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Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-

lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored

out from the optimization and the optimal solutions can beachieved from equation 2 as

follow

C⇤= sign(Y ) = sign(X T ) sign(W ) = H⇤T
B⇤ (9)

Since |X i |, |W i | are independent, knowing that Y i = X i W i then,

E [|Y i |] = E [|X i ||W i |] = E [|X i |] E [|W i |] therefore,

γ⇤=

P
|Y i |

n
=

P
|X i ||W i |

n
⇡

✓
1

n
kX k` 1

◆✓
1

n
kW k` 1

◆

= β⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (wherewi n w, hi n

h) with the input tensor I 2 Rc⇥w i n ⇥h i n requires computing thescaling factor β for all

possible sub-tensors in I with same size as W . Two of these sub-tensors are illustrated

in figure 2 (second row) by X 1 and X 2. Due to overlaps between subtensors, comput-

ing β for all possible sub-tensors leads to a large number of redundant computations.

To overcome this redundancy, first, we compute a matrix A =
P

| I : , : , i |

c
, which is the

average over absolute values of the elements in the input I across the channel. Then

we convolve A with a 2D filter k 2 Rw⇥h , K = A ⇤k, where 8i j k i j = 1
w⇥h

. K

contains scaling factors β for all sub-tensors in the input I . K i j corresponds to β for

a sub-tensor centered at the location i j (across width and height). This procedure is

shown in the third row of figure2. Once weobtained the scaling factor ↵ for theweight

and β for all sub-tensors in I (denoted by K ), we can approximate the convolution

between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I ) ~ sign(W )) K ↵ (11)
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• AlexNet 1.5B FLOPs
• VGG         19.6B FLOPs

Number of Operations :

• AlexNet ~3 fps
• VGG         ~0.25 fps

Inference time on CPU :

+  −  ×
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Why Binary?

• Binary Instructions 
• AND, OR, XOR, XNOR,  PoPCount (Bit-Count)

• Low Power Device
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possible sub-tensors in I with same size as W . Two of these sub-tensors are illustrated

in figure 2 (second row) by X 1 and X 2. Due to overlaps between subtensors, comput-

ing β for all possible sub-tensors leads to a large number of redundant computations.

To overcome this redundancy, first, we compute a matrix A =
P

| I : , : , i |

c
, which is the

average over absolute values of the elements in the input I across the channel. Then

we convolve A with a 2D filter k 2 Rw⇥h , K = A ⇤k, where 8i j k i j = 1
w⇥h

. K

contains scaling factors β for all sub-tensors in the input I . K i j corresponds to β for

a sub-tensor centered at the location i j (across width and height). This procedure is

shown in the third row of figure2. Once weobtained the scaling factor ↵ for theweight

and β for all sub-tensors in I (denoted by K ), we can approximate the convolution

between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I ) ~ sign(W )) K ↵ (11)
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h) with the input tensor I 2 Rc⇥w i n ⇥h i n requires computing thescaling factor β for all

possible sub-tensors in I with same size as W . Two of these sub-tensors are illustrated

in figure 2 (second row) by X 1 and X 2. Due to overlaps between subtensors, comput-

ing β for all possible sub-tensors leads to a large number of redundant computations.

To overcome this redundancy, first, we compute a matrix A =
P

| I : , : , i |

c
, which is the

average over absolute values of the elements in the input I across the channel. Then

we convolve A with a 2D filter k 2 Rw⇥h , K = A ⇤k, where 8i j k i j = 1
w⇥h

. K

contains scaling factors β for all sub-tensors in the input I . K i j corresponds to β for
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shown in the third row of figure2. Once weobtained the scaling factor ↵ for theweight

and β for all sub-tensors in I (denoted by K ), we can approximate the convolution

between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I ) ~ sign(W )) K ↵ (11)
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, which is the

average over absolute values of the elements in the input I across the channel. Then

we convolve A with a 2D filter k 2 Rw⇥h , K = A ⇤k, where 8i j k i j = 1
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. K

contains scaling factors β for all sub-tensors in the input I . K i j corresponds to β for
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possible sub-tensors in I with same size as W . Two of these sub-tensors are illustrated

in figure 2 (second row) by X 1 and X 2. Due to overlaps between subtensors, comput-

ing β for all possible sub-tensors leads to a large number of redundant computations.

