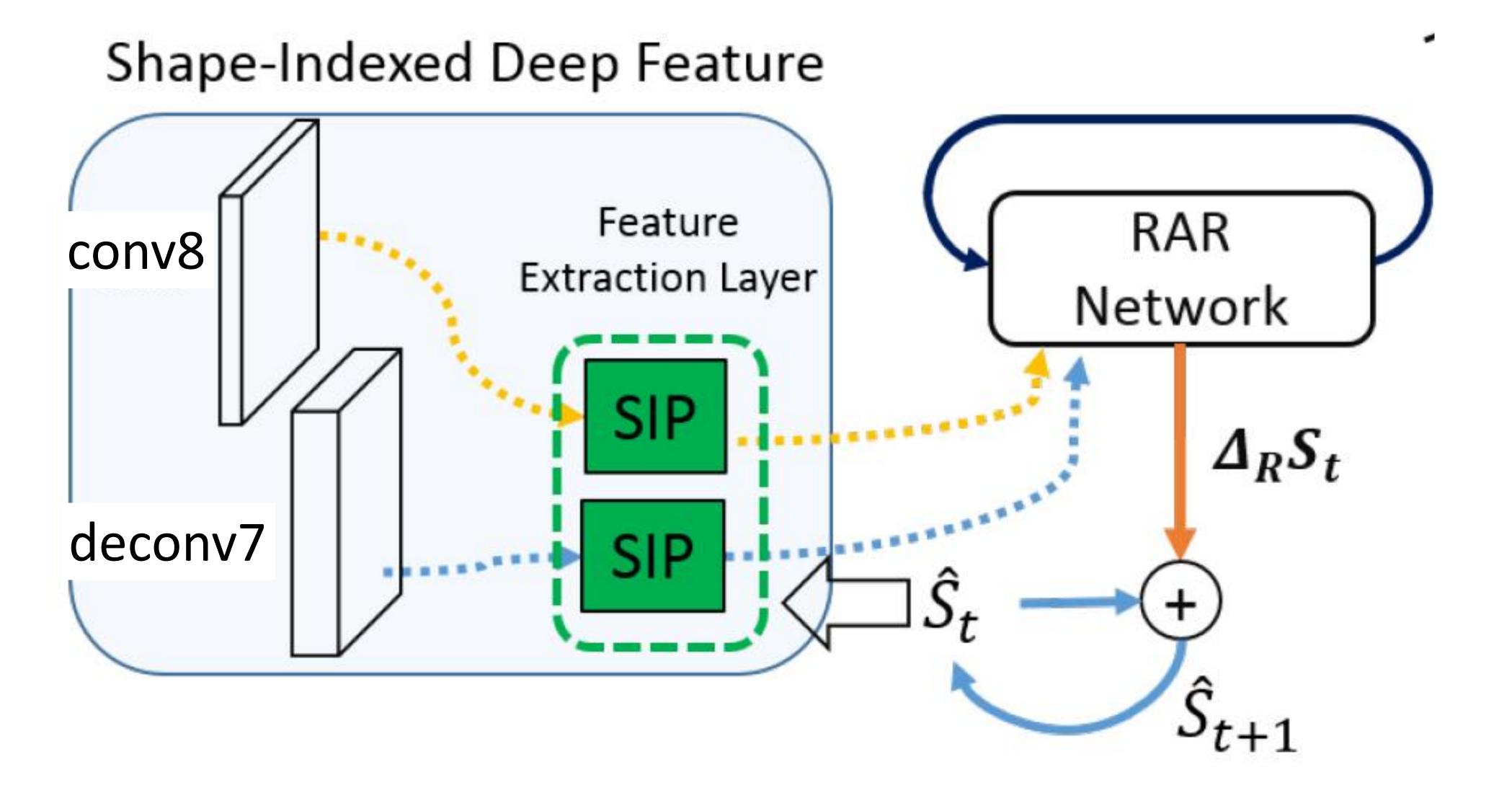
such:

Ground-truth Update Residue $\Delta_R S_t$ is the R-LSTM output $\Delta_R S_t = \alpha \Gamma_t R - LSTM(\Phi_r)$

 $\Phi_r(I_t, \hat{S}_t) = [\gamma_t^1 \phi_t^1, \gamma_t^2 \phi_t^2, \dots, \gamma_t^L \phi_t^L]$ • Refinement Module to get shape update

 $\mathcal{L}_R^t = || \Gamma_t (\Delta_R S_t - \Delta S_t) ||_2^2$



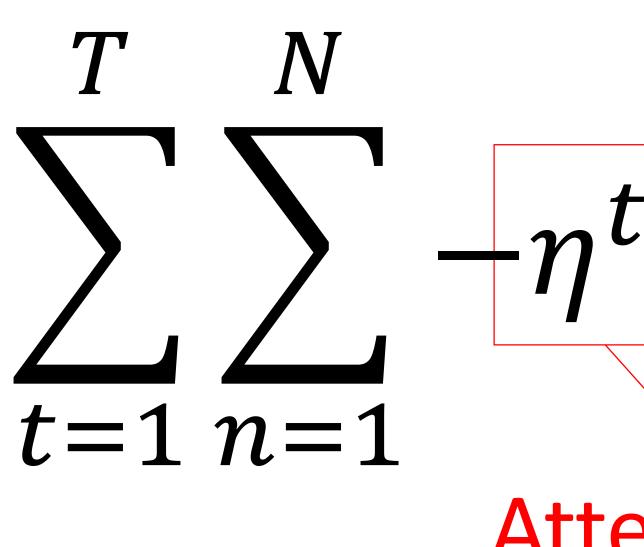


RAR Networks: Refinement Module

• Feature re-weighting based on distance to attention center:

such:

 $\Delta_R S_t$ is the R-LSTM output $\Delta_R S_t = \alpha \Gamma_t R - LSTM(\Phi_r)$

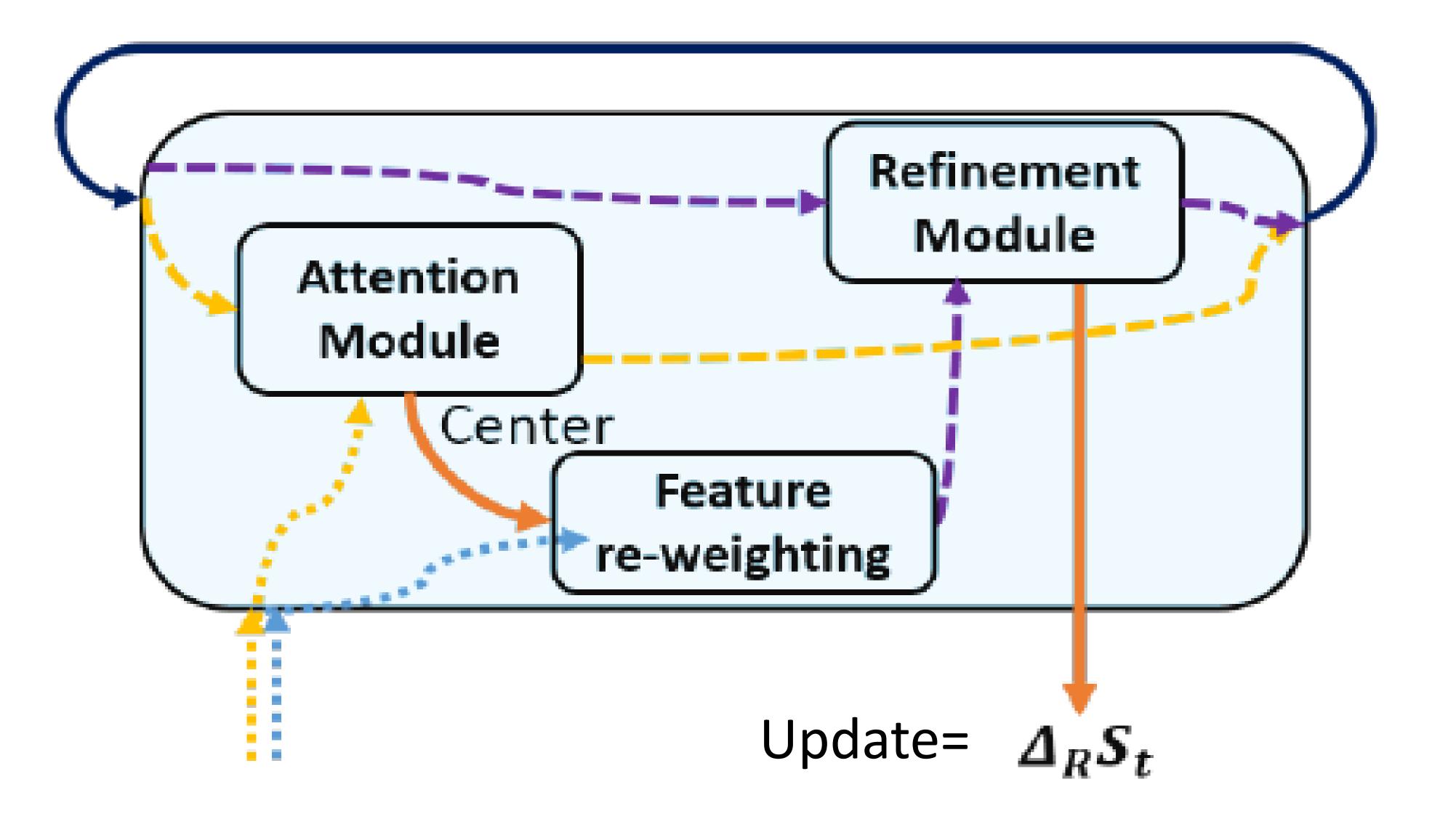


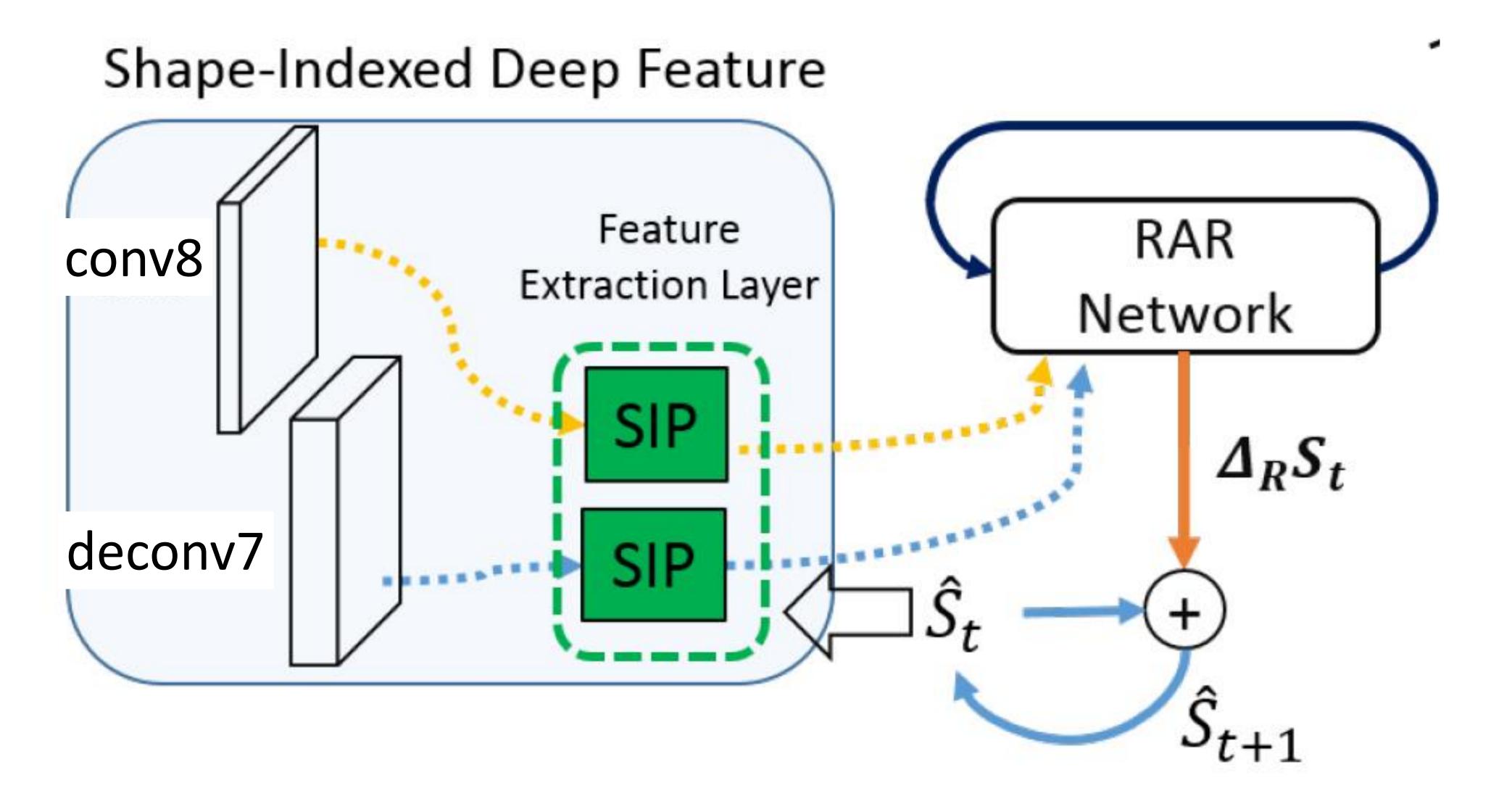
 $\Phi_r(I_t, \hat{S}_t) = [\gamma_t^1 \phi_t^1, \gamma_t^2 \phi_t^2, \dots, \gamma_t^L \phi_t^L]$ • Refinement Module to get shape update

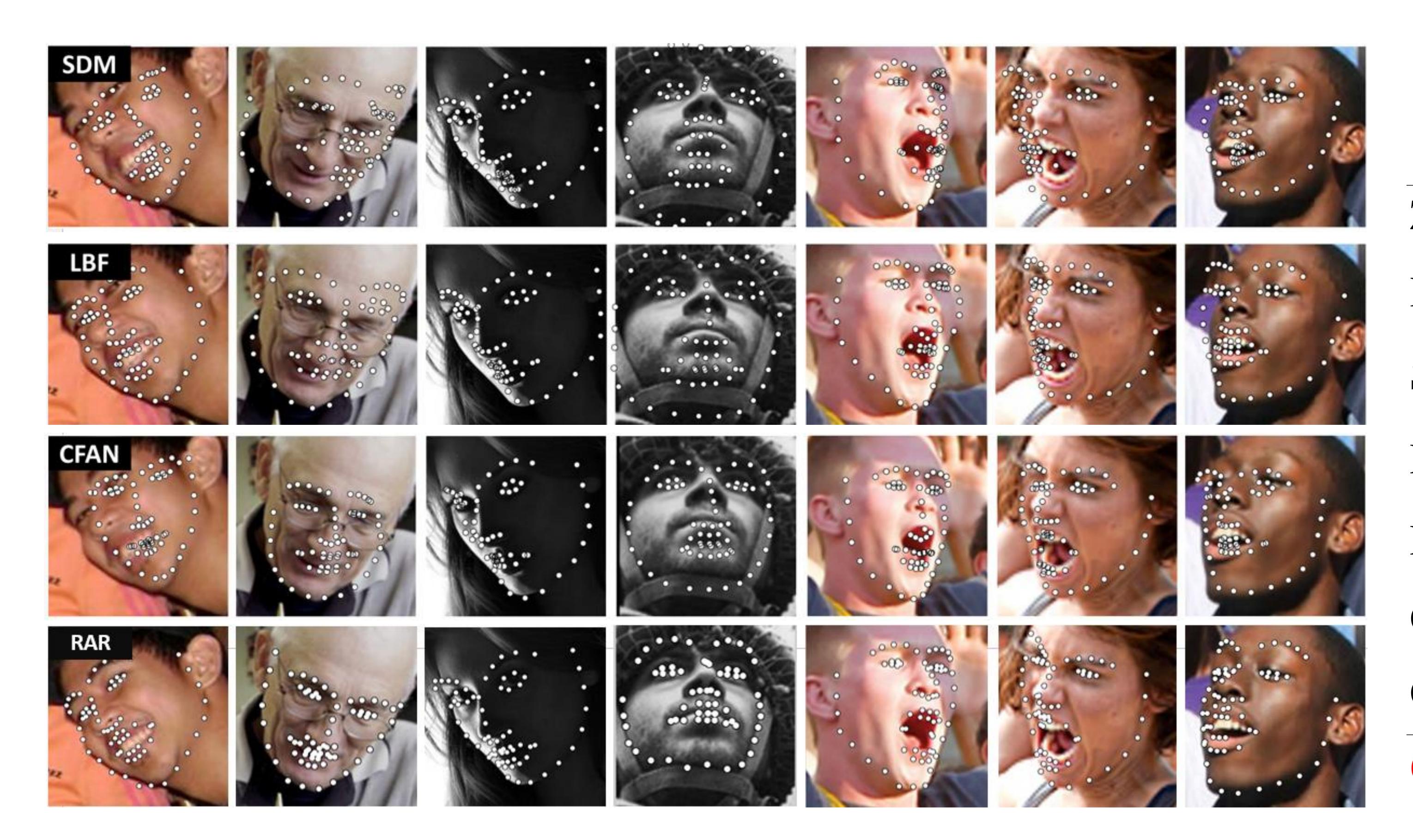
 $\mathcal{L}_R^t = || \Gamma_t (\Delta_R S_t - \Delta S_t) ||_2^2$

Overall Training Objective of RAR:

 $^{-1}\mathcal{R}_{a}(S_{t-1,n},S_{t,n}) + \mathcal{L}_{R,n}^{t}$ **Attention Loss**







RCPR: Robust face landmark estimation under occlusion. ICCV 2013 SDM: Supervised descent method and its applications to face alignment. CVPR 2013 LBF: Face alignment at 3000 fps via regressing local binary features. ECCV 2014 CFSS: Face alignment by coarse-to-fine shape searching. CVPR 2015

Zhu: Face detection, pose estimation, and landmark localization in the wild. CVPR 2012 CFAN: Coarse-to-ne auto-encoder networks(cfan) for real-time face alignment. ECCV2014

Methods

Zhu et.al [2012] RCPR [Burgos,201 SDM [Xiong,2013] LBF [Ren,2014] LBF Fast [Ren,201-CFAN[Zhang, 2014 CFSS [Zhu, 2015] Ours (RAR)

	300-W Dataset				
	Common	Challenging	Full		
	8.22	18.33	12.0		
13]	6.18	17.26	8.35		
	5.57	15.40	7.50		
	4.95	11.98	6.32		
14]	5.38	15.50	7.37		
4]	5.50				
	4.73	9.98	5.76		
	4.12	8.35	4.94		

