

Learning Representations for Automatic Colorization

Gustav Larsson, Michael Maire, Greg Shakhnarovich

TTI Chicago / University of Chicago ECCV 2016

Let us first define "colorization"

Definition 1: The inverse of desaturation.

Original

Definition 1: The inverse of desaturation.

Original

Desaturatę

Definition 1: The inverse of desaturation.

Definition 1: The inverse of desaturation.

Original

Colorize

Definition 1: The inverse of desaturation. (Underconstrained!)

Original

Colorize

Definition 2: An inverse of desaturation, that...

Definition 2: An inverse of desaturation, that...

, Colorize

Our Method

Grayscale

... is plausible and pleasing to a human observer.

Definition 2: An inverse of desaturation, that...

Colorize

Our Method

- ... is plausible and pleasing to a human observer.
 - Def. 1: Training + Quantitative Evaluation
 - Def. 2: Qualitative Evaluation

I thought I would give it a quick try...

Low-level features

Mid-level features

High-level features

Grass is green

Sky is blue

Mountains are... brown?

Manual (pprox 15 s)

Manual (\approx 3 min)

Manual ($\approx 15~s)$

Manual (\approx 3 min)

 $\begin{array}{c} \text{Automatic } (<1 \text{ s}) \\ \\ \text{Our Method} \end{array}$

1. Colorize old B&W photographs

1. Colorize old B&W photographs

2. Proxy for visual understanding

• Learning representations useful for other tasks

Scribble-based methods

Levin et al. (2004); Huang et al. (2005); Qu et al. (2006); Luan et al. (2007)

Input

Output

Transfer-based methods

Welsh et al. (2002); Irony et al. (2005); Charpiat et al. (2008); Morimoto et al. (2009); Chia et al. (2011)

Prediction-based methods

Deshpande et al. (2015); Cheng et al. (2015) lizuka et al. (2016) Zhang et al. (2016); Larsson et al. (2016)

Output

Input

Output

Scribble-based methods

Levin et al. (2004); Huang et al. (2005); Qu et al. (2006); Luan et al. (2007)

Input

Output

Transfer-based methods

Welsh et al. (2002); Irony et al. (2005); Charpiat et al. (2008); Morimoto et al. (2009); Chia et al. (2011)

Reference

Input

Output

Prediction-based methods

Deshpande et al. (2015); Cheng et al. (2015) \leftarrow ICCV lizuka et al. (2016) Zhang et al. (2016); Larsson et al. (2016)

Scribble-based methods

Levin et al. (2004); Huang et al. (2005); Qu et al. (2006); Luan et al. (2007)

Input

Output

Transfer-based methods

Welsh et al. (2002); Irony et al. (2005); Charpiat et al. (2008); Morimoto et al. (2009); Chia et al. (2011)

Reference

Input

Output

Prediction-based methods

Deshpande et al. (2015); Cheng et al. (2015) lizuka et al. (2016) \leftarrow SIGGRAPH

Zhang et al. (2016); Larsson et al. (2016)

Scribble-based methods

Levin et al. (2004); Huang et al. (2005); Qu et al. (2006); Luan et al. (2007)

Input

Output

Transfer-based methods

Welsh et al. (2002); Irony et al. (2005); Charpiat et al. (2008); Morimoto et al. (2009); Chia et al. (2011)

Reference

Input

Output

Prediction-based methods

Deshpande et al. (2015); Cheng et al. (2015) lizuka et al. (2016)

Zhang et al. (2016); Larsson et al. (2016) \leftarrow ECCV

• Semantic knowledge

- Semantic knowledge \rightarrow Leverage ImageNet-based classifier

Input: Grayscale Image

- Semantic knowledge $\ \rightarrow$ Leverage ImageNet-based classifier
- Low-level/high-level features

- Semantic knowledge \rightarrow Leverage ImageNet-based classifier
- Low-level/high-level features \rightarrow Zoom-out/Hypercolumn

- Semantic knowledge \rightarrow Leverage ImageNet-based classifier
- Low-level/high-level features \rightarrow Zoom-out/Hypercolumn
- Colorization not unique

- Semantic knowledge $\ \rightarrow$ Leverage ImageNet-based classifier
- Low-level/high-level features \rightarrow Zoom-out/Hypercolumn
- Colorization not unique \rightarrow Predict histograms

Input: Grayscale Image

- Semantic knowledge $\ \rightarrow$ Leverage ImageNet-based classifier
- Low-level/high-level features \rightarrow Zoom-out/Hypercolumn
- Colorization not unique \rightarrow Predict histograms

- Semantic knowledge $\ \rightarrow$ Leverage ImageNet-based classifier
- Low-level/high-level features \rightarrow Zoom-out/Hypercolumn
- Colorization not unique \rightarrow Predict histograms

Input: Grayscale Image

Output: Color Image

• Start with an ImageNet pretrained network

• Start with an ImageNet pretrained network

• Adapt to grayscale input

• Start with an ImageNet pretrained network

• Adapt to grayscale input

• Fine-tune for colorization with log-loss on ImageNet without labels

Trained as a fully convolutional network with:

Trained as a fully convolutional network with:

Dense hypercolumns

- Low-level layers are upsampled
- X High memory footprint

Trained as a fully convolutional network with:

Dense hypercolumns

- Low-level layers are upsampled
- 🗡 High memory footprint

Sparse hypercolumns

- Direct bilinear sampling
- ✓ Low memory footprint

Trained as a fully convolutional network with:

Dense hypercolumns

- Low-level layers are upsampled
- 🗡 High memory footprint

Sparse hypercolumns

- Direct bilinear sampling
- ✓ Low memory footprint

Source code available for Caffe and TensorFlow

Comparison: Previous work

Significant improvement over state-of-the-art:

vs. Cheng et al. (2015)

vs. Deshpande et al. (2015)