To overcome this redundancy, first, we compute a matrix A =
P

| I : , : , i |

c
, which is the

average over absolute values of the elements in the input I across the channel. Then
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. K
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To overcome this redundancy, first, we compute a matrix A =
P

| I : , : , i |

c
, which is the

average over absolute values of the elements in the input I across the channel. Then

we convolve A with a 2D filter k 2 Rw⇥h , K = A ⇤k, where 8i j k i j = 1
w⇥h

. K

contains scaling factors β for all sub-tensors in the input I . K i j corresponds to β for

a sub-tensor centered at the location i j (across width and height). This procedure is

shown in the third row of figure2. Once weobtained the scaling factor ↵ for theweight

and β for all sub-tensors in I (denoted by K ), we can approximate the convolution

between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I ) ~ sign(W )) K ↵ (11)

8 Rastegari et al.

-1.4  0.5 …  0.2   2 -1  1 …  1   1 

Redundant computations in overlapping areas 

= 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

c 

…
 

…
 

…
 

…
 …

 

…
 

…
 

…
 

…
 

…
 

…
 

…
 …

 

…
 

…
 

…
 

≈ 

= 

= 

= 

= 

(1)  Binarizing Weight 

(2) Binarizing Input 

(4) Convolution with XNOR-Bitcount 

…
 

…
 

…
 

…
 

…
 

Inefficient 

Efficient 

= 

= 

(3) Binarizing Input 

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-

lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored

out from the optimization and the optimal solutions can beachieved from equation 2 as

follow

C⇤= sign(Y ) = sign(X T ) sign(W ) = H⇤T
B⇤ (9)

Since |X i |, |W i | are independent, knowing that Y i = X i W i then,

E [|Y i |] = E [|X i ||W i |] = E [|X i |] E [|W i |] therefore,

γ⇤=

P
|Y i |

n
=

P
|X i ||W i |

n
⇡

✓
1

n
kX k` 1

◆✓
1

n
kW k` 1

◆

= β⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (wherewi n w, hi n

h) with the input tensor I 2 Rc⇥w i n ⇥h i n requires computing thescaling factor β for all

possible sub-tensors in I with same size as W . Two of these sub-tensors are illustrated

in figure 2 (second row) by X 1 and X 2. Due to overlaps between subtensors, comput-

ing β for all possible sub-tensors leads to a large number of redundant computations.

To overcome this redundancy, first, we compute a matrix A =
P

| I : , : , i |

c
, which is the

average over absolute values of the elements in the input I across the channel. Then

we convolve A with a 2D filter k 2 Rw⇥h , K = A ⇤k, where 8i j k i j = 1
w⇥h

. K

contains scaling factors β for all sub-tensors in the input I . K i j corresponds to β for

a sub-tensor centered at the location i j (across width and height). This procedure is

shown in the third row of figure2. Once weobtained the scaling factor ↵ for theweight

and β for all sub-tensors in I (denoted by K ), we can approximate the convolution

between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I ) ~ sign(W )) K ↵ (11)



8 Rastegari et al.

-1.4  0.5 …  0.2   2 -1  1 …  1   1 

Redundant computations in overlapping areas 

= 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

…
 

c 

…
 

…
 

…
 

…
 …

 

…
 

…
 

…
 

…
 

…
 

…
 

…
 …

 

…
 

…
 

…
 

≈ 

= 

= 

= 

= 

(1)  Binarizing Weight 

(2) Binarizing Input 

(4) Convolution with XNOR-Bitcount 

…
 

…
 

…
 

…
 

…
 

Inefficient 

Efficient 

= 

= 

(3) Binarizing Input 

Fig. 2: This figure illustrates the procedure explained in section 3.2 for approximating a convo-

lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored

out from the optimization and the optimal solutions can beachieved from equation 2 as

follow

C⇤= sign(Y ) = sign(X T ) sign(W ) = H⇤T
B⇤ (9)