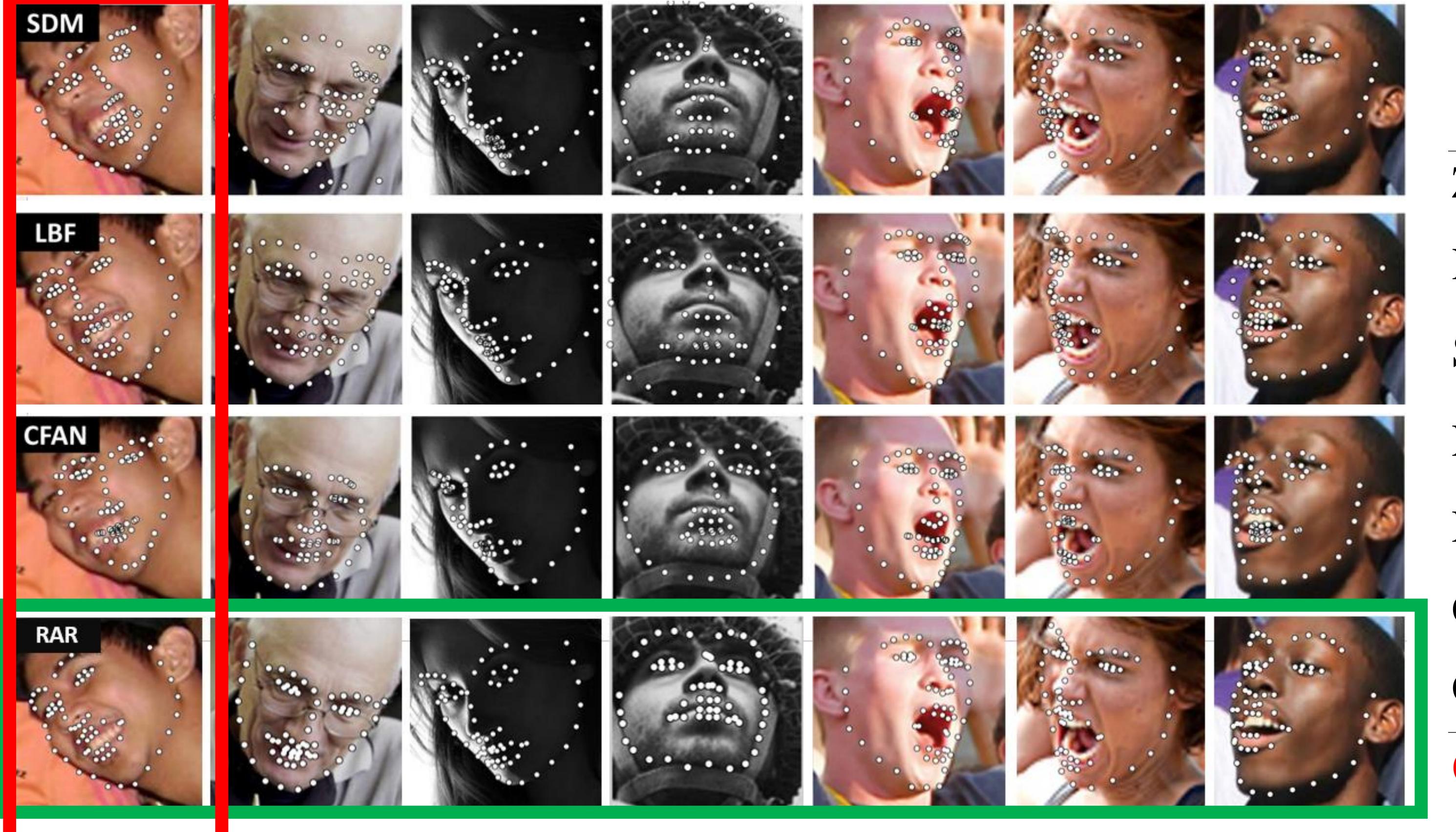
RCPR: Robust face landmark estimation under occlusion. ICCV 2013 SDM: Supervised descent method and its applications to face alignment. CVPR 2013 LBF: Face alignment at 3000 fps via regressing local binary features. ECCV 2014 CFSS: Face alignment by coarse-to-fine shape searching. CVPR 2015

Zhu: Face detection, pose estimation, and landmark localization in the wild. CVPR 2012 CFAN: Coarse-to-ne auto-encoder networks(cfan) for real-time face alignment. ECCV2014

Methods

Zhu et.al [2012] RCPR [Burgos,201 SDM [Xiong,2013] LBF [Ren,2014] LBF Fast [Ren,2014 CFAN[Zhang, 2014 CFSS [Zhu, 2015] Ours (RAR)

	300-W Dataset				
	Common	Challenging	Full		
	8.22	18.33	12.0		
13]	6.18	17.26	8.35		
	5.57	15.40	7.50		
	4.95	11.98	6.32		
14]	5.38	15.50	7.37		
4]	5.50				
	4.73	9.98	5.76		
	4.12	8.35	4.94		



RCPR: Robust face landmark estimation under occlusion. ICCV 2013 SDM: Supervised descent method and its applications to face alignment. CVPR 2013 LBF: Face alignment at 3000 fps via regressing local binary features. ECCV 2014 CFSS: Face alignment by coarse-to-fine shape searching. CVPR 2015

Zhu: Face detection, pose estimation, and landmark localization in the wild. CVPR 2012 CFAN: Coarse-to-ne auto-encoder networks(cfan) for real-time face alignment. ECCV2014

Methods

Zhu et.al [2012] RCPR [Burgos,201 SDM [Xiong,2013] LBF [Ren,2014] LBF Fast [Ren,2014 CFAN[Zhang, 2014 CFSS [Zhu, 2015] Ours (RAR)

	300-W Dataset				
	Common	Challenging	Full		
	8.22	18.33	12.0		
13]	6.18	17.26	8.35		
	5.57	15.40	7.50		
	4.95	11.98	6.32		
14]	5.38	15.50	7.37		
4]	5.50				
	4.73	9.98	5.76		
	4.12	8.35	4.94		

RCPR: Robust face landmark estimation under occlusion. ICCV 2013 SDM: Supervised descent method and its applications to face alignment. CVPR 2013 LBF: Face alignment at 3000 fps via regressing local binary features. ECCV 2014 CFSS: Face alignment by coarse-to-fine shape searching. CVPR 2015

Zhu: Face detection, pose estimation, and landmark localization in the wild. CVPR 2012 CFAN: Coarse-to-ne auto-encoder networks(cfan) for real-time face alignment. ECCV2014

Methods

Zhu et.al [2012] RCPR [Burgos,201 SDM [Xiong,2013] LBF [Ren,2014] LBF Fast [Ren,2014 CFAN[Zhang, 2014 CFSS [Zhu, 2015] Ours (RAR)

	300-W Dataset				
	Common	Challenging	Full		
	8.22	18.33	12.0		
13]	6.18	17.26	8.35		
	5.57	15.40	7.50		
	4.95	11.98	6.32		
14]	5.38	15.50	7.37		
4]	5.50				
	4.73	9.98	5.76		
	4.12	8.35	4.94		

Methods	Normalized ME	Failure Rat
RCPR	8.50	20.00%
HPM	7.46	13.24%
RPP	7.52	16.20%
TCDCN	8.05	
RAR	6.03	4.14%

COFW Dataset

RCPR: Robust face landmark estimation under occlusion. ICCV 2013 HPM: Hierarchical part model. CVPR 2014. RPP: Regional Predictive Power. TIP 2015. TCDCN: Task constraint deep convolutional nets. PAMI 2015. SDM: Supervised descent method and its applications to face alignment. CVPR 2013 CFAN: Coarse-to-ne auto-encoder networks(cfan) for real-time face alignment. ECCV2014 CFSS: Face alignment by coarse-to-fine shape searching. CVPR 2015

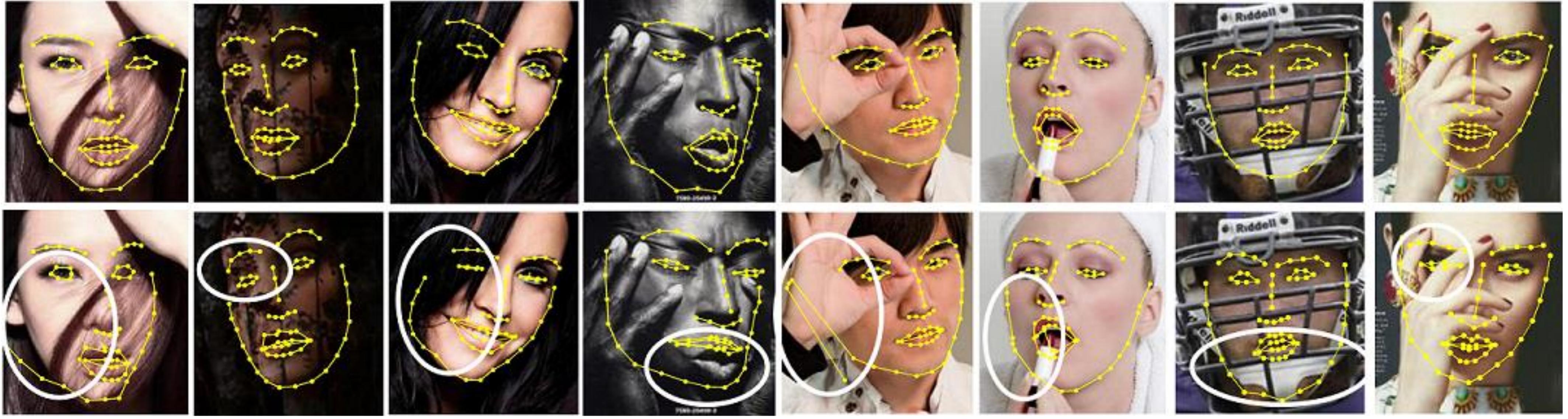
Results on COFW and AFLW ALFW Dataset Methods e RCPR SDM CFAN TCDCN RAR

Normalized ME
11.6
8.50
10.95
7.60
7.23

Comparison Studies

Dataset	Conv8	Mean Shape	Random Shape	Direct	
300-W	6.24	5.26	5.22	6.66	
COFW	30.14	6.24	6.12	11.52	
AFLW	8.14	7.36	7.42	8.15	

Mean Shape



Conv8: Direct: Mean Shape: Random Shape: Robust:

Random Shape

Prediction from conv8 RAR trained with initial shape as conv8 RAR trained with mean shape as initial shape RAR trained with random shape as initial shape RAR trained with the proposed robust initialization

Direct

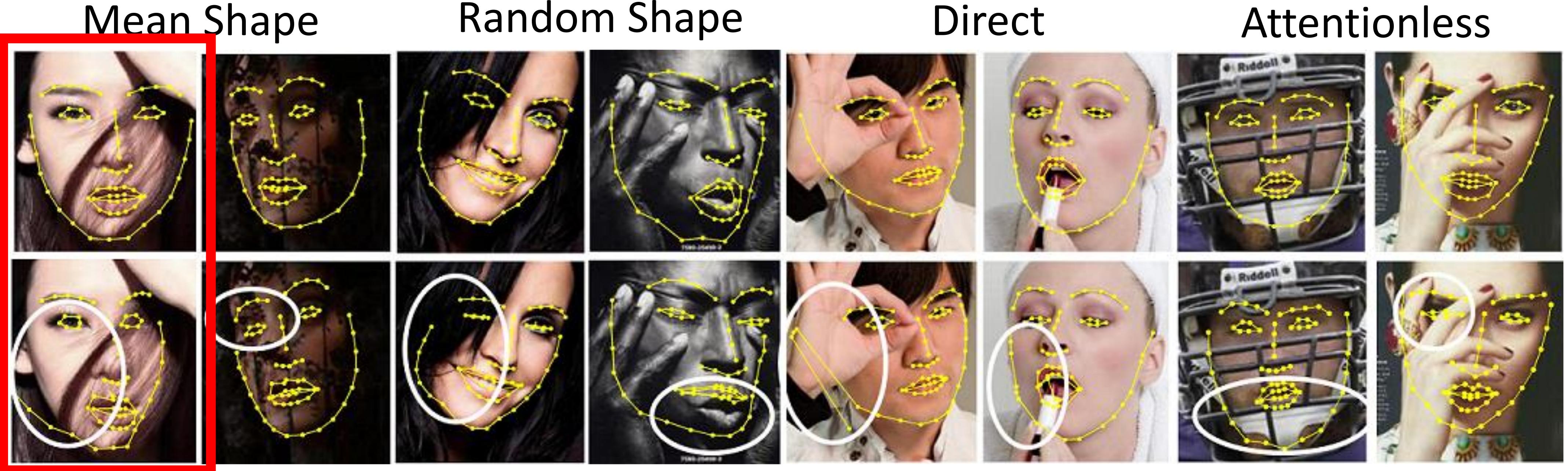
Robust tialization 4.94 6.03 7.23

Attentionless

RAR

Comparison Studies

Dataset	Conv8	Mean Shape	Random Shape	Direct	
300-W	6.24	5.26	5.22	6.66	
COFW	30.14	6.24	6.12	11.52	
AFLW	8.14	7.36	7.42	8.15	



Conv8: Direct: Mean Shape: Random Shape: Robust:

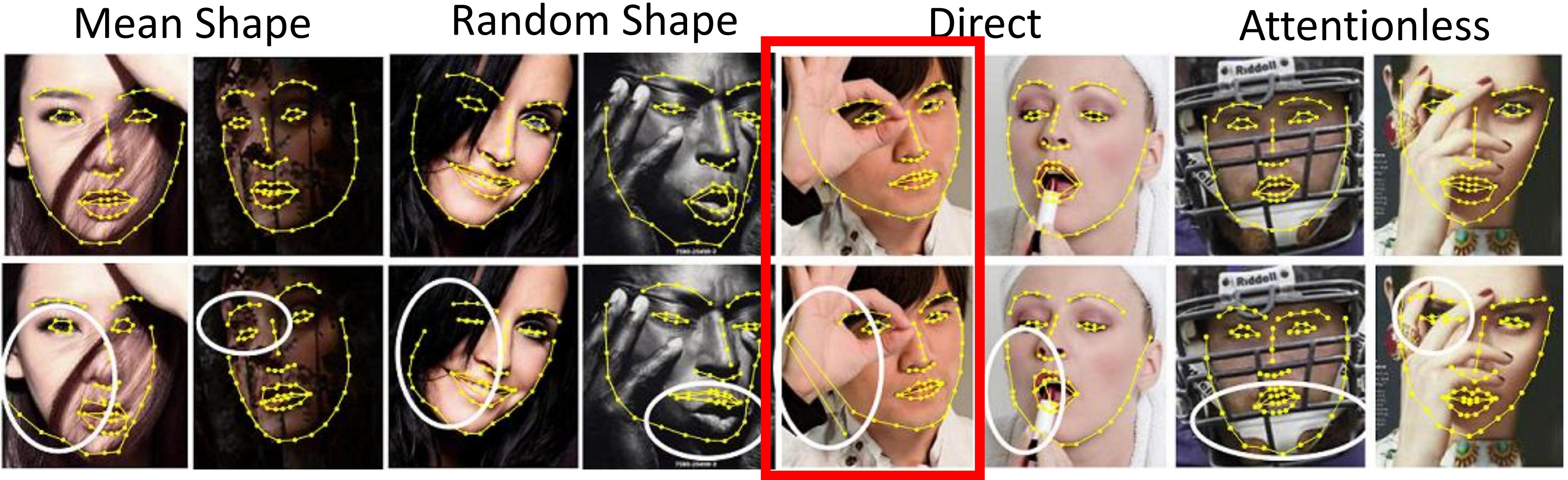
Prediction from conv8 RAR trained with initial shape as conv8 RAR trained with mean shape as initial shape RAR trained with random shape as initial shape RAR trained with the proposed robust initialization

Robust tialization 4.94 6.03 7.23

RAR

Comparison Studies

Dataset	Conv8	Mean Shape	Random Shape	Direct	
300-W	6.24	5.26	5.22	6.66	
COFW	30.14	6.24	6.12	11.52	
AFLW	8.14	7.36	7.42	8.15	



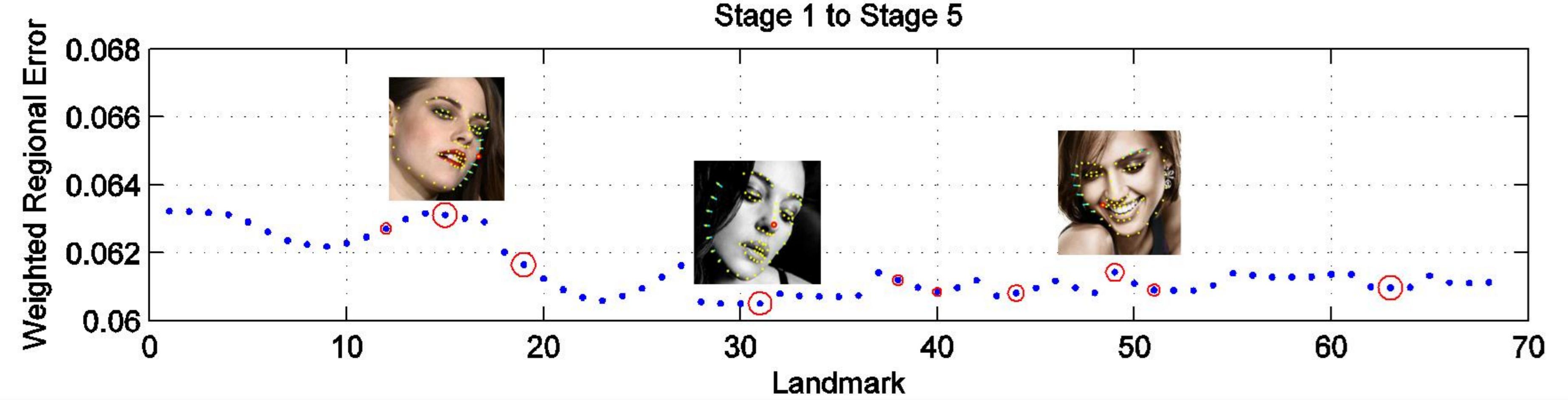
Conv8: Direct: Mean Shape: Random Shape: Robust:

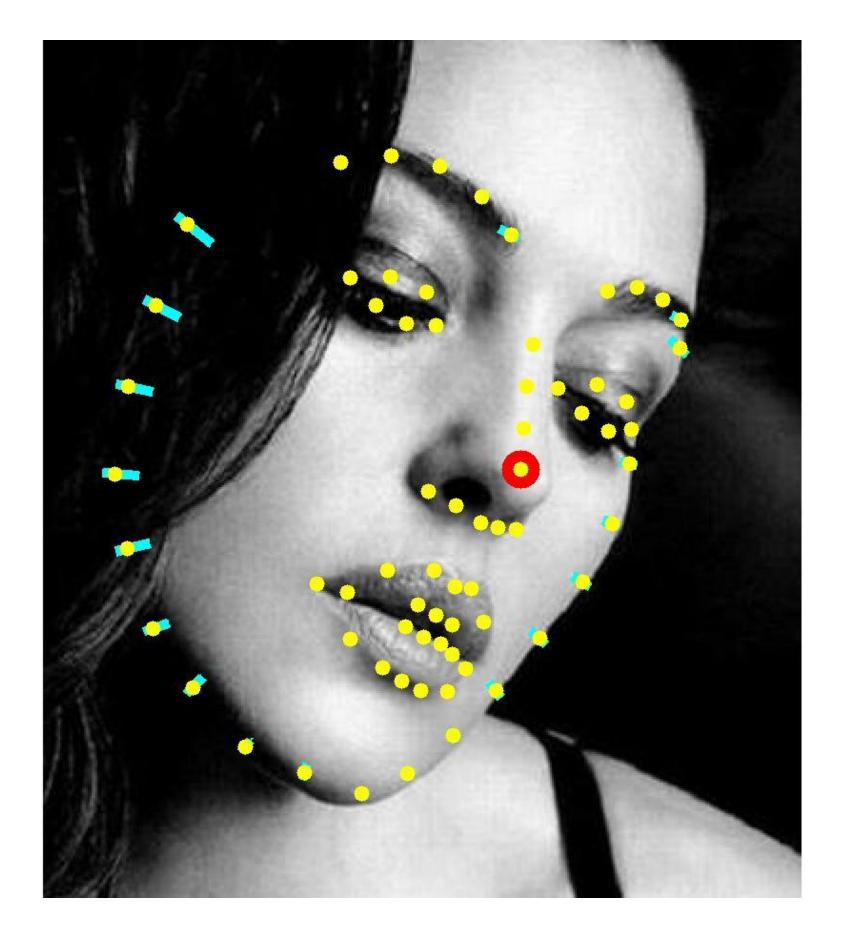
Prediction from conv8 RAR trained with initial shape as conv8 RAR trained with mean shape as initial shape RAR trained with random shape as initial shape RAR trained with the proposed robust initialization