Comparison:	Concurrent work	
Model	MSE	PSNR
Zhang et al.	270.17	21.58
Baig et al.	194.12	23.72
Ours	154.69	24.80

Source: Baig and Torresani (2016) [Arxiv]

Comparison:	Concurrent work	
Model	MSE	PSNR
Zhang et al.	270.17	21.58
Baig et al.	194.12	23.72
Ours	154.69	24.80
	Source: Baig and Torresani (2016) [Arxiv]	
		Turk

	AUC CMF		VGG Top-1	Turk	
Model	non-rebal rebal		Classification	Labeled Real (%)	
	(%)	(%)	Accuracy (%)	mean	std
Ground Truth	100.00	100.00	68.32	50.00	_
Zhang et al.	91.57	65.12	56.56	25.16	2.26
Zhang et al. (rebal)	89.50	67.29	56.01	32.25	2.41
Ours	91.70	65.93	59.36	27.24	2.31

Source: Zhang et al. (2016) [ECCV]

Examples

Input

Our Method

Ground-truth

Examples

B&W photographs

Examples

Failure modes

1. Train colorization from scratch

1. Train colorization from scratch

Initialization	RMSE	PSNR
ImageNet Classifier	0.299	24.45
Random	0.311	24.25

How much does ImageNet pretraining help colorization?

1. Train colorization from scratch

Initialization	RMSE	PSNR
ImageNet Classifier	0.299	24.45
Random	0.311	24.25

How much does ImageNet pretraining help colorization?

2. Use network for other tasks, such as semantic segmentation:

1. Train colorization from scratch

Initialization	RMSE	PSNR
ImageNet Classifier	0.299	24.45
Random	0.311	24.25

How much does ImageNet pretraining help colorization?

2. Use network for other tasks, such as semantic segmentation:

Initialization	$X_{ m ImageNet}$	$Y_{ m ImageNet}$	mIU (%)
ImageNet Classifier	1	\checkmark	64.0
Random			32.5

Pascal VOC 2012 segmentation val

1. Train colorization from scratch

Initialization	RMSE	PSNR
ImageNet Classifier	0.299	24.45
Random	0.311	24.25

How much does ImageNet pretraining help colorization?

2. Use network for other tasks, such as semantic segmentation:

Initialization	$X_{ m ImageNet}$	Y_{ImageNet}	mIU (%)
ImageNet Classifier	1	1	64.0
ImageNet Colorizer	\checkmark		50.2
Random			32.5

Pascal VOC 2012 segmentation val

- Fully automatic colorization with state-of-the-art results
- Efficient training via sparse sampling of hypercolumns
- Promising proxy task for visual representation learning

See you at poster O-3A-04 upstairs!

Source code and demo available online:

pip install autocolorize

autocolorize grayscale.png -o color.png

- Fully automatic colorization with state-of-the-art results
- Efficient training via sparse sampling of hypercolumns
- Promising proxy task for visual representation learning

See you at poster O-3A-04 upstairs!

Source code and demo available online:

pip install autocolorize

autocolorize grayscale.png -o color.png

- Fully automatic colorization with state-of-the-art results
- Efficient training via sparse sampling of hypercolumns
- Promising proxy task for visual representation learning

See you at poster O-3A-04 upstairs!

Source code and demo available online:

pip install autocolorize

autocolorize grayscale.png -o color.png

References

- Baig, M. H. and Torresani, L. (2016). Colorization for image compression. arXiv preprint arXiv:1606.06314.
- Charpiat, G., Hofmann, M., and Schölkopf, B. (2008). Automatic image colorization via multimodal predictions. In ECCV.
- Cheng, Z., Yang, Q., and Sheng, B. (2015). Deep colorization. In ICCV.
- Chia, A. Y.-S., Zhuo, S., Gupta, R. K., Tai, Y.-W., Cho, S.-Y., Tan, P., and Lin, S. (2011). Semantic colorization with internet images. <u>ACM</u> Transactions on Graphics (TOG), 30(6).
- Deshpande, A., Rock, J., and Forsyth, D. (2015). Learning large-scale automatic image colorization. In ICCV.
- Huang, Y.-C., Tung, Y.-S., Chen, J.-C., Wang, S.-W., and Wu, J.-L. (2005). An adaptive edge detection based colorization algorithm and its applications. In ACM international conference on Multimedia.
- lizuka, S., Simo-Serra, E., and Ishikawa, H. (2016). Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification. ACM Transactions on Graphics (Proc. of SIGGRAPH 2016), 35(4).
- Irony, R., Cohen-Or, D., and Lischinski, D. (2005). Colorization by example. In Eurographics Symp. on Rendering.
- Larsson, G., Maire, M., and Shakhnarovich, G. (2016). Learning representations for automatic colorization. ECCV.
- Levin, A., Lischinski, D., and Weiss, Y. (2004). Colorization using optimization. ACM Transactions on Graphics (TOG), 23(3).
- Luan, Q., Wen, F., Cohen-Or, D., Liang, L., Xu, Y.-Q., and Shum, H.-Y. (2007). Natural image colorization. In Eurographics conference on Rendering Techniques.
- Morimoto, Y., Taguchi, Y., and Naemura, T. (2009). Automatic colorization of grayscale images using multiple images on the web. In SIGGRAPH: Posters.
- Qu, Y., Wong, T.-T., and Heng, P.-A. (2006). Manga colorization. ACM Transactions on Graphics (TOG), 25(3).
- Welsh, T., Ashikhmin, M., and Mueller, K. (2002). Transferring color to greyscale images. ACM Transactions on Graphics (TOG), 21(3).
- Zhang, R., Isola, P., and Efros, A. A. (2016). Colorful image colorization. ECCV.