Since |X i |, |W i | are independent, knowing that Y i = X i W i then,

E [|Y i |] = E [|X i ||W i |] = E [|X i |] E [|W i |] therefore,

γ⇤=

P
|Y i |

n
=

P
|X i ||W i |

n
⇡

✓
1

n
kX k` 1

◆✓
1

n
kW k` 1

◆

= β⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (wherewi n w, hi n

h) with the input tensor I 2 Rc⇥w i n ⇥h i n requires computing thescaling factor β for all

possible sub-tensors in I with same size as W . Two of these sub-tensors are illustrated

in figure 2 (second row) by X 1 and X 2. Due to overlaps between subtensors, comput-
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in figure 2 (second row) by X 1 and X 2. Due to overlaps between subtensors, comput-

ing β for all possible sub-tensors leads to a large number of redundant computations.
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ing β for all possible sub-tensors leads to a large number of redundant computations.
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, which is the
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contains scaling factors β for all sub-tensors in the input I . K i j corresponds to β for

a sub-tensor centered at the location i j (across width and height). This procedure is
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and β for all sub-tensors in I (denoted by K ), we can approximate the convolution

between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I ) ~ sign(W )) K ↵ (11)
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To overcome this redundancy, first, we compute a matrix A =
P

| I : , : , i |

c
, which is the

average over absolute values of the elements in the input I across the channel. Then

we convolve A with a 2D filter k 2 Rw⇥h , K = A ⇤k, where 8i j k i j = 1
w⇥h

. K

contains scaling factors β for all sub-tensors in the input I . K i j corresponds to β for

a sub-tensor centered at the location i j (across width and height). This procedure is

shown in the third row of figure2. Once weobtained thescaling factor ↵ for theweight

and β for all sub-tensors in I (denoted by K ), we can approximate the convolution

between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I ) ~ sign(W )) K ↵ (11)
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out from the optimization and the optimal solutions can beachieved from equation 2 as

follow
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h) with the input tensor I 2 Rc⇥w i n ⇥h i n requires computing thescaling factor β for all

possible sub-tensors in I with same size as W . Two of these sub-tensors are illustrated

in figure 2 (second row) by X 1 and X 2. Due to overlaps between subtensors, comput-

ing β for all possible sub-tensors leads to a large number of redundant computations.

To overcome this redundancy, first, we compute a matrix A =
P

| I : , : , i |
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, which is the

average over absolute values of the elements in the input I across the channel. Then
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w⇥h

. K
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where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored

out from theoptimization and theoptimal solutions can beachieved from equation 2 as

follow
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Since |X i |, |W i | are independent, knowing that Y i = X i W i then,
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Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (wherewi n w, hi n

h) with the input tensor I 2 Rc⇥w i n ⇥h i n requires computing the scaling factor β for all

possible sub-tensors in I with same size as W . Two of these sub-tensors are illustrated

in figure 2 (second row) by X 1 and X 2. Due to overlaps between subtensors, comput-

ing β for all possible sub-tensors leads to a large number of redundant computations.

To overcome this redundancy, first, we compute a matrix A =
P

| I : , : , i |

c
, which is the

average over absolute values of the elements in the input I across the channel. Then

we convolve A with a 2D filter k 2 Rw⇥h , K = A ⇤k, where 8i j k i j = 1
w⇥h

. K

contains scaling factors β for all sub-tensors in the input I . K i j corresponds to β for

a sub-tensor centered at the location i j (across width and height). This procedure is

shown in the third row of figure2. Onceweobtained thescaling factor ↵ for theweight

and β for all sub-tensors in I (denoted by K ), we can approximate the convolution

between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I ) ~ sign(W )) K ↵ (11)
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lution using binary operations.