Robust tialization 4.94 6.03 7.23

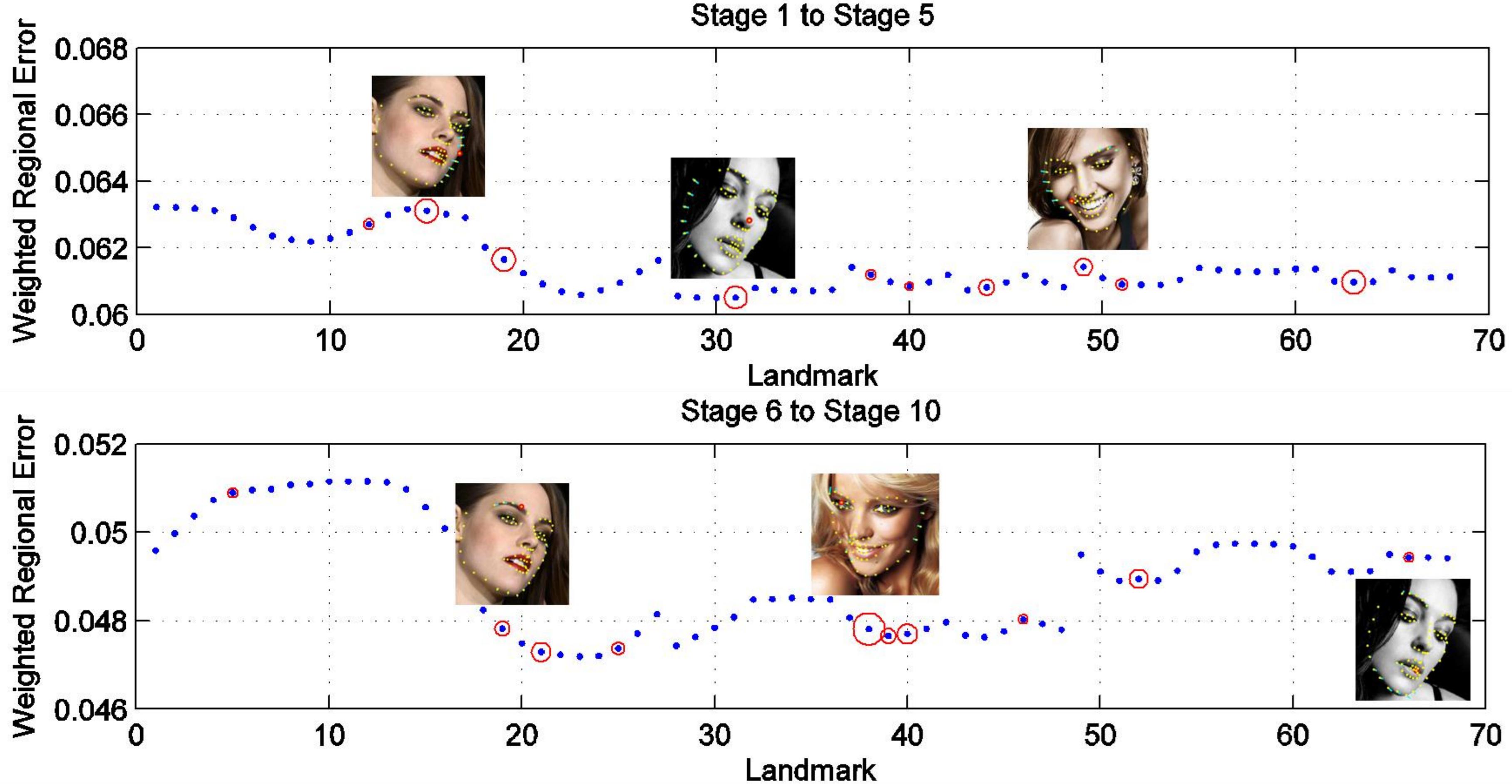
RAR

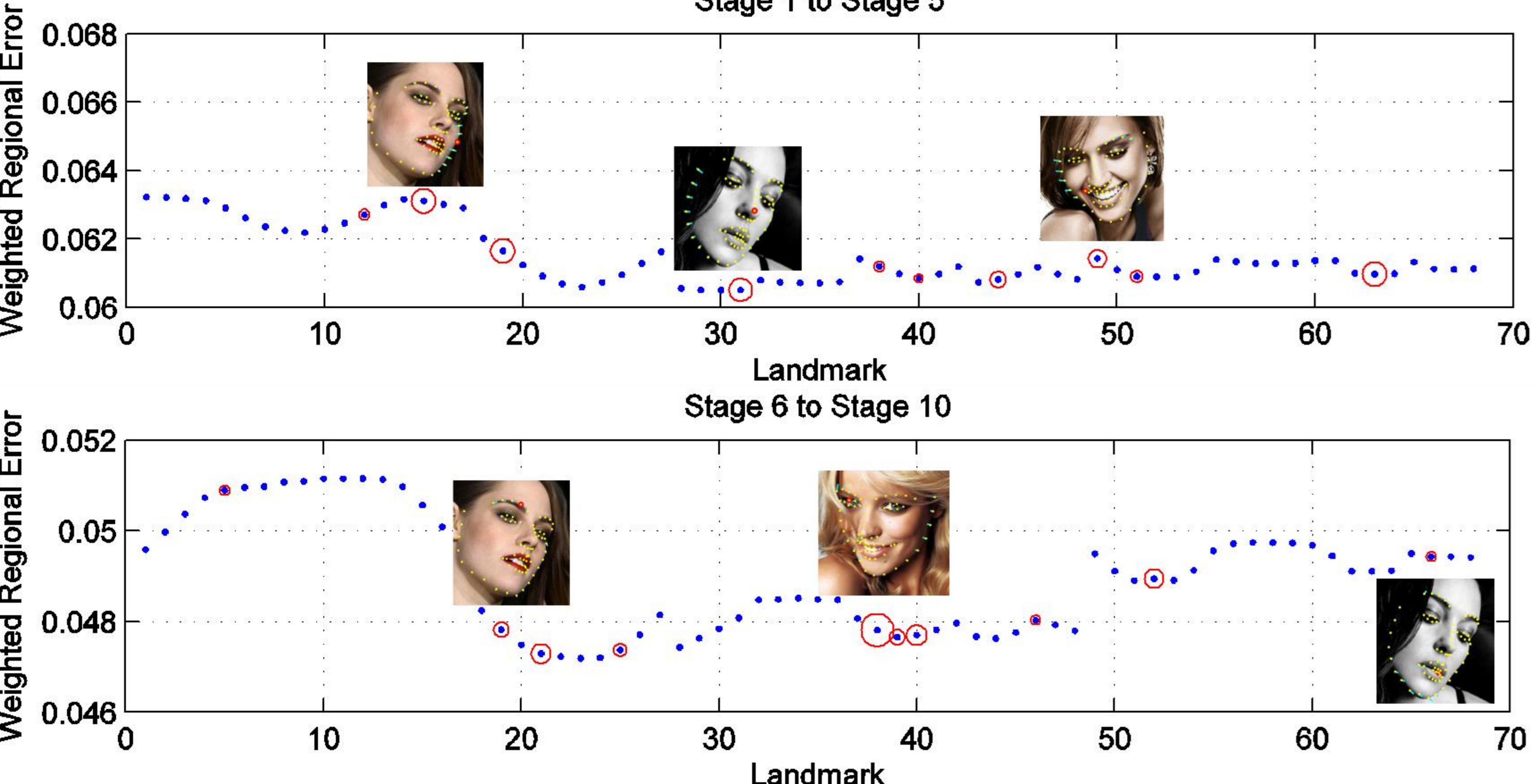
Attention Center Selection Frequencies

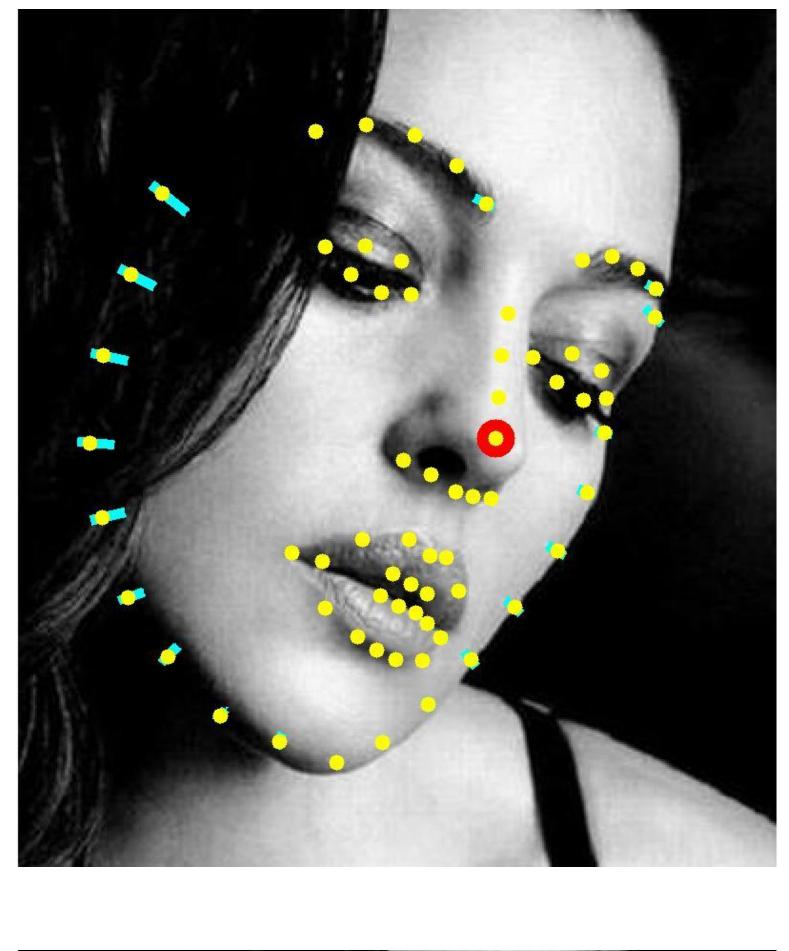


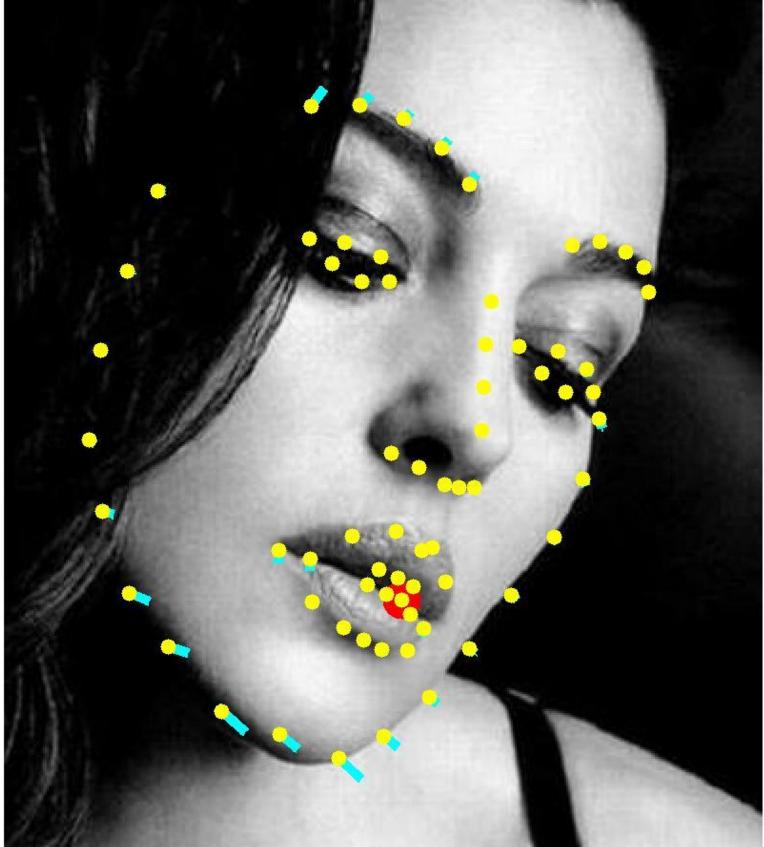


Attention Center Selection Frequencies

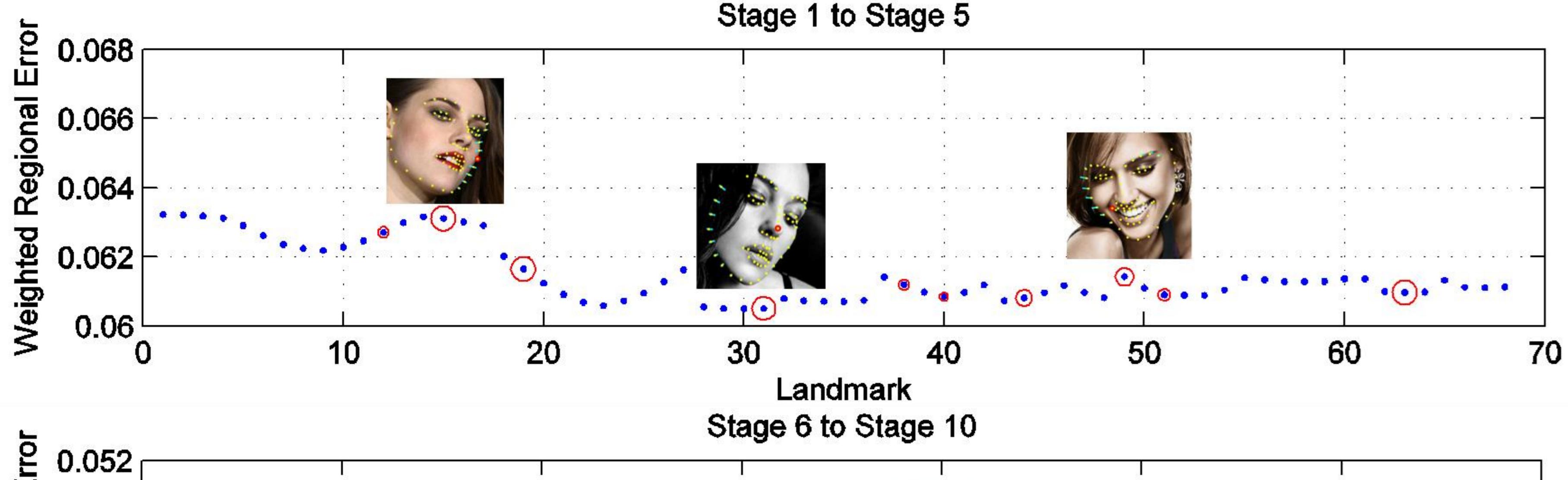


