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Manual colorization

Grass texture

Tree

Landscape scene

I thought I would give it a quick try...

Manual (≈ 15 s) Manual (≈ 3 min) Automatic (< 1 s)
Our Method
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2. Proxy for visual understanding

• Learning representations useful for other tasks
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Design principles

• Semantic knowledge

→ Leverage ImageNet-based classifier

• Low-level/high-level features

→ Zoom-out/Hypercolumn

• Colorization not unique

→ Predict histograms

p

Input: Grayscale Image

VGG-16-Gray

Output: Color Image

conv1 1

conv5 3
(fc6) conv6

(fc7) conv7

Hypercolumn

h fc1

Hue

Chroma
←− Expectation

←− Median

Ground-truth

Lightness
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Histogram prediction

The histogram representation is rich and flexible:
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• Start with an ImageNet pretrained network

• Adapt to grayscale input

• Fine-tune for colorization with log-loss on ImageNet

without labels
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Sparse Training

Trained as a fully convolutional network with:

Dense hypercolumns

• Low-level layers are upsampled

• 7 High memory footprint

Sparse hypercolumns

• Direct bilinear sampling

• 3 Low memory footprint

Source code available for Caffe and TensorFlow
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Comparison: Previous work

Significant improvement over state-of-the-art:
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Comparison: Concurrent work

Model MSE PSNR

Zhang et al. 270.17 21.58
Baig et al. 194.12 23.72
Ours 154.69 24.80

Source: Baig and Torresani (2016) [Arxiv]

Model
AuC CMF VGG Top-1 Turk

non-rebal rebal Classification Labeled Real (%)
(%) (%) Accuracy (%) mean std

Ground Truth 100.00 100.00 68.32 50.00 –
Zhang et al. 91.57 65.12 56.56 25.16 2.26
Zhang et al. (rebal) 89.50 67.29 56.01 32.25 2.41
Ours 91.70 65.93 59.36 27.24 2.31

Source: Zhang et al. (2016) [ECCV]
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Self-supervision (ongoing work)
1. Train colorization from scratch

Initialization RMSE PSNR

ImageNet Classifier 0.299 24.45
Random 0.311 24.25

How much does ImageNet pretraining help colorization?

2. Use network for other tasks, such as semantic segmentation:

Initialization XImageNet YImageNet mIU (%)

ImageNet Classifier 3 3 64.0

ImageNet Colorizer 3 50.2

Random 32.5

Pascal VOC 2012 segmentation val



Self-supervision (ongoing work)
1. Train colorization from scratch

Initialization RMSE PSNR

ImageNet Classifier 0.299 24.45
Random 0.311 24.25

How much does ImageNet pretraining help colorization?

2. Use network for other tasks, such as semantic segmentation:

Initialization XImageNet YImageNet mIU (%)

ImageNet Classifier 3 3 64.0

ImageNet Colorizer 3 50.2

Random 32.5

Pascal VOC 2012 segmentation val



Self-supervision (ongoing work)
1. Train colorization from scratch

Initialization RMSE PSNR

ImageNet Classifier 0.299 24.45
Random 0.311 24.25

How much does ImageNet pretraining help colorization?

2. Use network for other tasks, such as semantic segmentation:

Initialization XImageNet YImageNet mIU (%)

ImageNet Classifier 3 3 64.0

ImageNet Colorizer 3 50.2

Random 32.5

Pascal VOC 2012 segmentation val



Self-supervision (ongoing work)
1. Train colorization from scratch

Initialization RMSE PSNR

ImageNet Classifier 0.299 24.45
Random 0.311 24.25

How much does ImageNet pretraining help colorization?

2. Use network for other tasks, such as semantic segmentation:

Initialization XImageNet YImageNet mIU (%)

ImageNet Classifier 3 3 64.0

ImageNet Colorizer 3 50.2

Random 32.5

Pascal VOC 2012 segmentation val



Self-supervision (ongoing work)
1. Train colorization from scratch

Initialization RMSE PSNR

ImageNet Classifier 0.299 24.45
Random 0.311 24.25

How much does ImageNet pretraining help colorization?

2. Use network for other tasks, such as semantic segmentation:

Initialization XImageNet YImageNet mIU (%)

ImageNet Classifier 3 3 64.0
ImageNet Colorizer 3 50.2
Random 32.5

Pascal VOC 2012 segmentation val



Summary

• Fully automatic colorization with state-of-the-art results

• Efficient training via sparse sampling of hypercolumns

• Promising proxy task for visual representation learning

See you at poster O-3A-04 upstairs!

Source code and demo available online:

colorize.ttic.edu
gustavla/autocolorize

pip install autocolorize

autocolorize grayscale.png -o color.png

http://colorize.ttic.edu
https://github.com/gustavla/autocolorize
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