where 1 is an n-dimensional vector where all of its enteries are 1. 1T can be factored

out from theoptimization and theoptimal solutions can beachieved from equation 2 as

follow

C⇤= sign(Y ) = sign(X T ) sign(W ) = H ⇤T
B⇤ (9)

Since |X i |, |W i | are independent, knowing that Y i = X i W i then,

E [|Y i |] = E [|X i ||W i |] = E [|X i |] E [|W i |] therefore,

γ⇤=

P
|Y i |

n
=

P
|X i ||W i |

n
⇡

✓
1

n
kX k` 1

◆✓
1

n
kW k` 1

◆

= β⇤↵⇤ (10)

Binary Convolution: Convolving weight filter W 2 Rc⇥w⇥h (wherewi n w, hi n

h) with the input tensor I 2 Rc⇥w i n ⇥h i n requires computing the scaling factor β for all

possible sub-tensors in I with same size as W . Two of these sub-tensors are illustrated

in figure 2 (second row) by X 1 and X 2. Due to overlaps between subtensors, comput-

ing β for all possible sub-tensors leads to a large number of redundant computations.

To overcome this redundancy, first, we compute a matrix A =
P

| I : , : , i |

c
, which is the

average over absolute values of the elements in the input I across the channel. Then

we convolve A with a 2D filter k 2 Rw⇥h , K = A ⇤k, where 8i j k i j = 1
w⇥h

. K

contains scaling factors β for all sub-tensors in the input I . K i j corresponds to β for

a sub-tensor centered at the location i j (across width and height). This procedure is

shown in the third row of figure2. Onceweobtained thescaling factor ↵ for theweight

and β for all sub-tensors in I (denoted by K ), we can approximate the convolution

between input I and weight filter W mainly using binary operations:

I ⇤W ⇡ (sign(I ) ~ sign(W )) K ↵ (11)
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Fig. 4: This figure shows the efficiency of binary convolutions in terms of memory(a) and

computation(b-c). (a) iscontrasting therequired memory for binary and doubleprecision weights

in threedifferent architectures(AlexNet, ResNet-18 and VGG-19). (b,c) Show speedup gained by

binary convolution under (b)-different number of channels and (c)-different filter size

version of AlexNet isonly 2.9% below the full precision version of AlexNet. This clas-

sification accuracy out performscompetitorson binary neural networksby largemargin.

Wealso present an ablation study, where we evaluate the key elements of our proposed

method; computing scaling factors and our block structure for binary CNN. We shows

that our method of computing the scaling factors is important to reach high accuracy.

4.1 Efficiency Analysis

In an standard convolution, the total number of operations is cNW N I , where c is the

number of channels, NW = wh and N I = wi n hi n . Our binary approximation of

convolution (equation 11) hascNW N I binary operationsand N I non-binary operations.

With thecurrent generation of CPUs, wecan perform 64 binary operations in oneclock

of CPU, therefore the speedup can be computed by

S =
cNW N I

1
64

cNW N I + N I

=
64cNW

cNW + 64
(12)

The speedup depends on the channel size and filter size but not the input size. In

figure 4-(b-c) we illustrate the speedup achieved by changing the number of channels

and filter size. While changing one parameter, we fix other parameters as follow: c =

256, nI = 142 and nW = 32 (majority of convolutions in ResNet[4] architecture have

this structure). Using our approximation of convolution we gain 62.27⇥ theoretical

speed up, but in our CPU implementation with all of the overheads, we achieve 58x

speed up in oneconvolution. With thesmall channel size (c = 3) and filter size (NW =

1⇥1) the speedup is not considerably high. This motivates us to avoid binarization at

the first and last layer of a CNN. In the first layer the chanel size is 3 and in the last

layer the filter size is 1⇥1. A similar strategy was used in [11]. Figure 4-a shows the

required memory for three different CNN architectures(AlexNet, VGG-19, ResNet-18)

with binary and doubleprecision weights. Binary-weight-networksareso small that can

be easily fitted into portable devices.
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