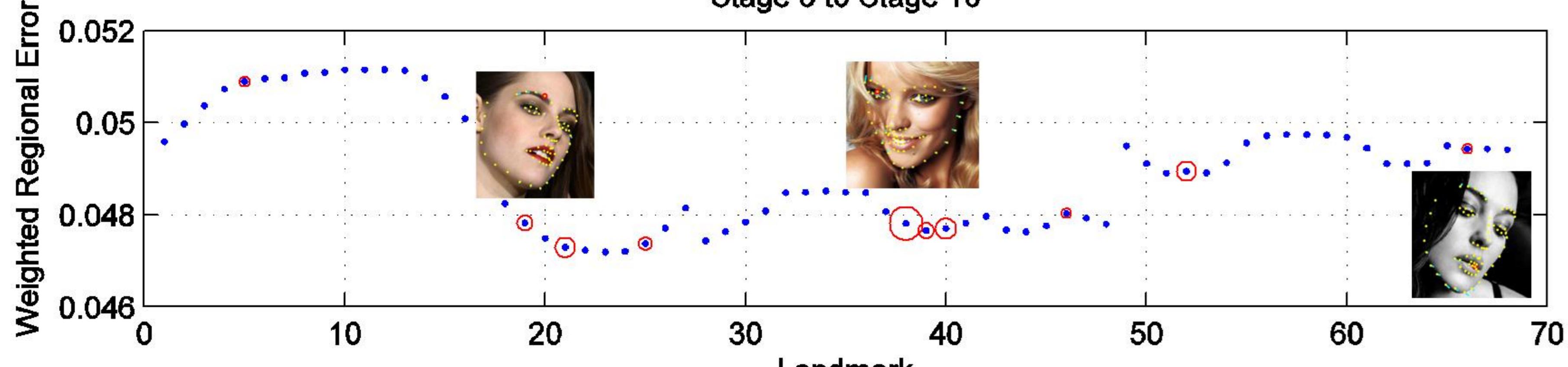


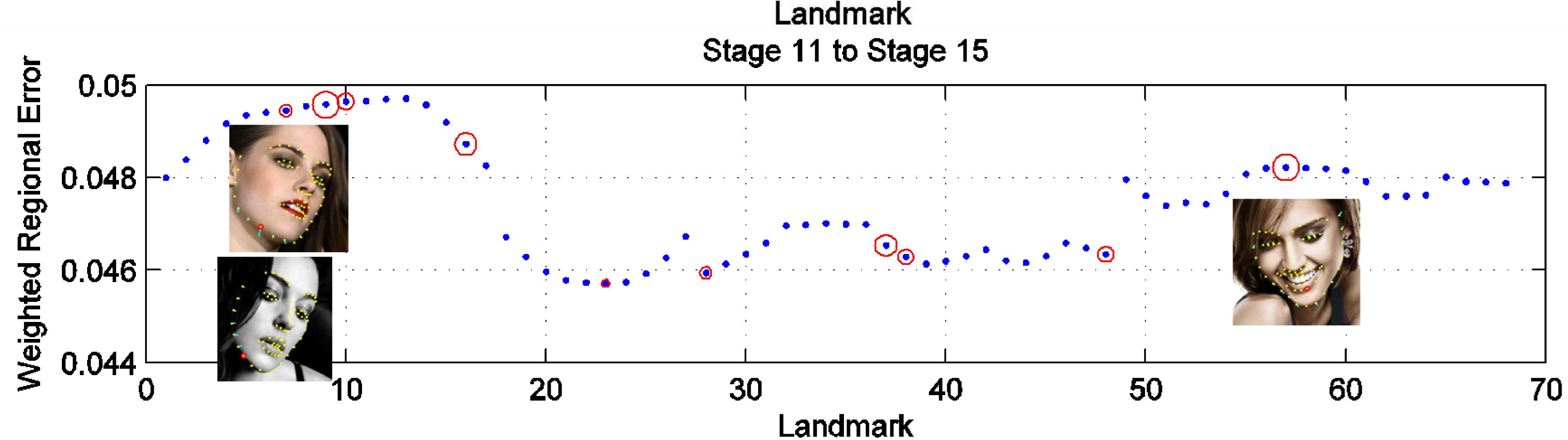


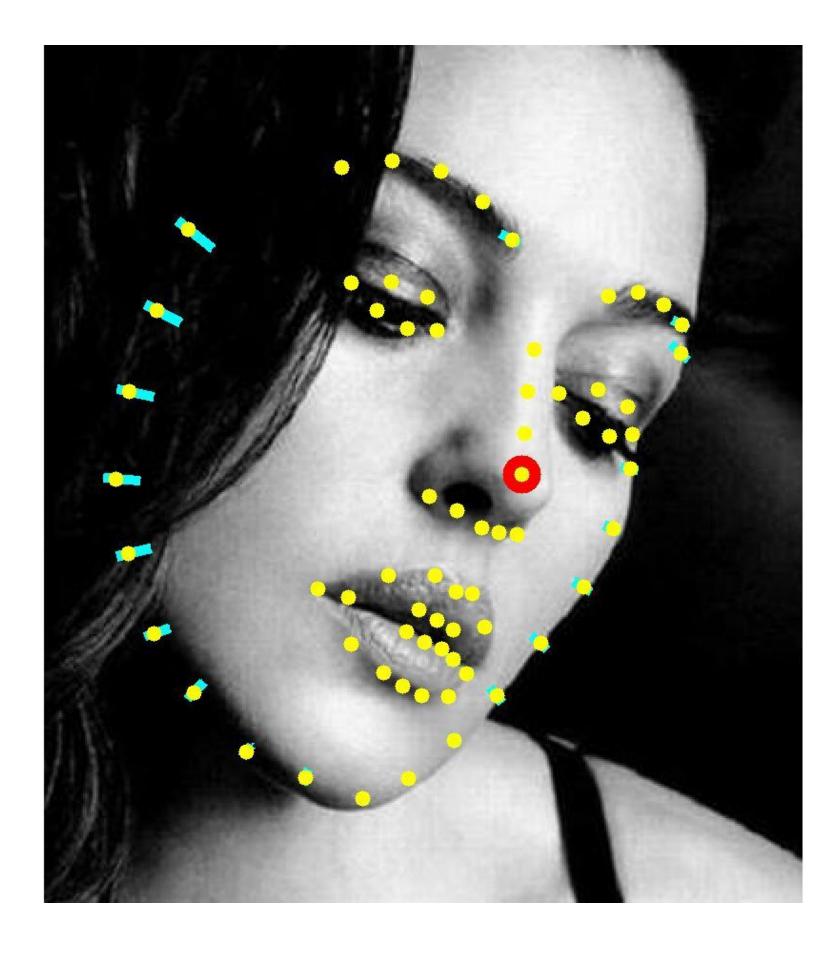


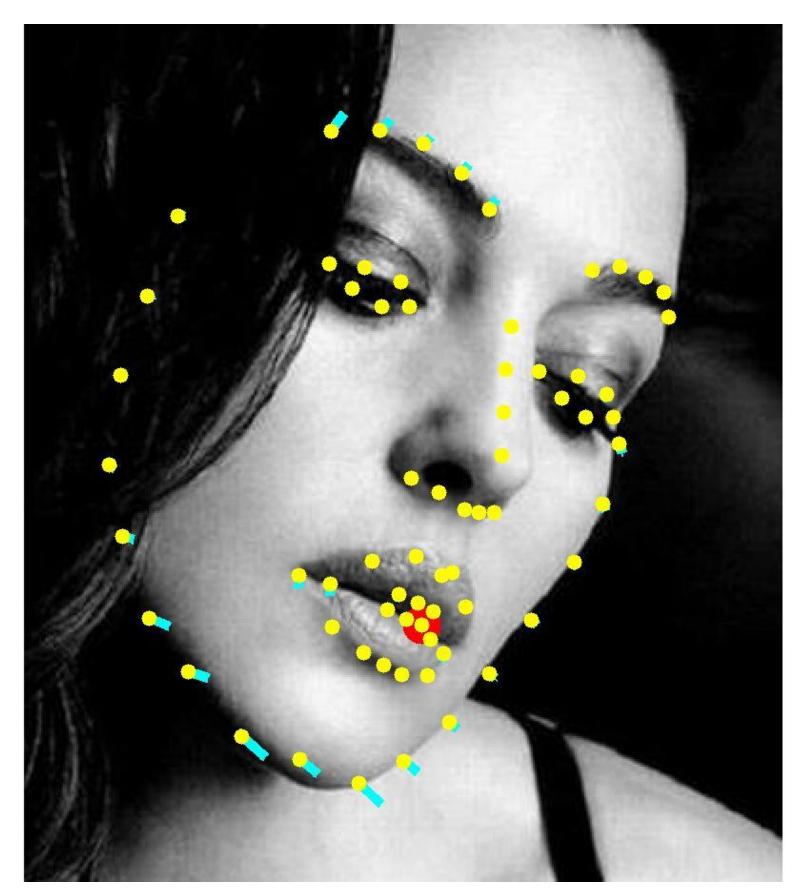
Attention Center Selection Frequencies

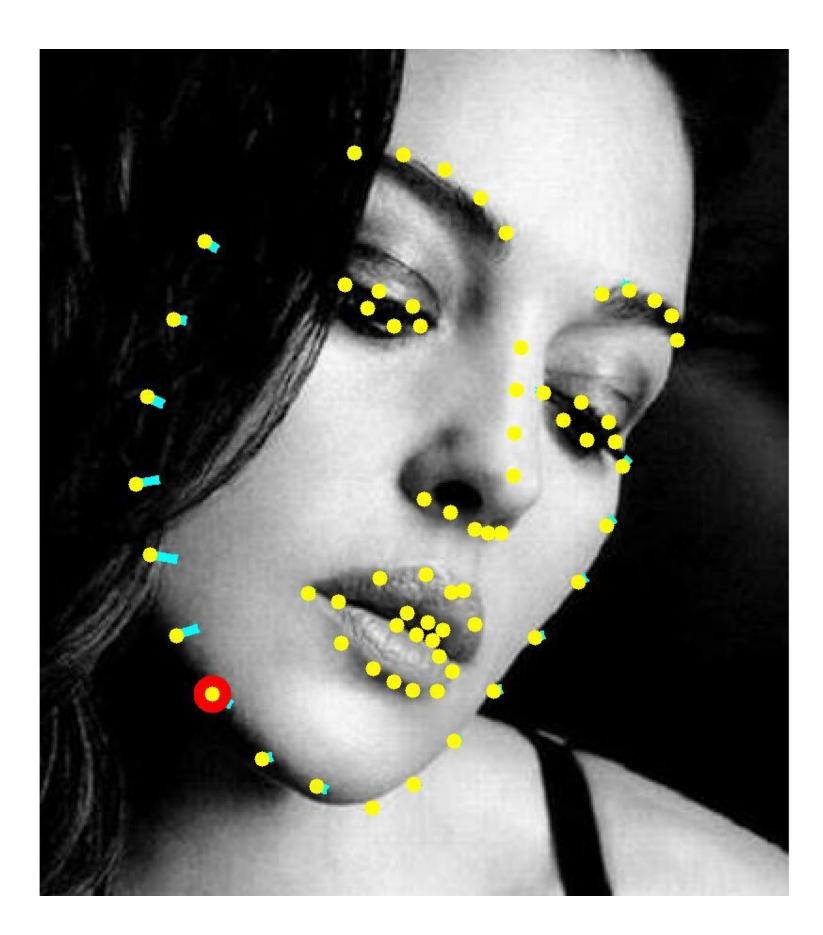


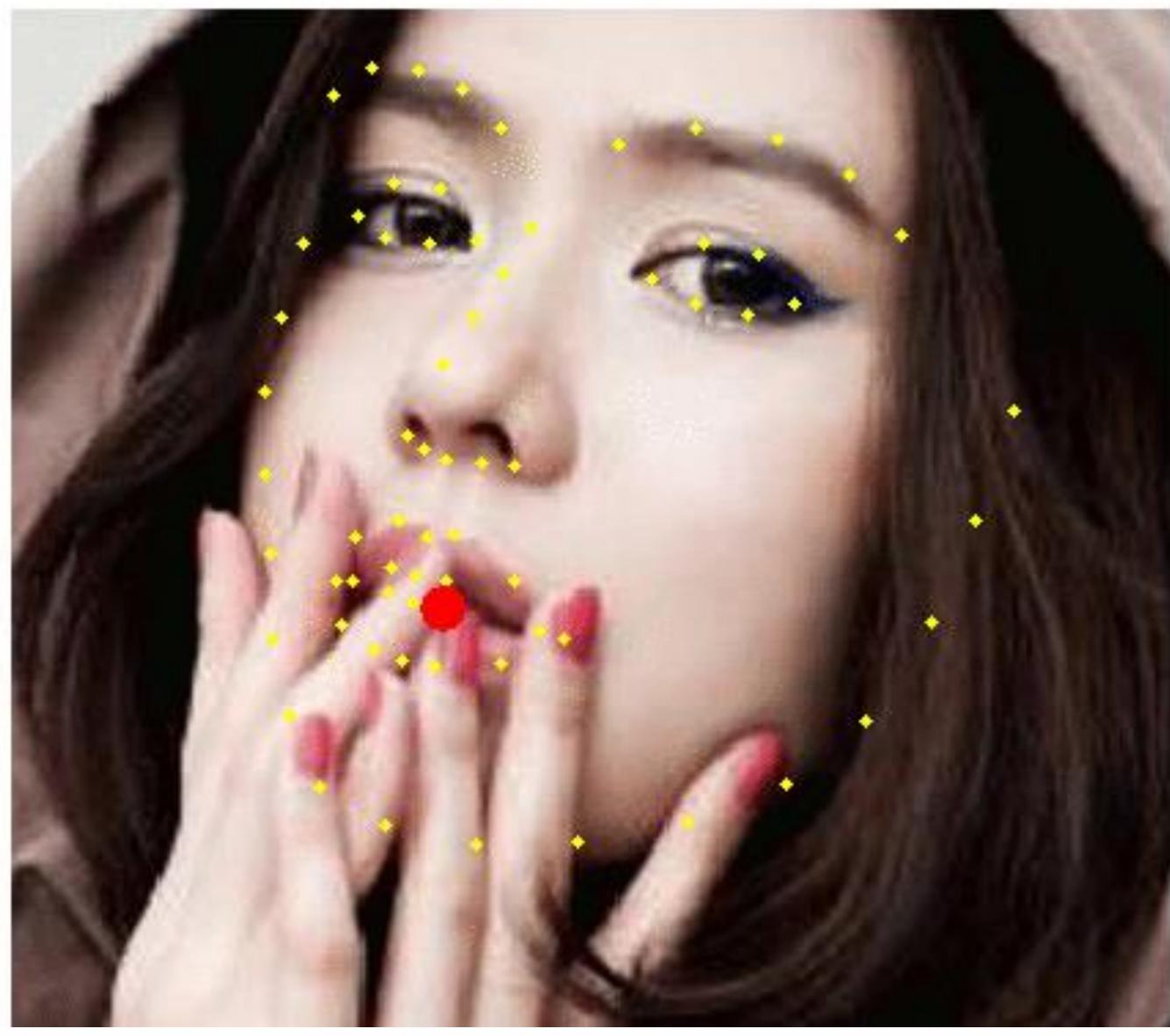




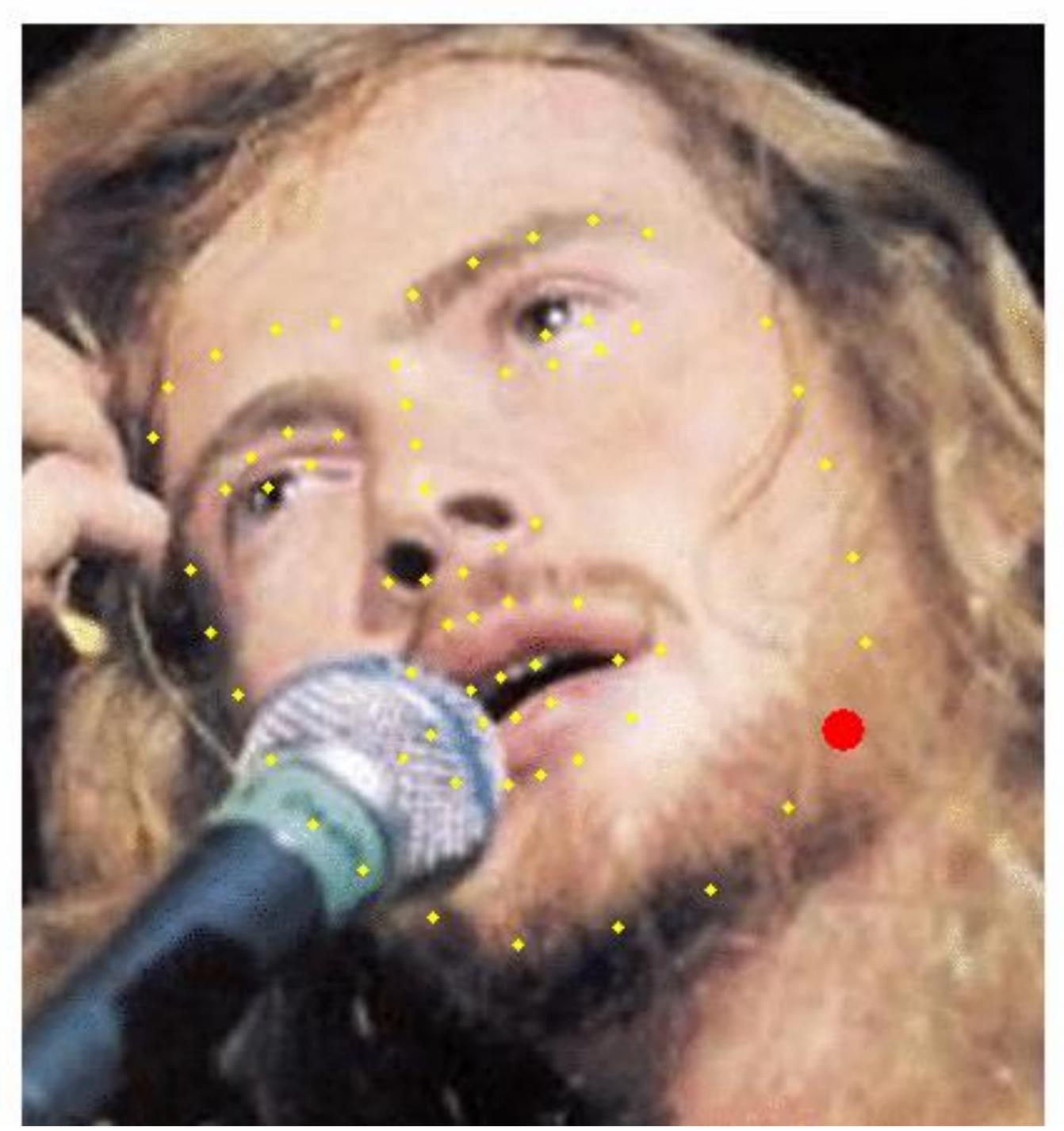


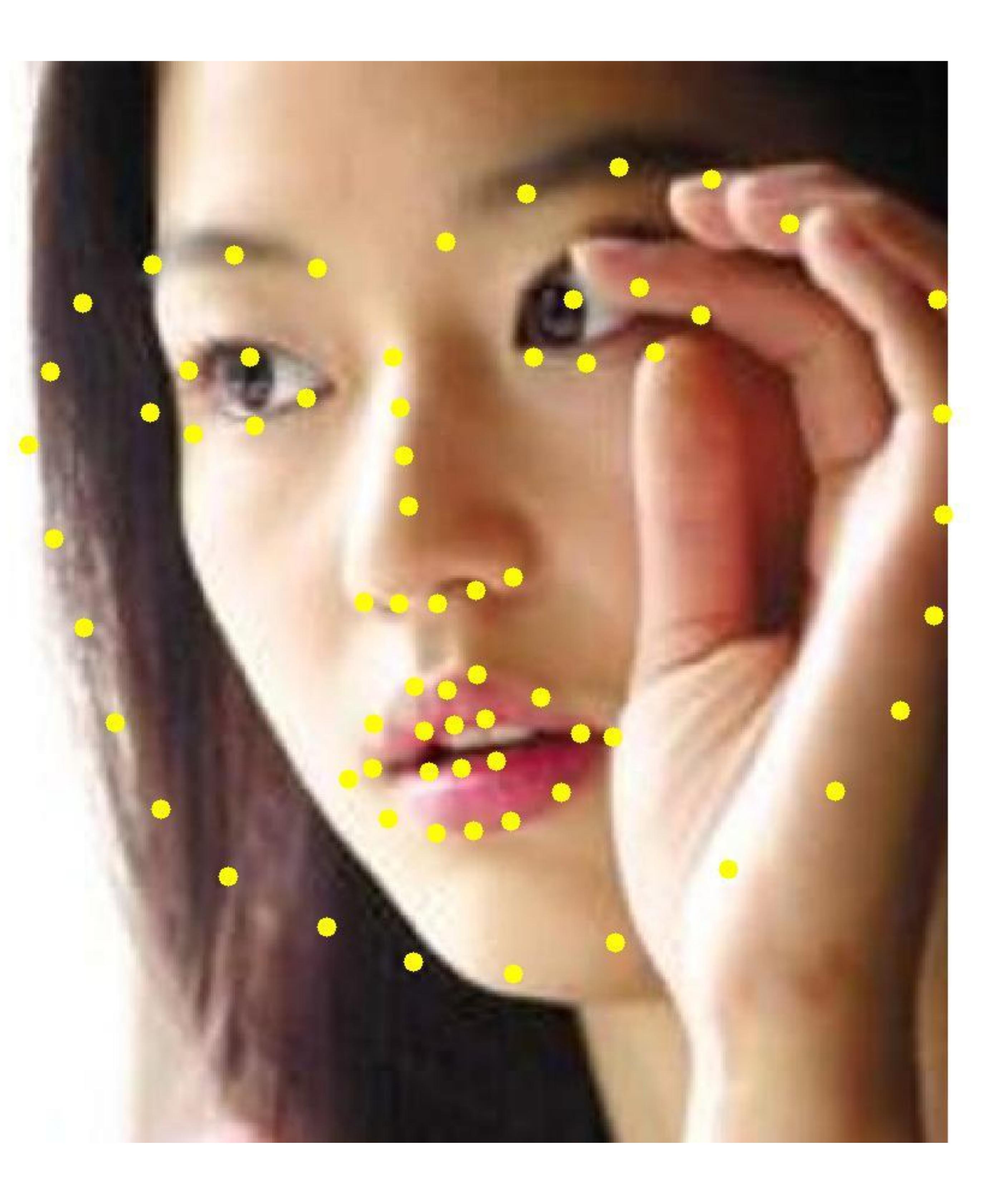


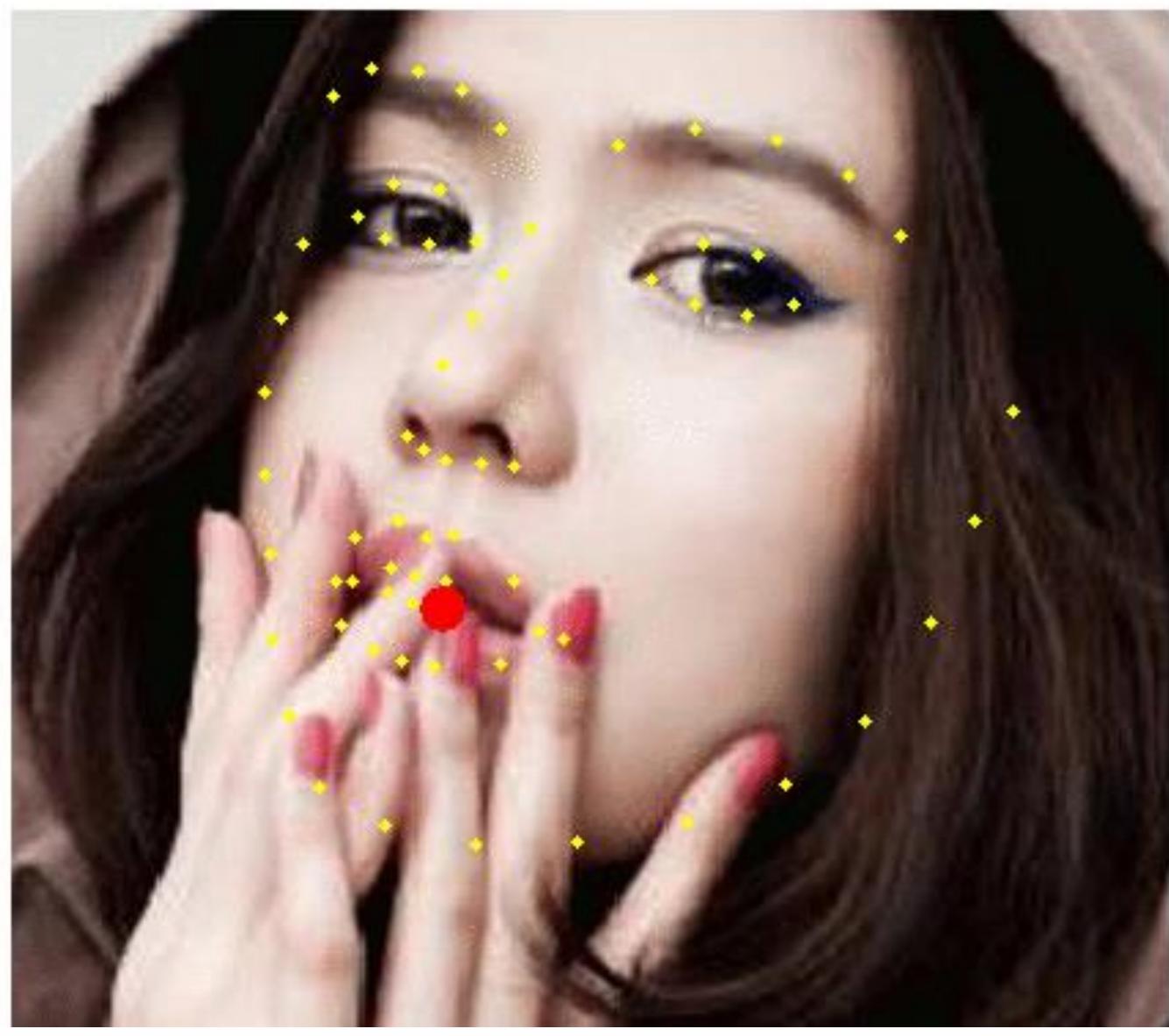




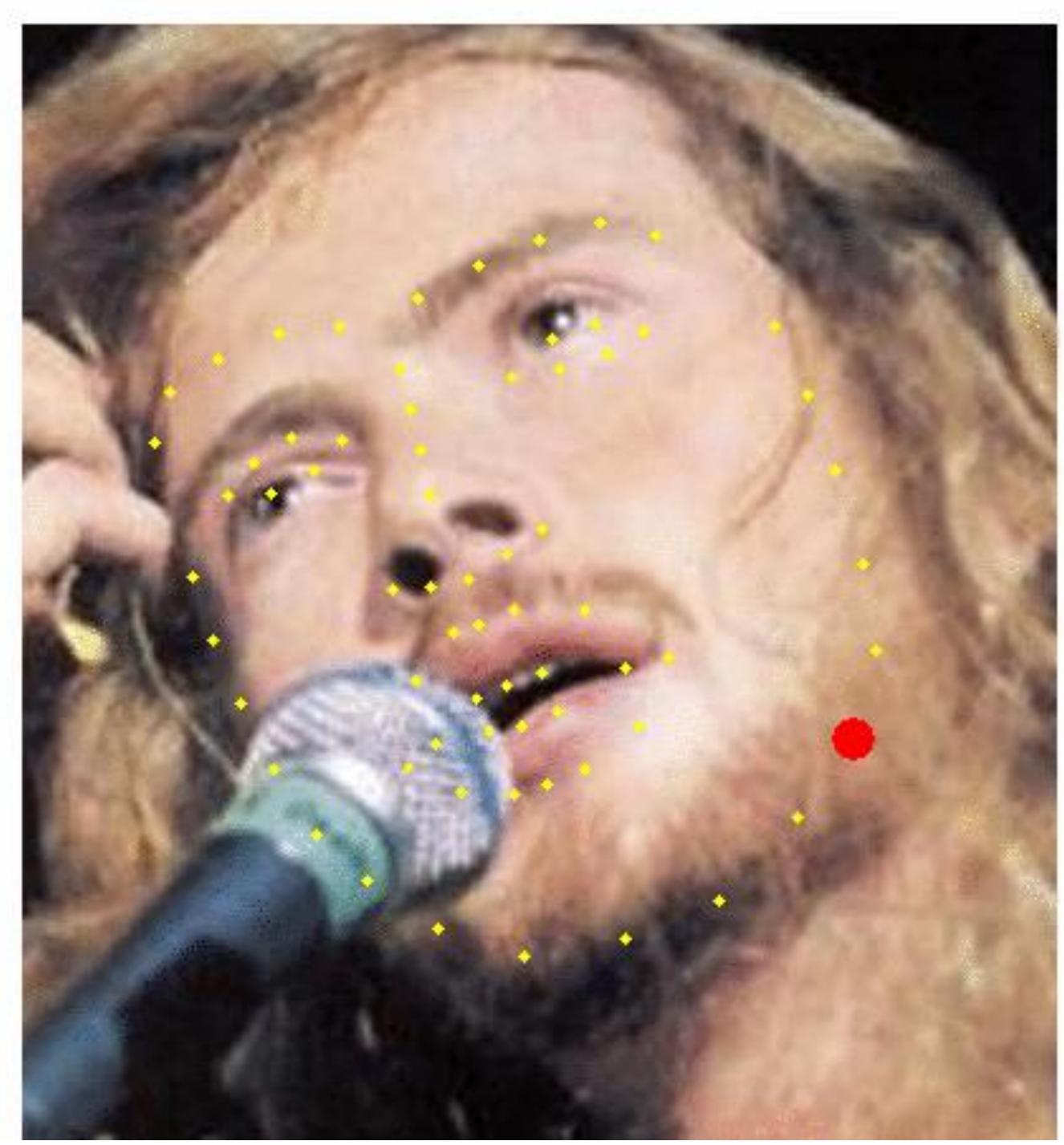
Iter 01

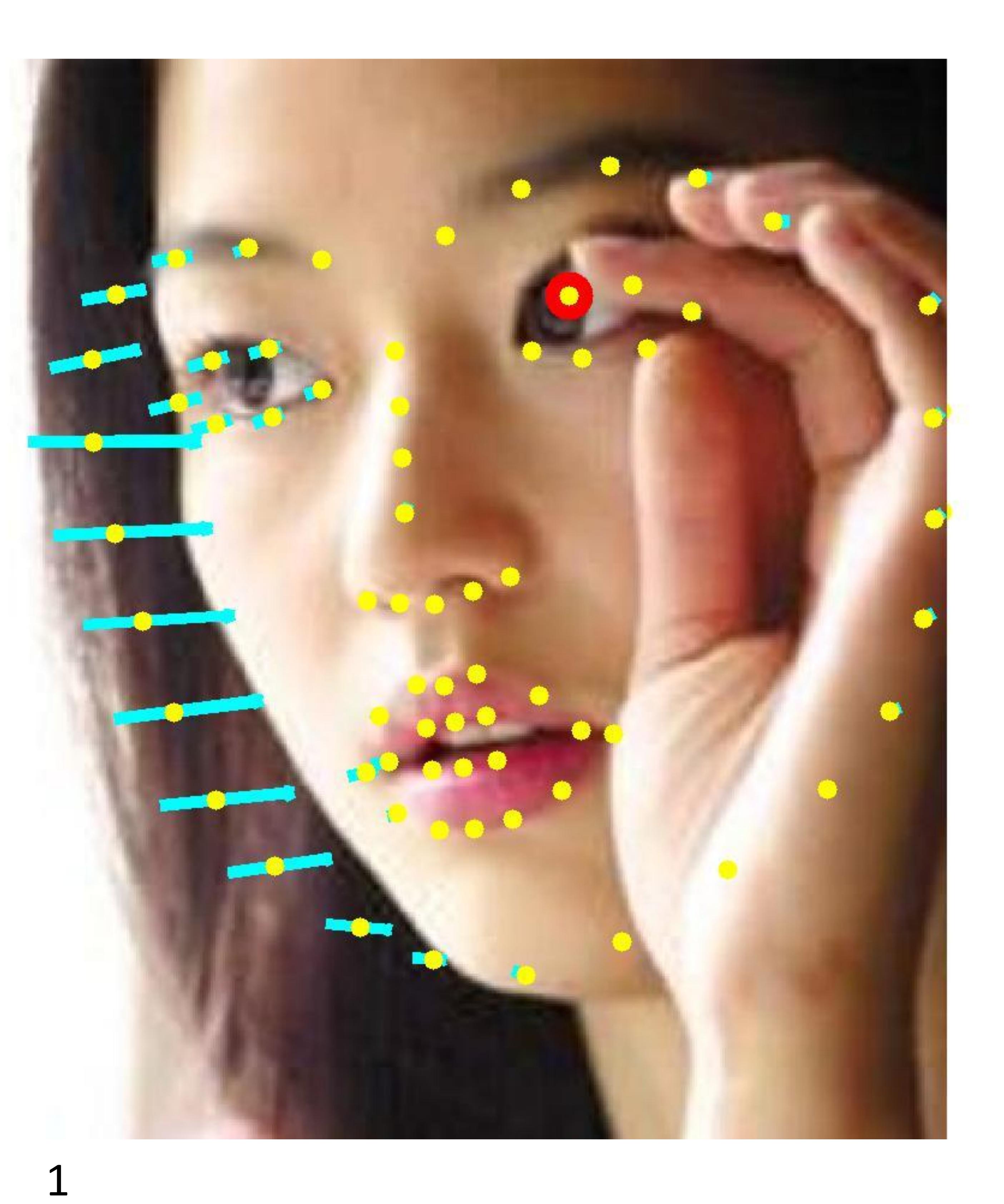


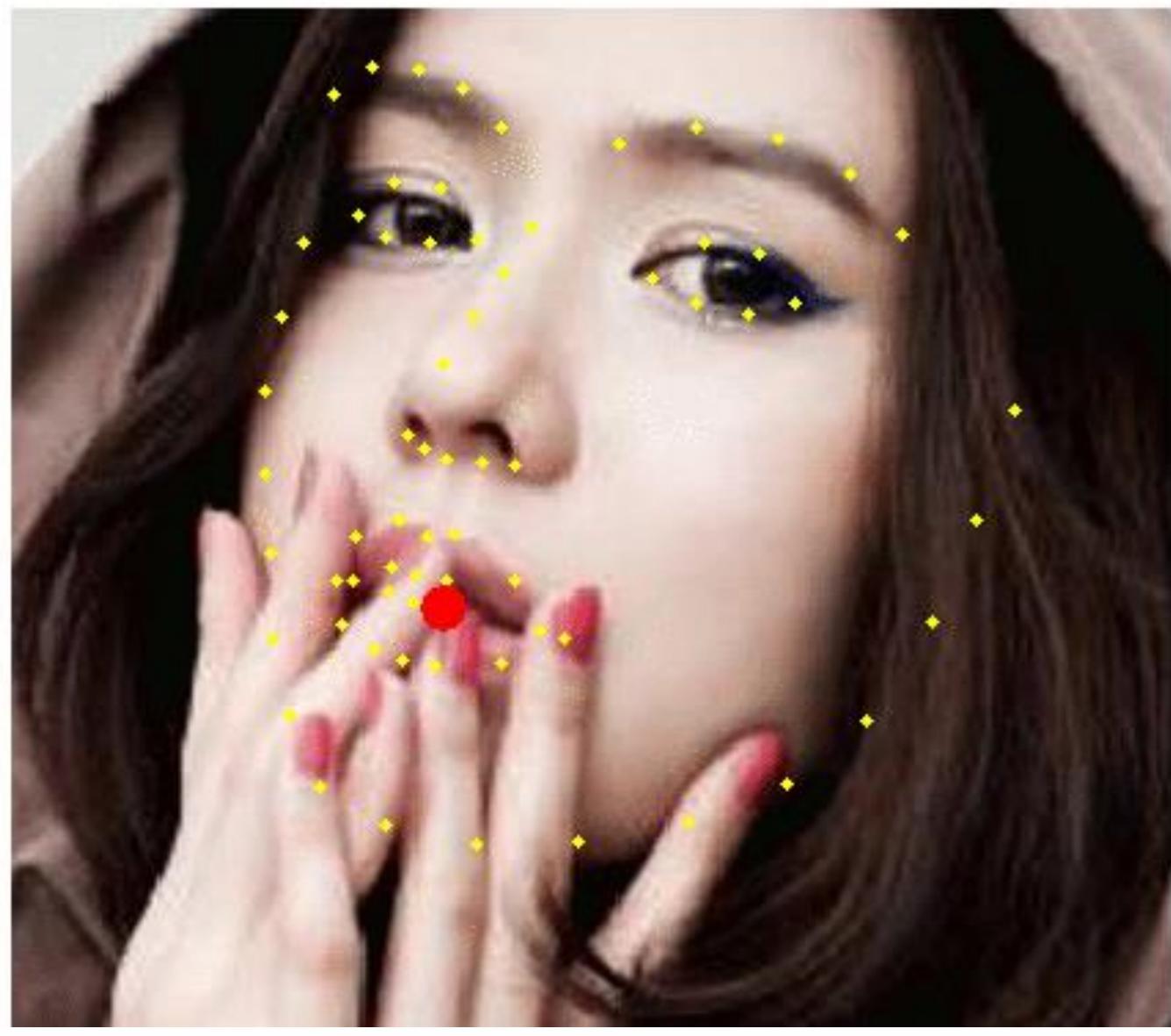




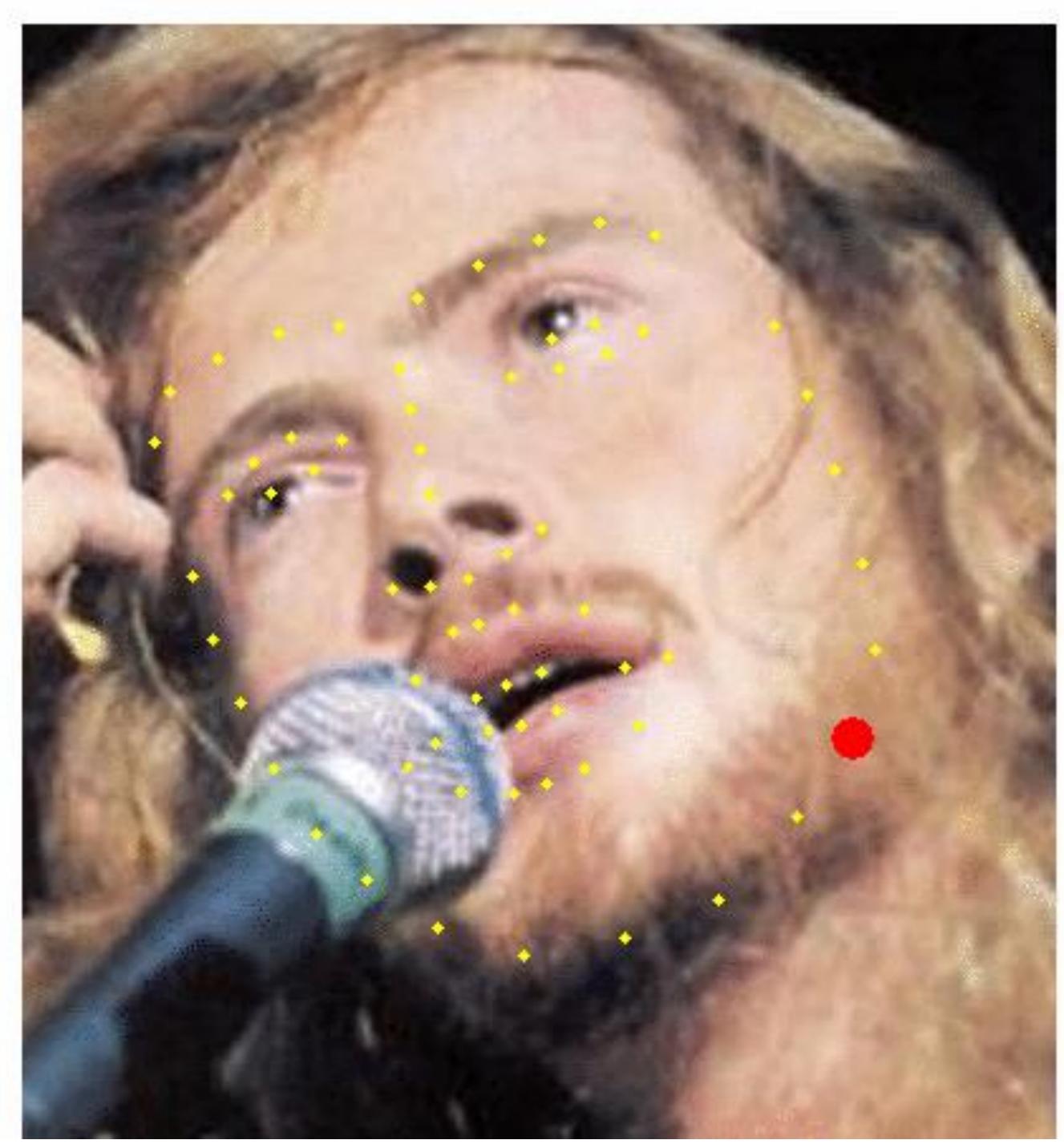
Iter 01

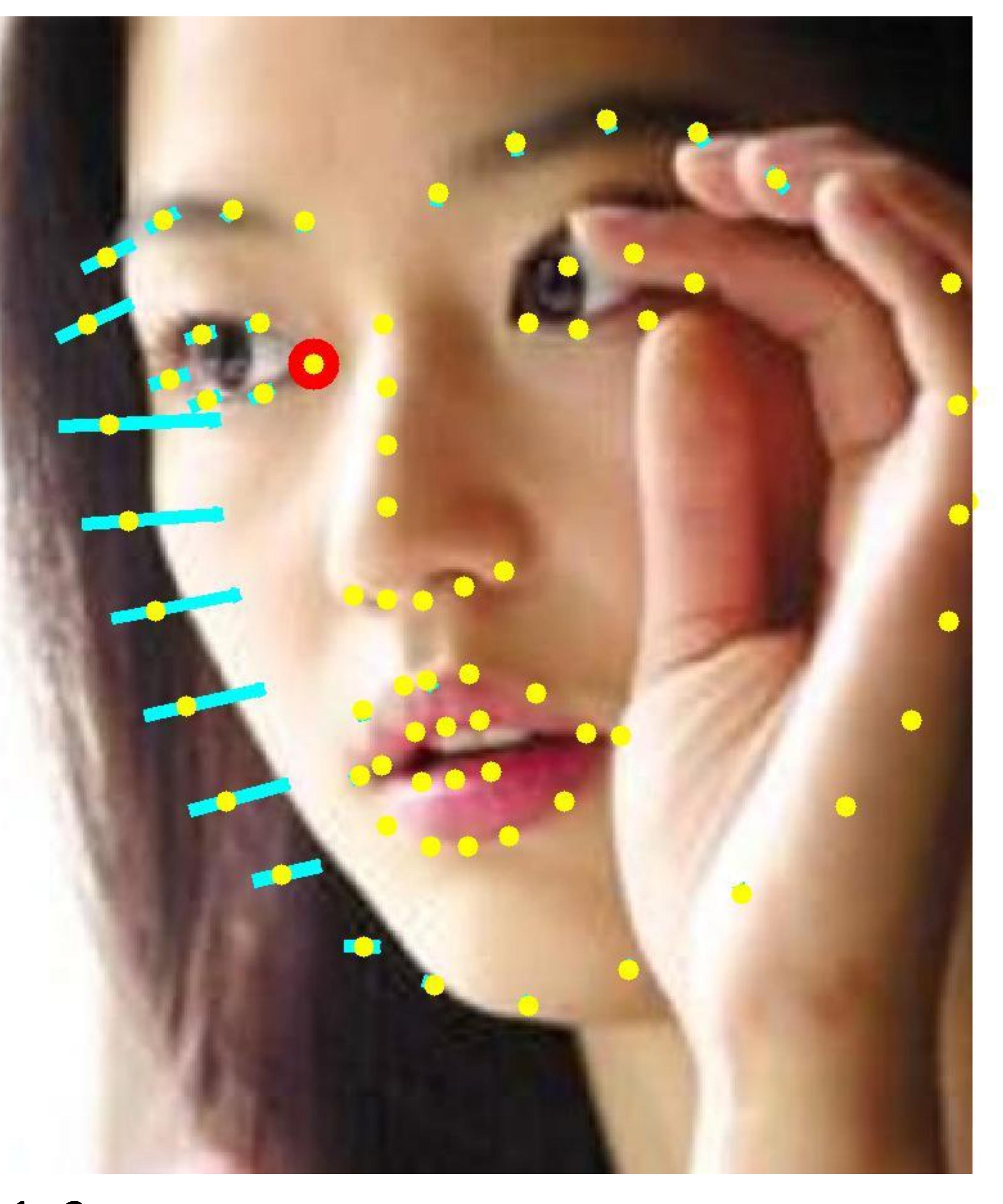


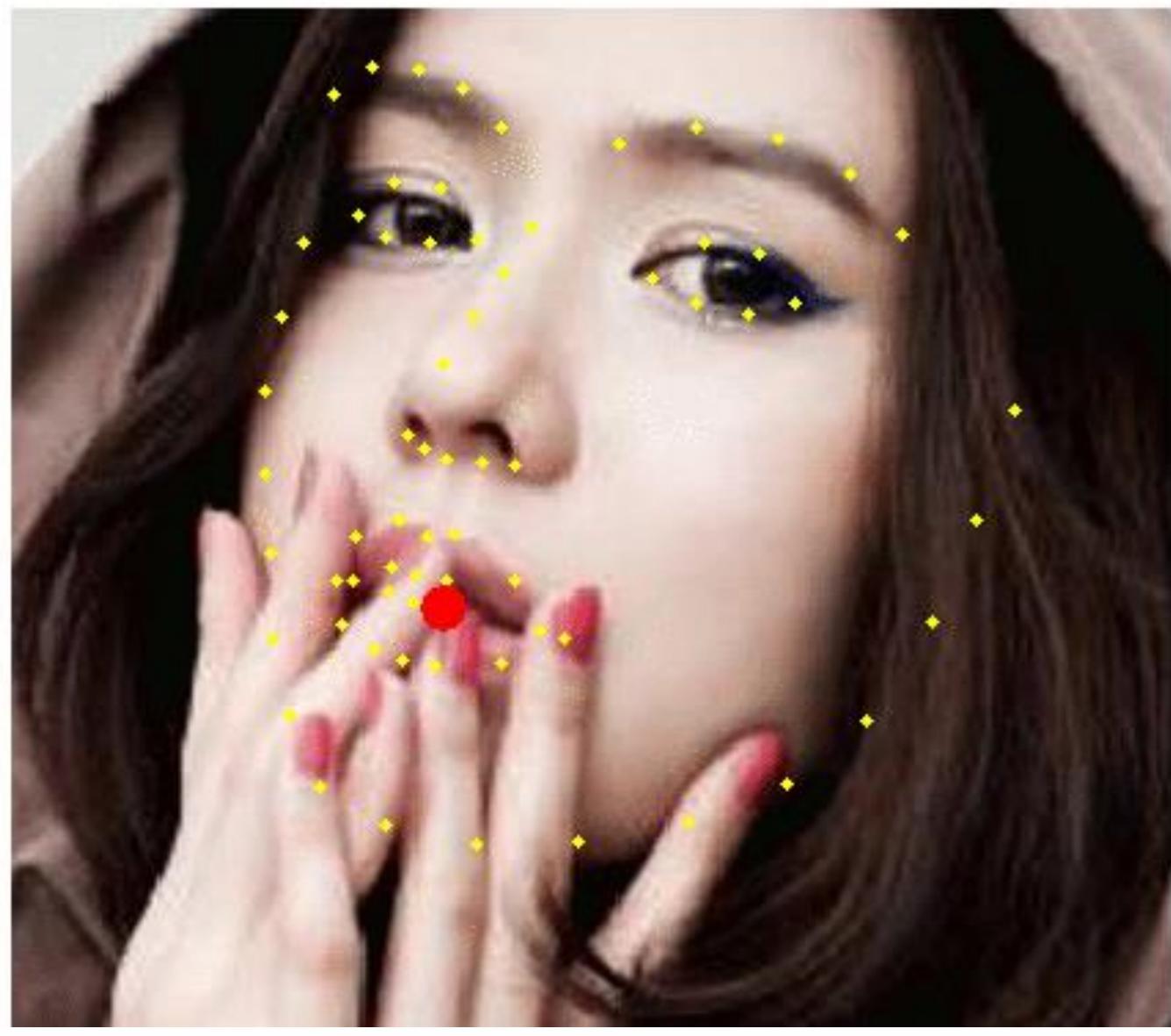




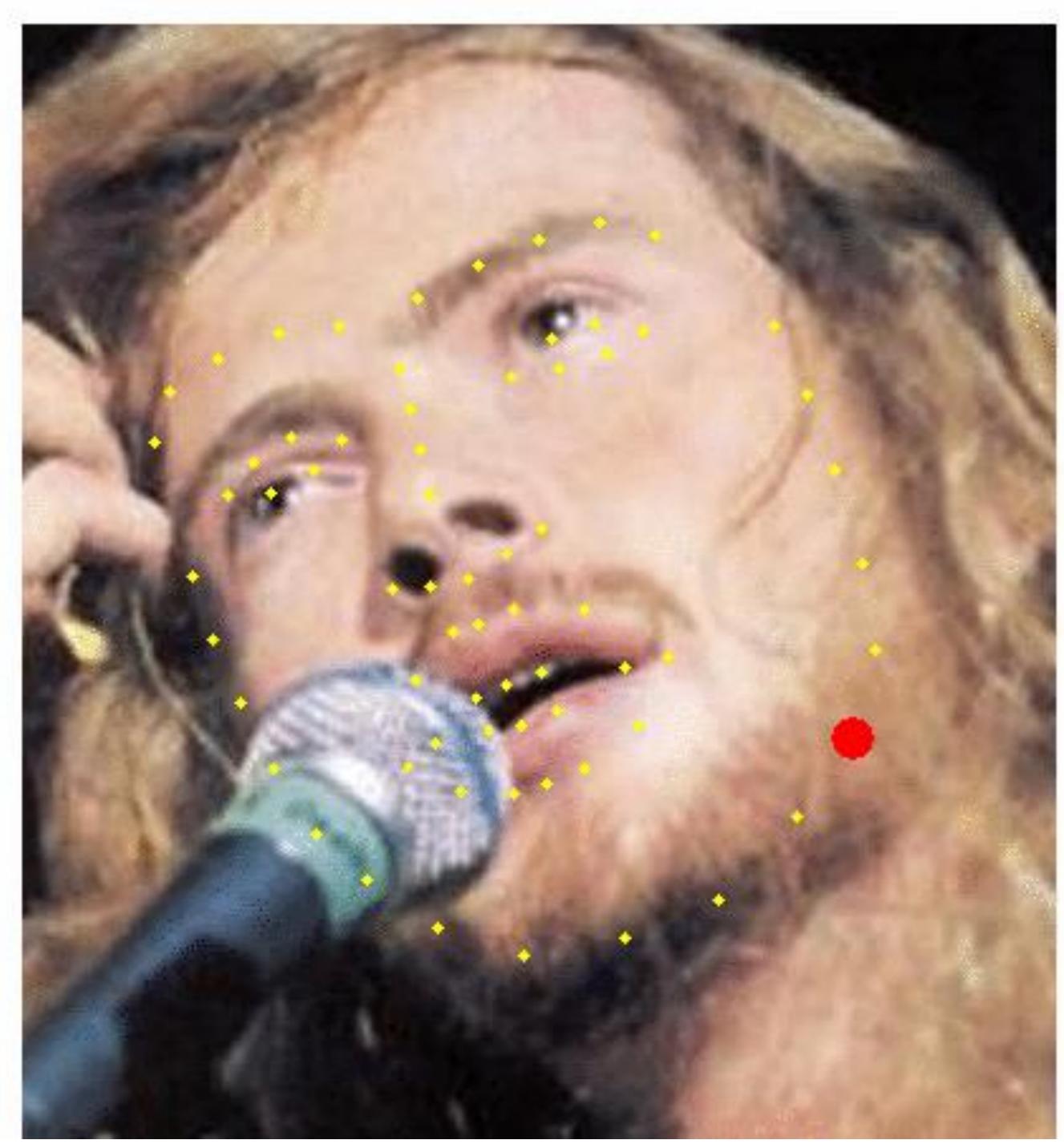
Iter 01



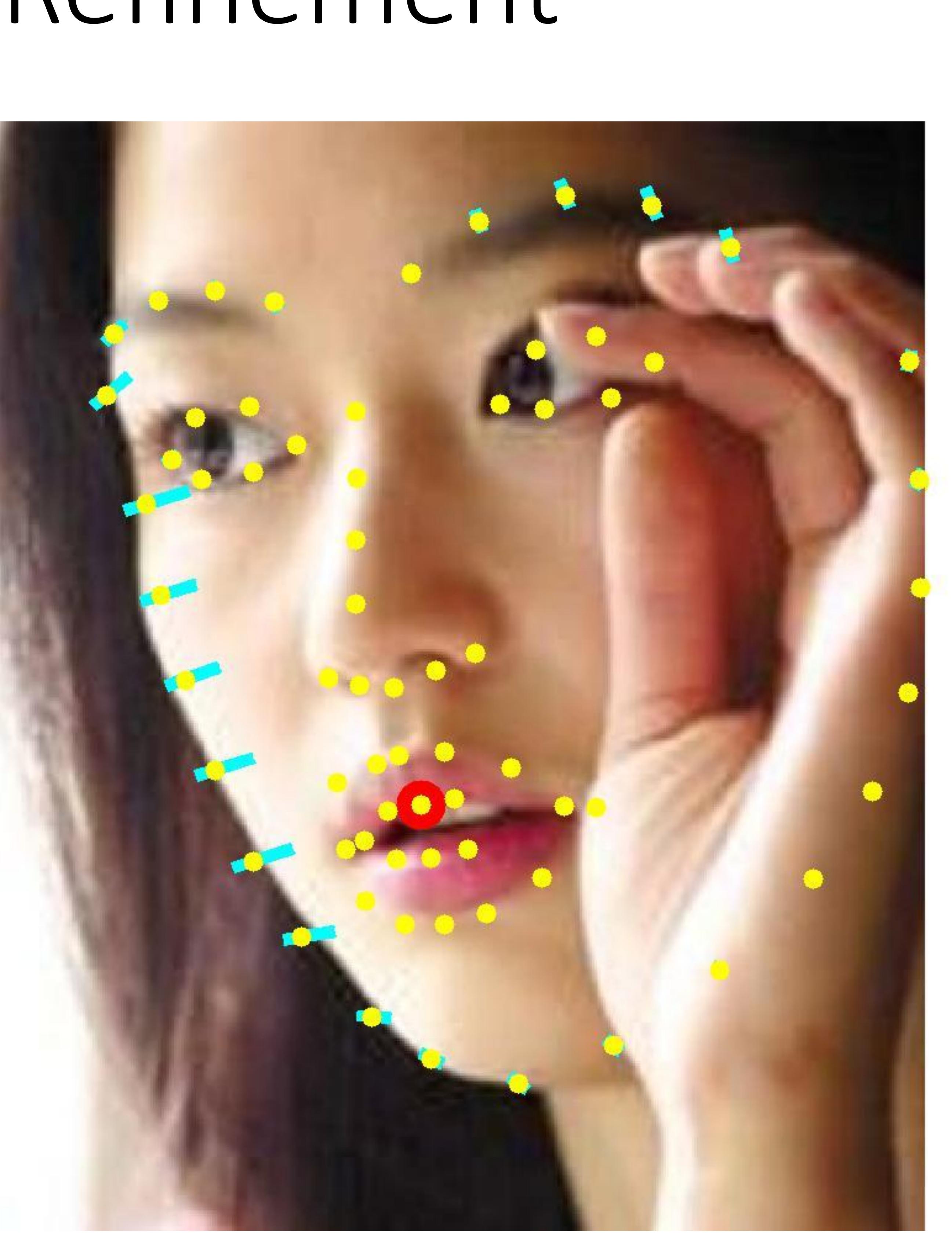


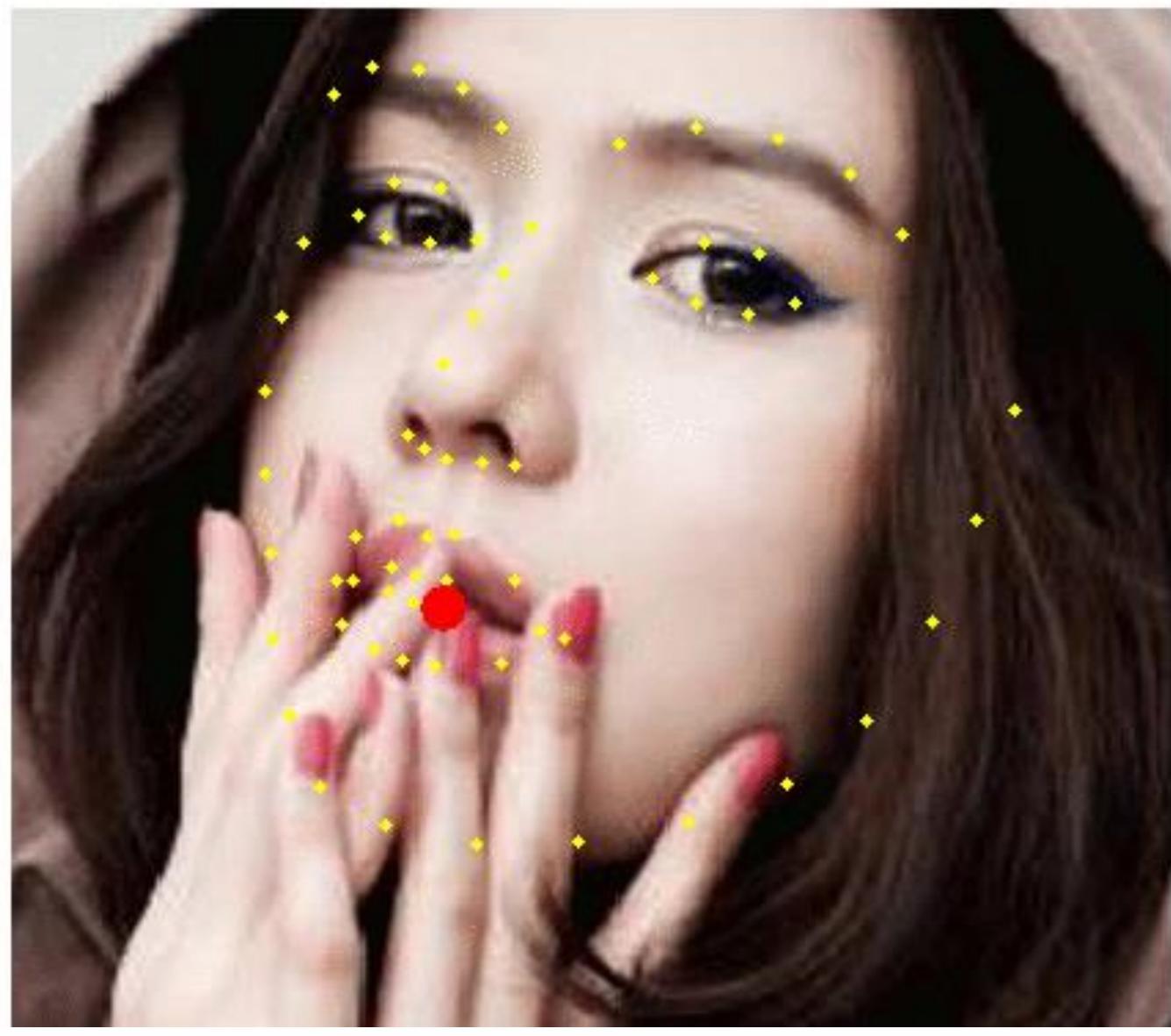


Iter 01

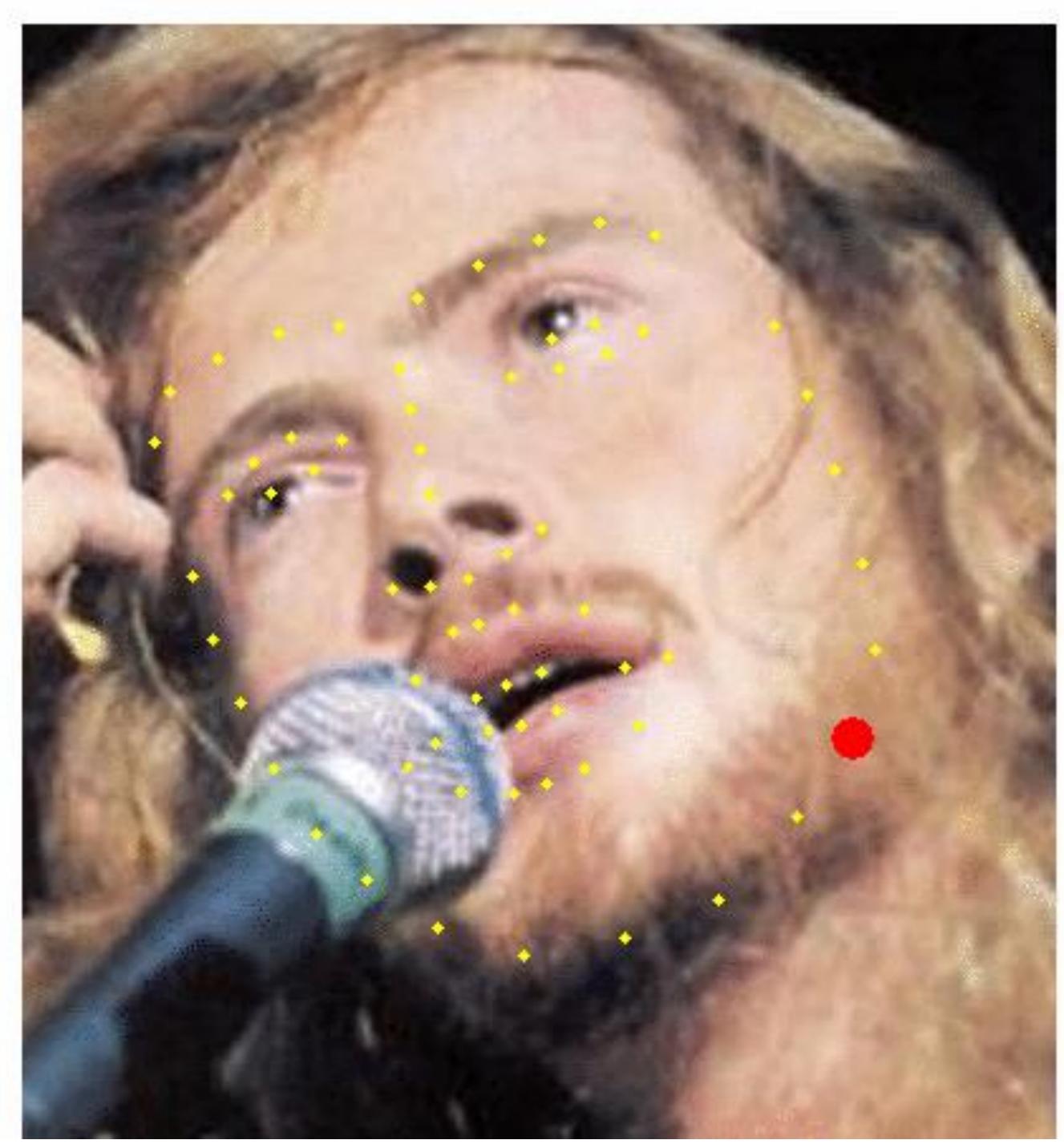


Sample Attentive Refinement

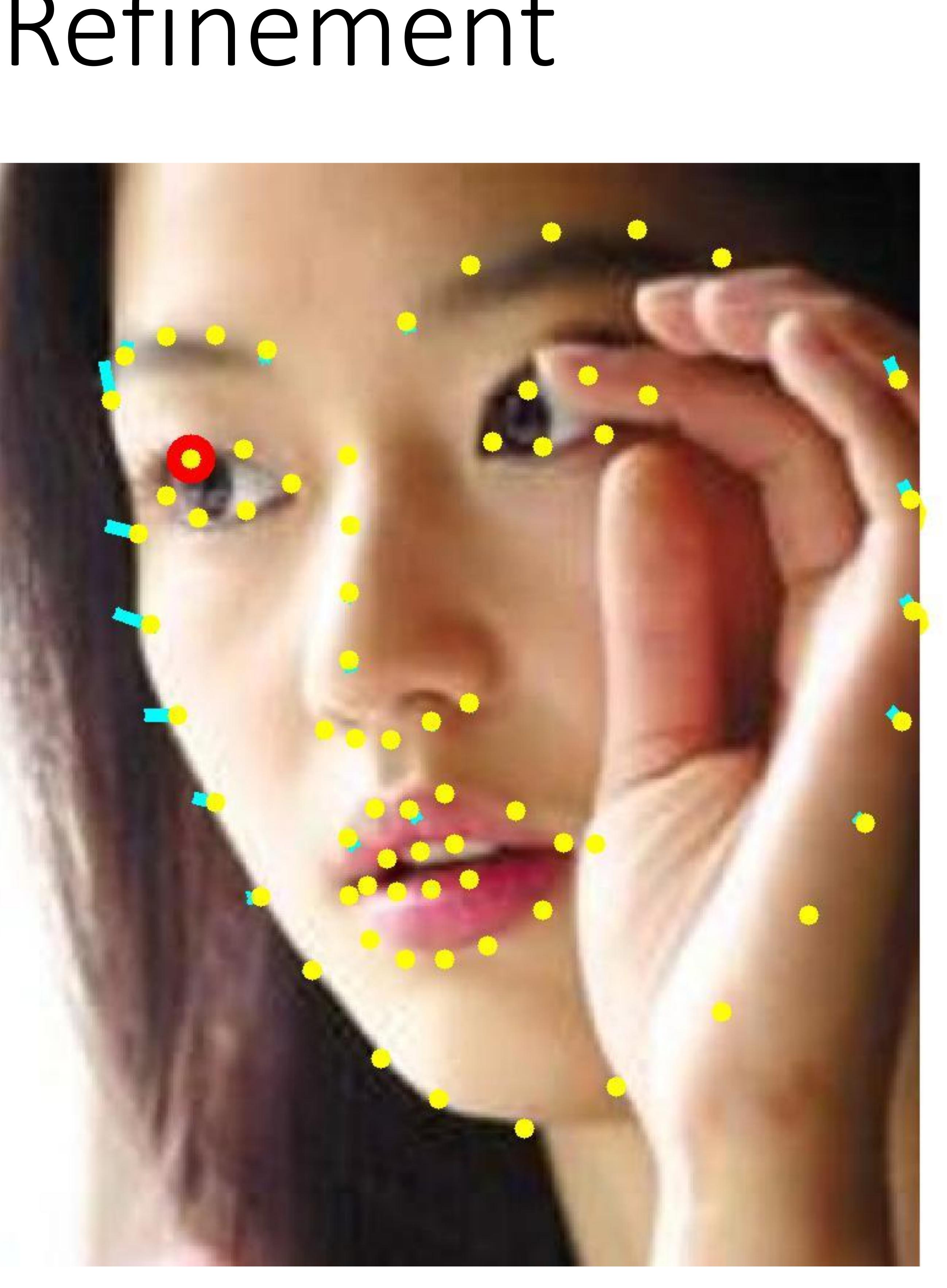


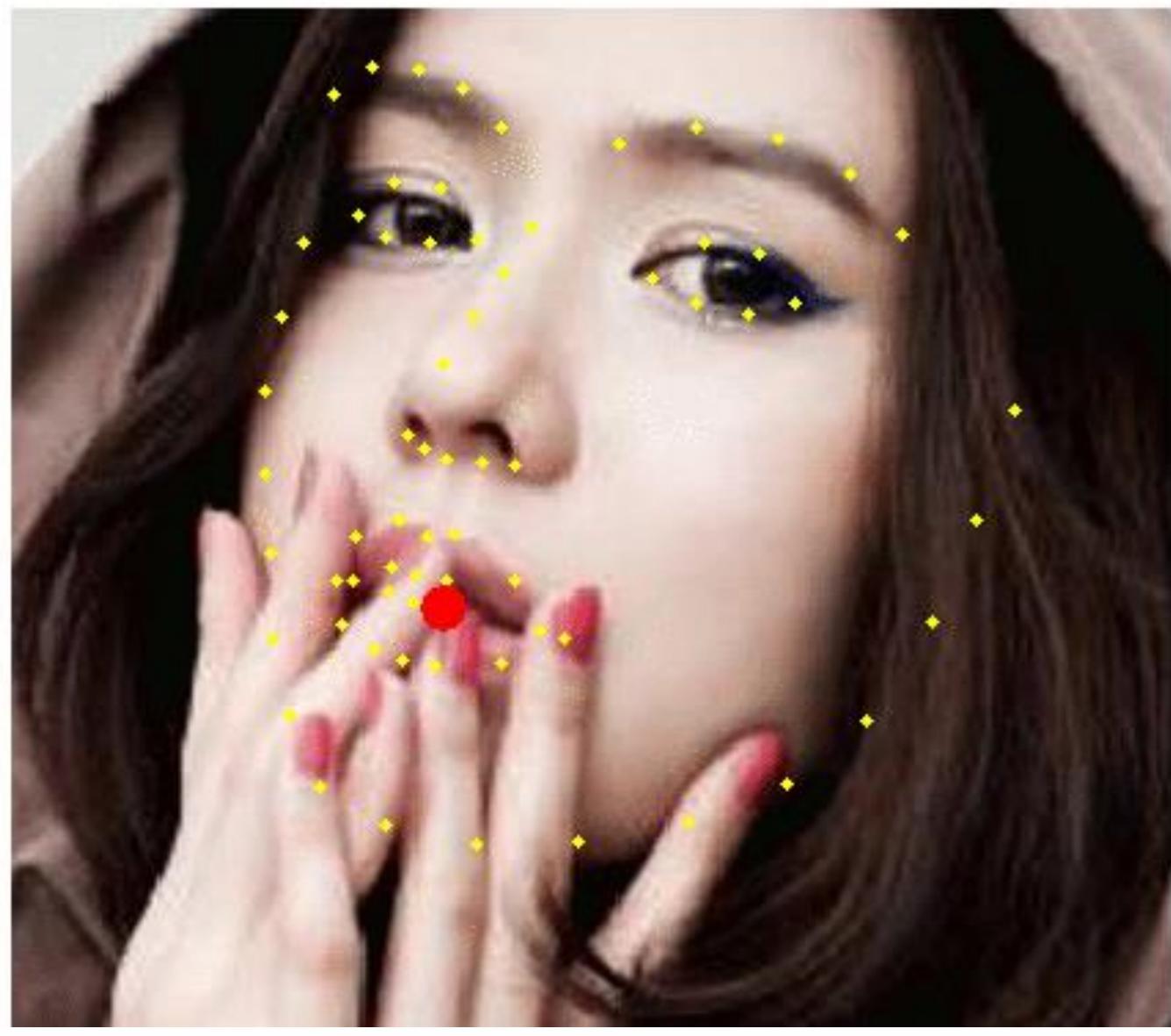


Iter 01

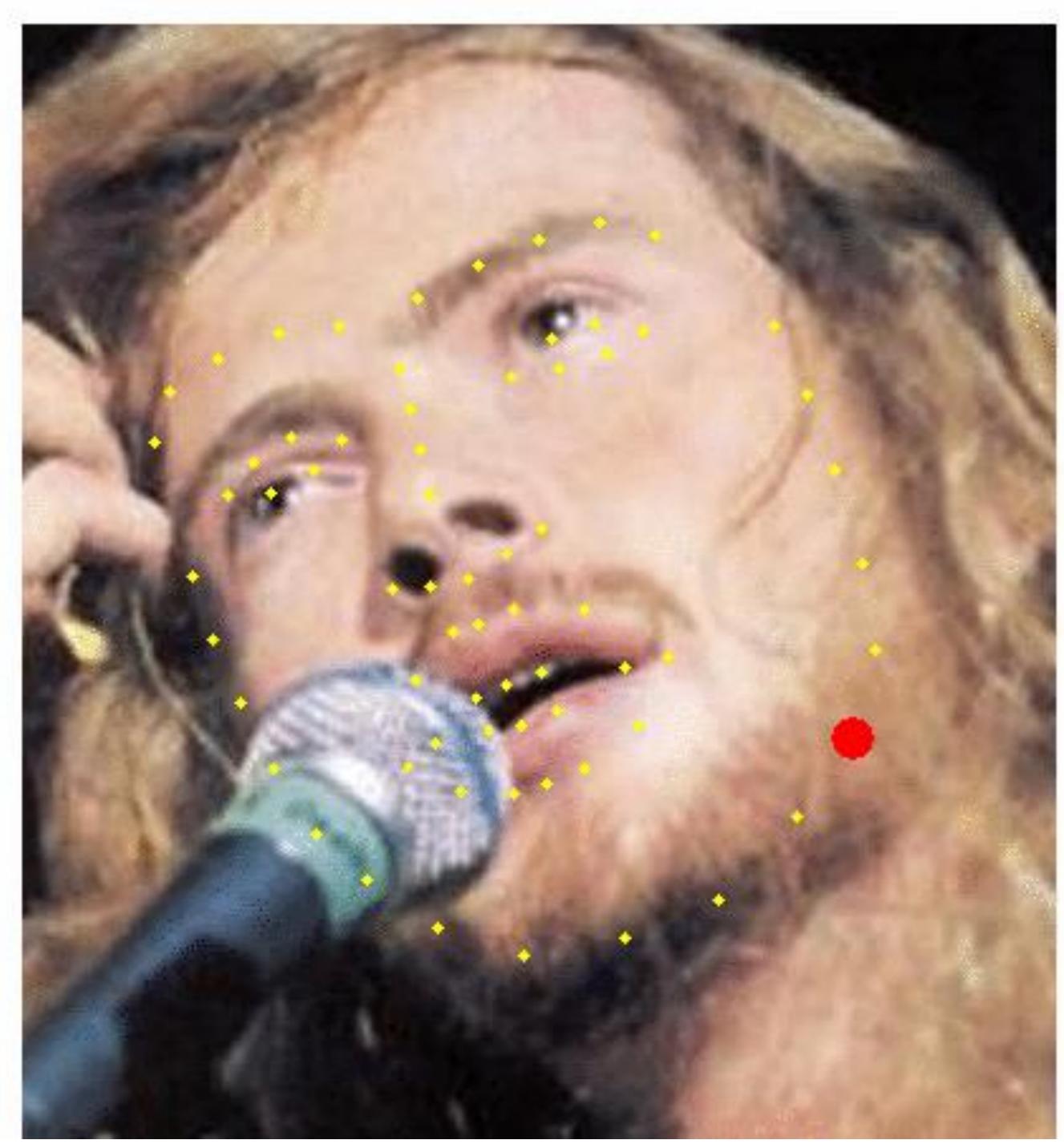


Sample Attentive Refinement



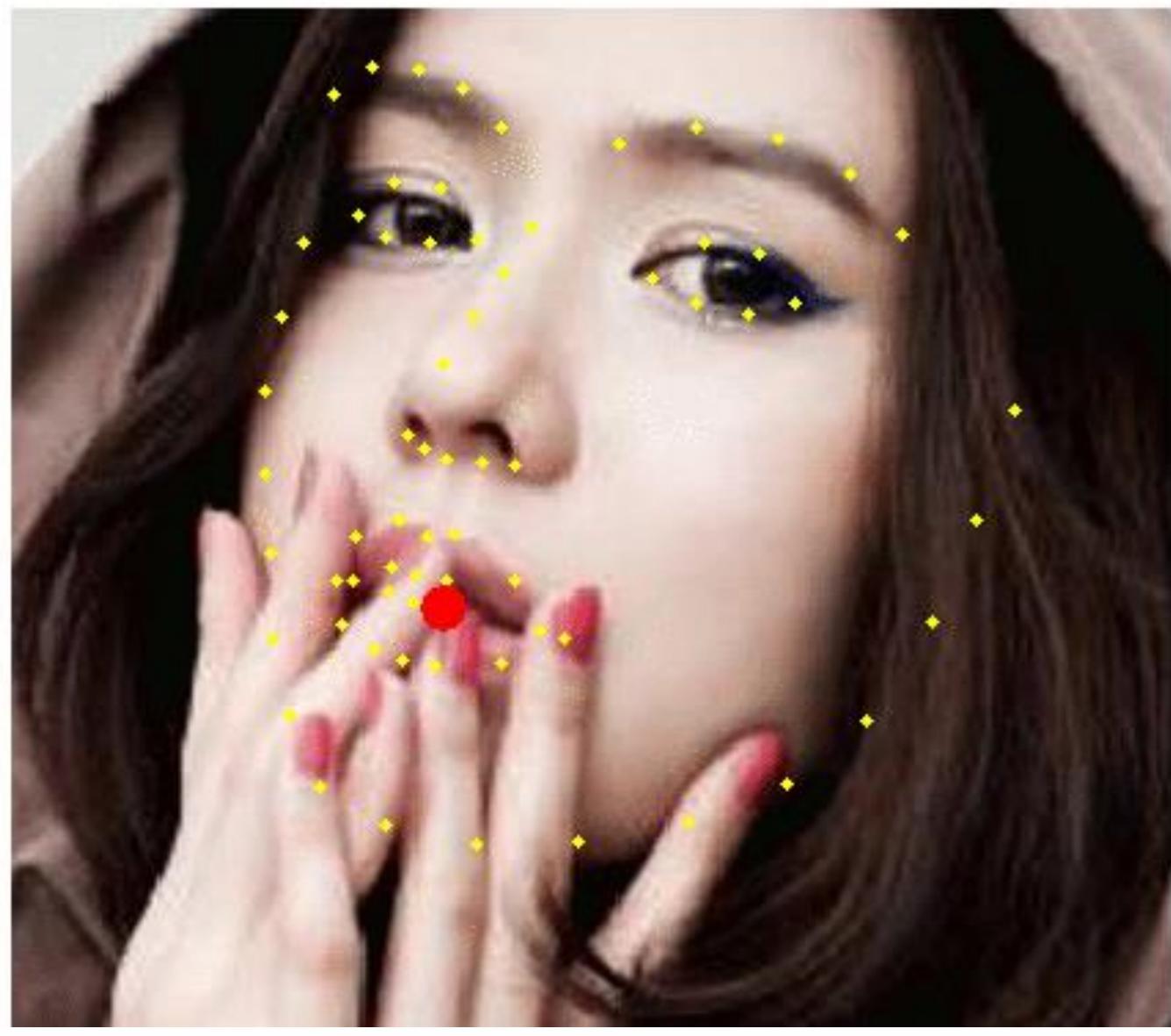


Iter 01

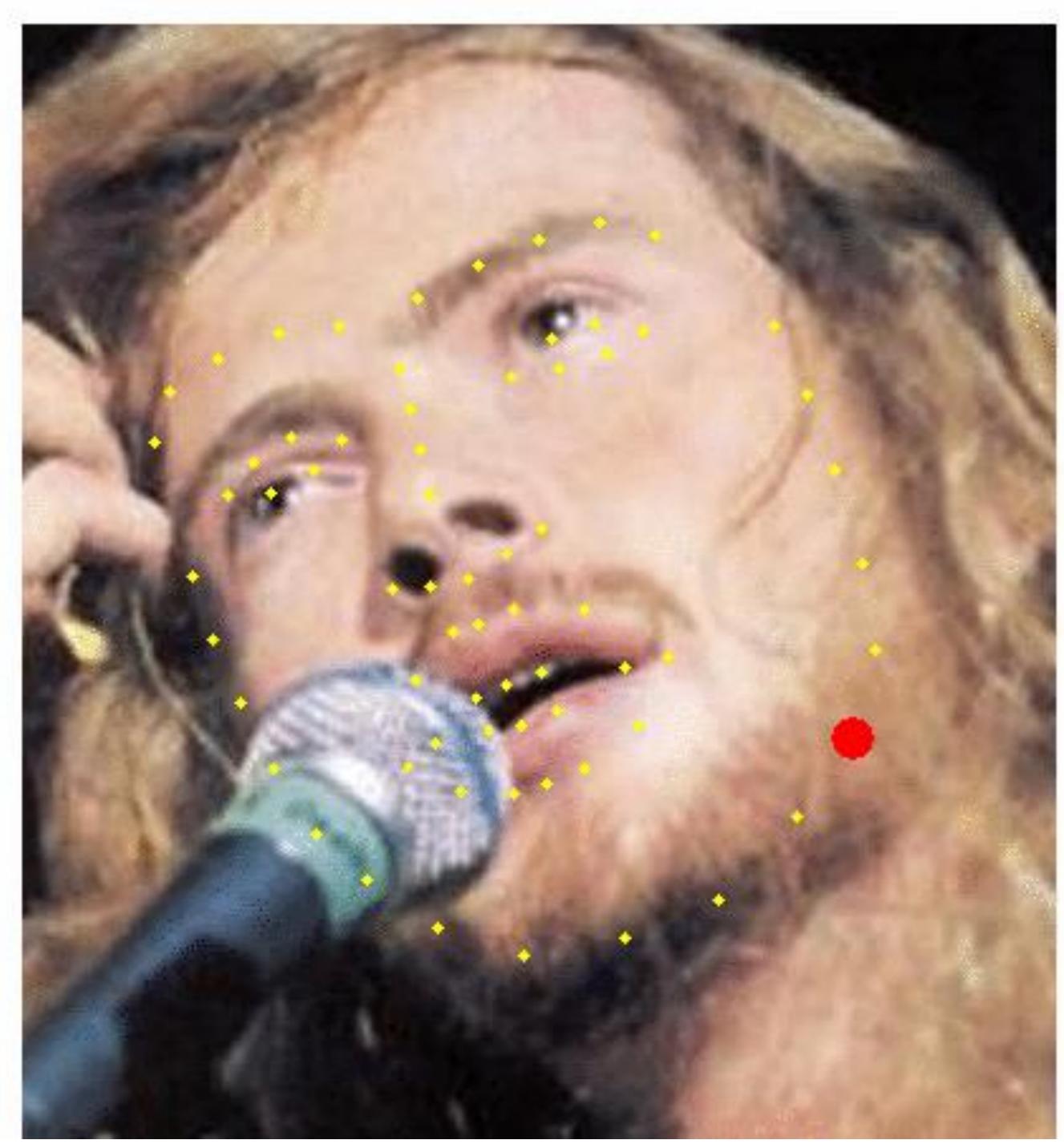


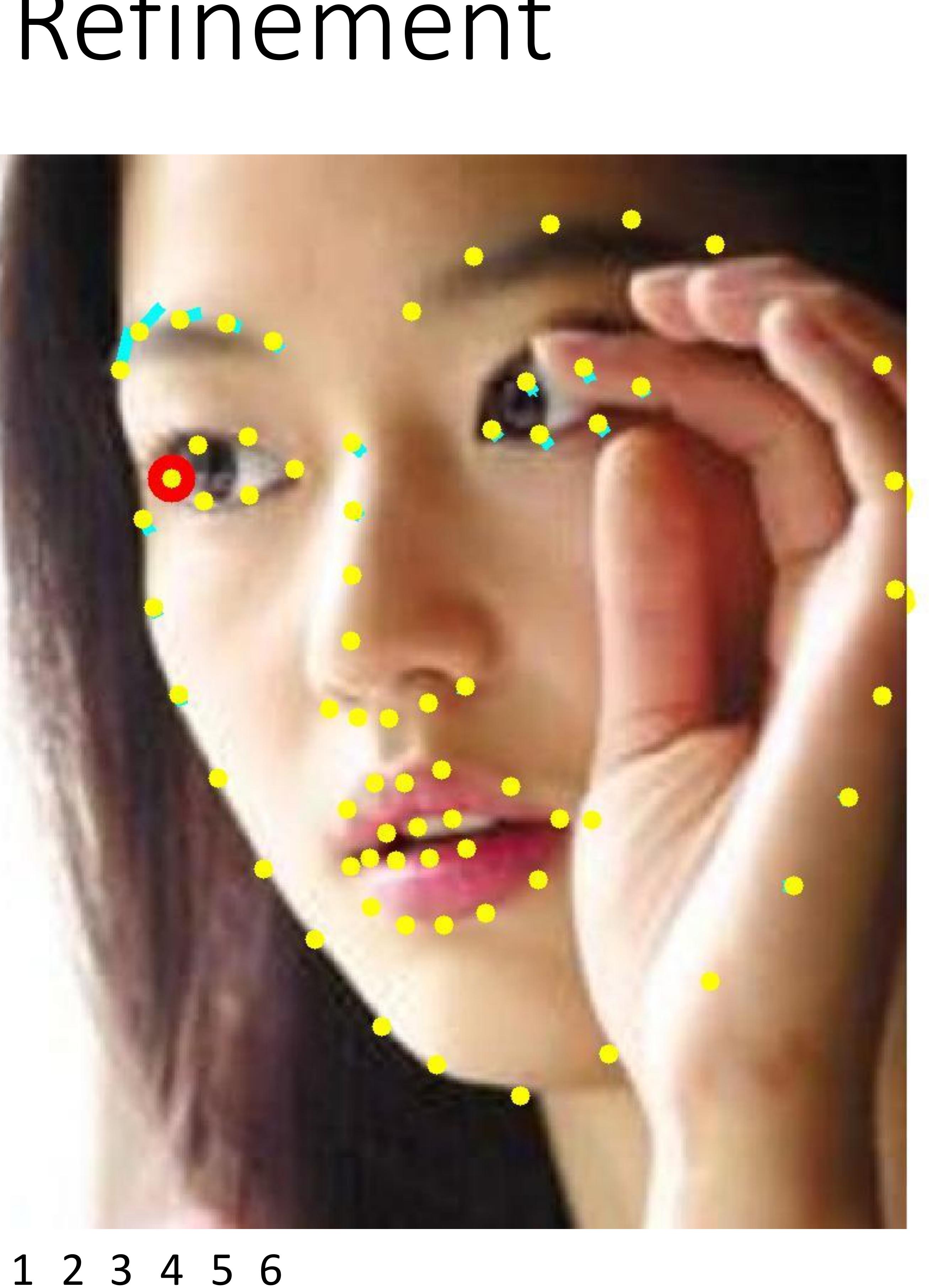
Sample Attentive Refinement

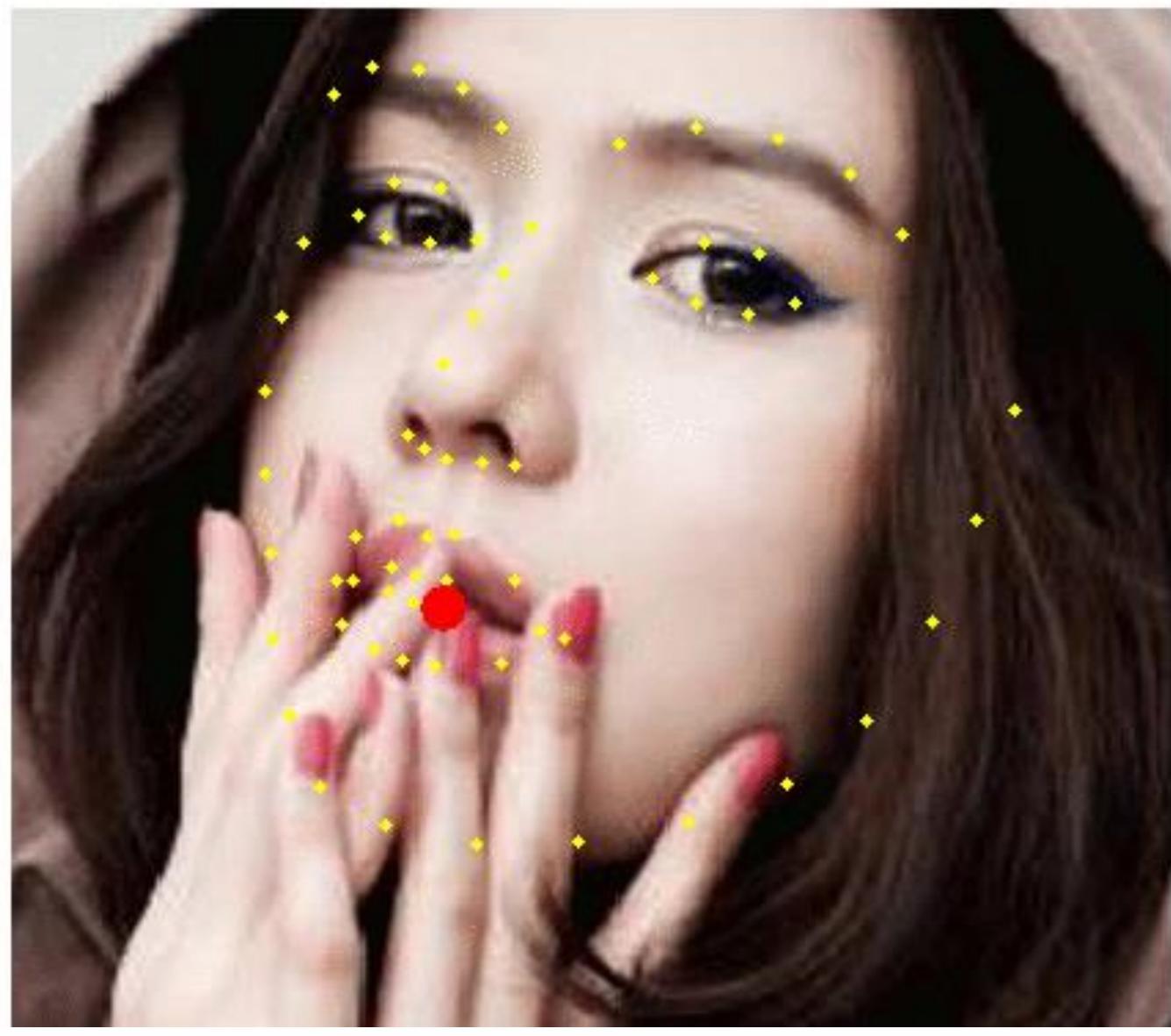




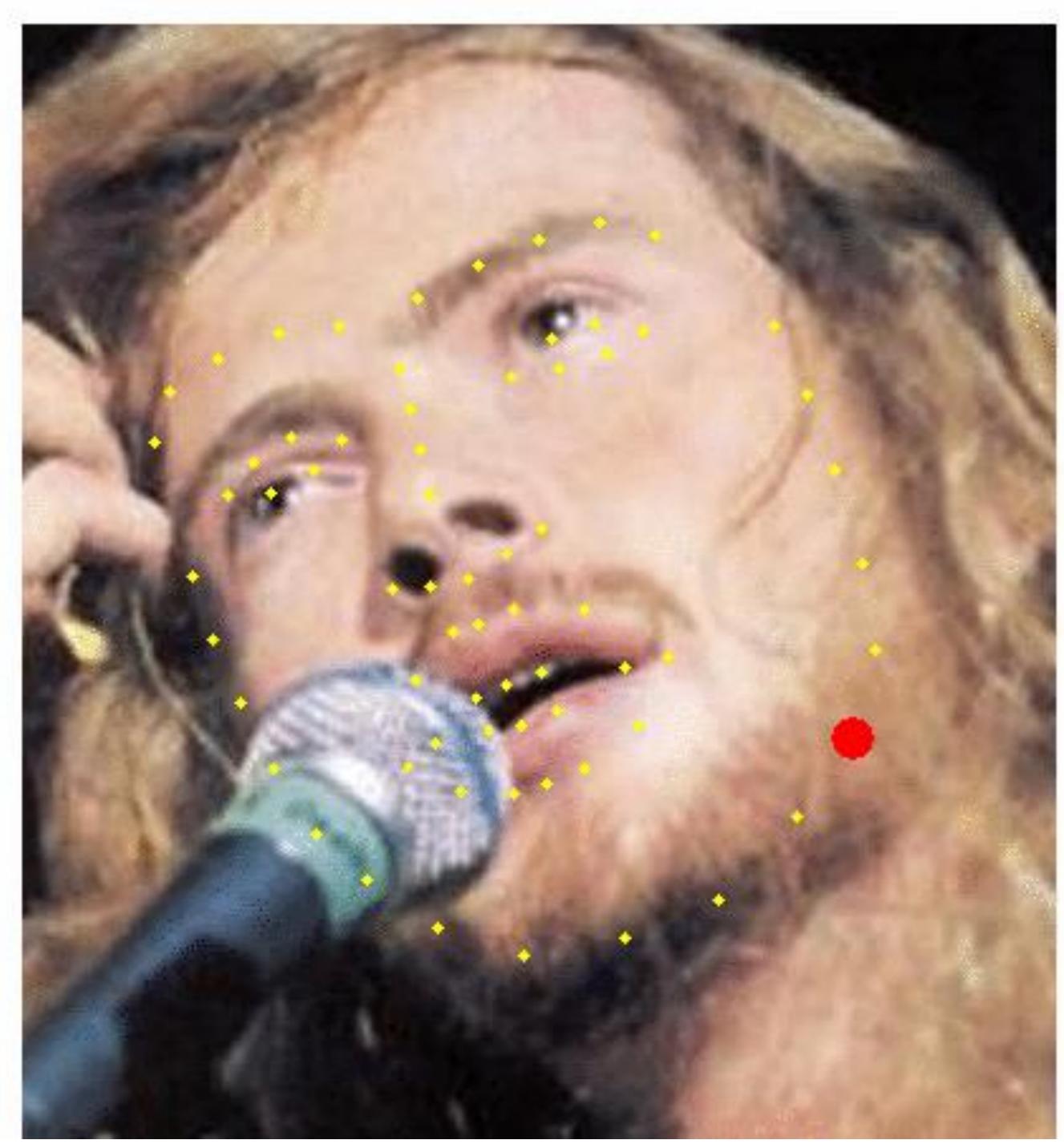
Iter 01

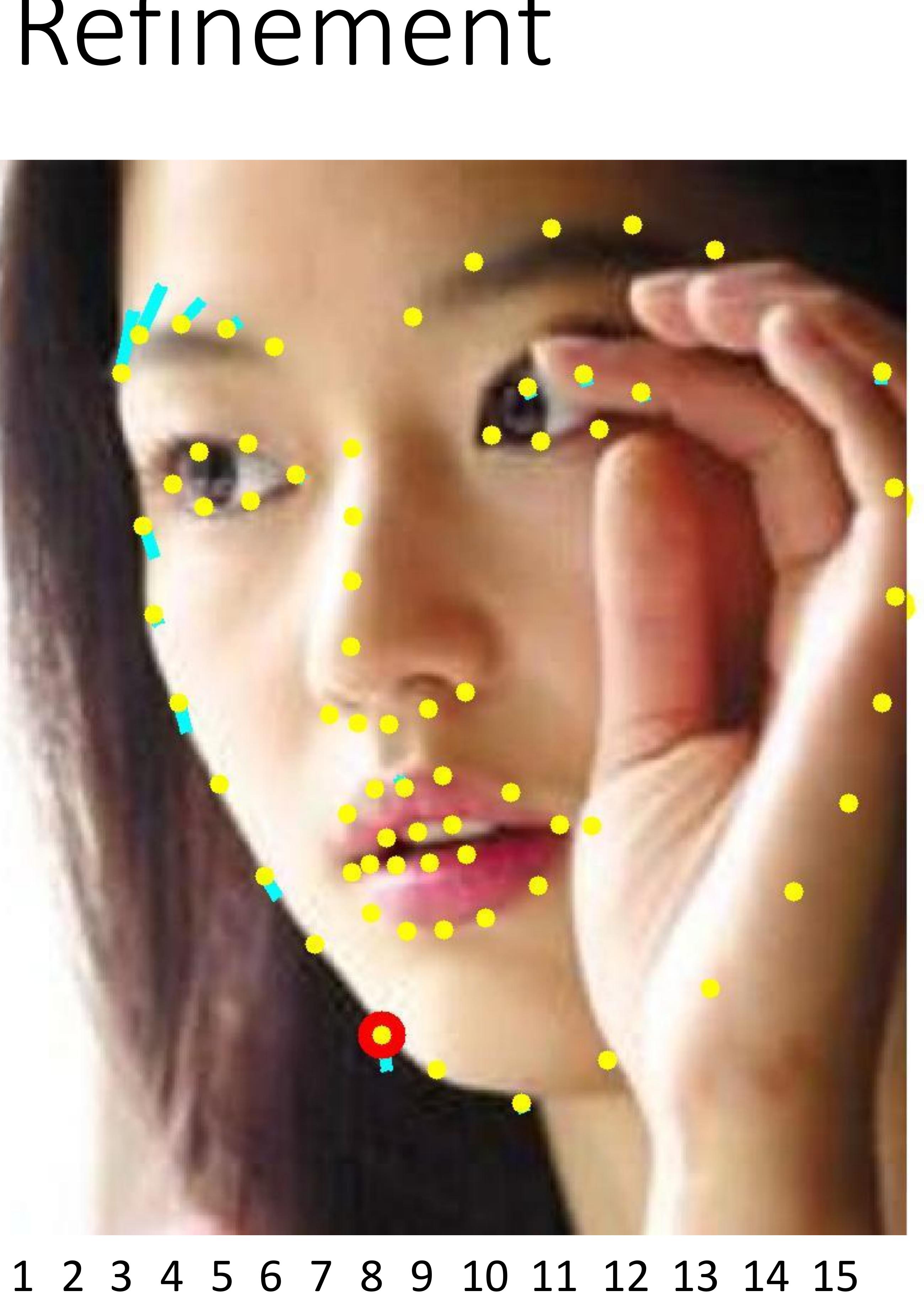


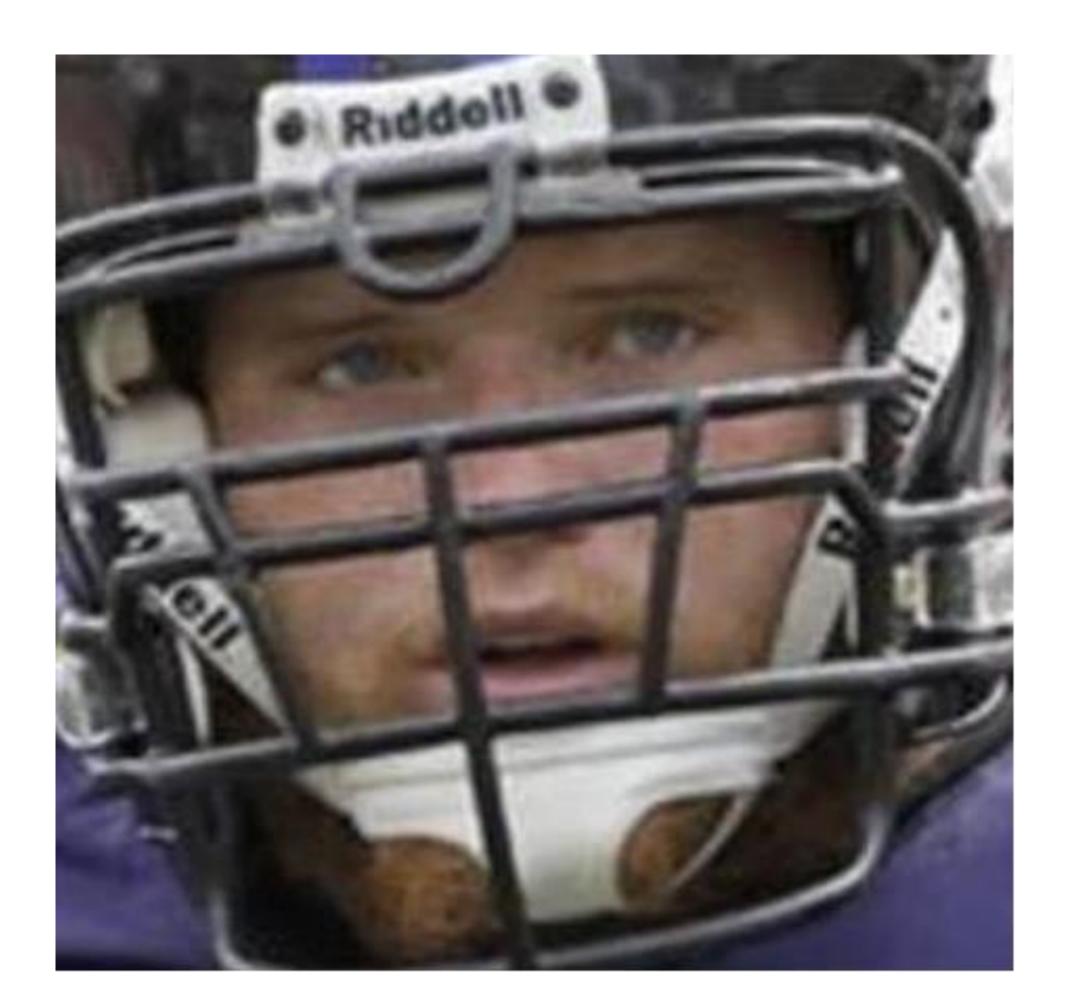


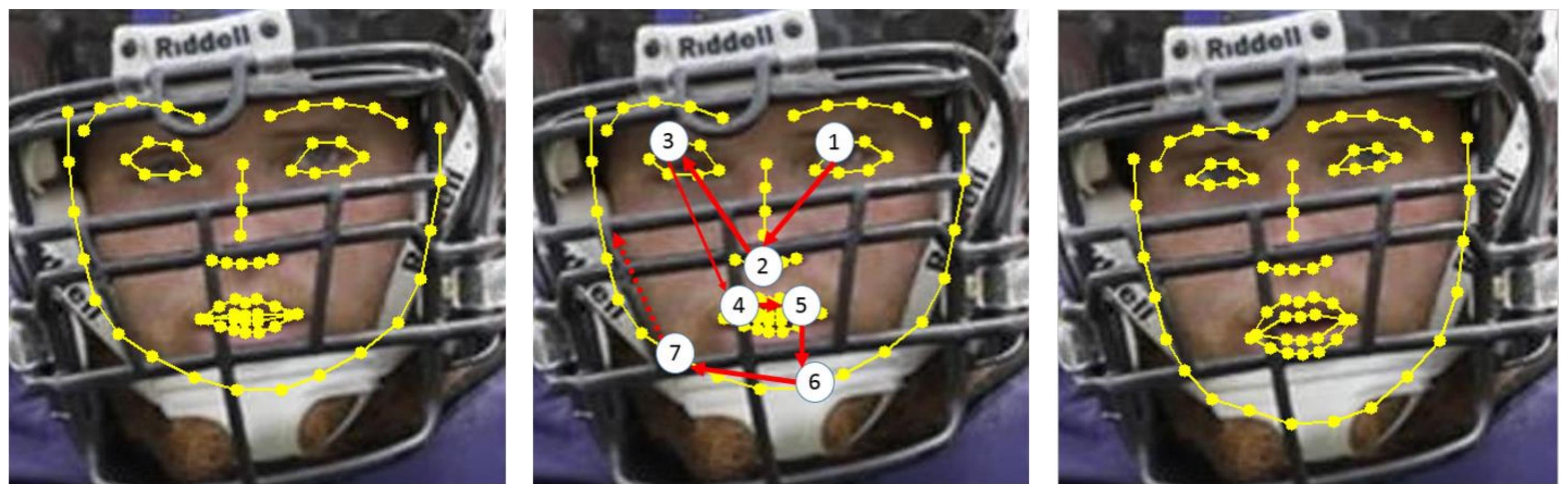


Iter 01









QQA A **Poster Session: O-1A-04**

