### Qian-Yi Zhou Jaes

Intel Labs

Jaesik Park Vladlen Koltun







• 













![](_page_10_Figure_1.jpeg)

- Stage 1: Coarse alignment RANSAC or another sampling scheme
- Stage 2: Local refinement – ICP

# **Global Registration**

![](_page_12_Picture_0.jpeg)

Choi, Zhou, K., CVPR 2015

![](_page_13_Picture_0.jpeg)

• Expensive: nearest-neighbor queries in the inner loop • Inelegant: two stages instead of direct alignment

![](_page_13_Picture_2.jpeg)

![](_page_14_Picture_1.jpeg)

![](_page_15_Figure_1.jpeg)

# $E(\mathbf{T}) = \sum_{(\mathbf{p},\mathbf{q})\in\mathcal{K}} \rho(\|\mathbf{p} - \mathbf{T}\mathbf{q}\|)$

# $\rho(x) = \frac{x^2}{\mu + x^2}$

Objective

![](_page_16_Figure_4.jpeg)

# $E(\mathbf{T}) = \sum \rho(\|\mathbf{p} - \mathbf{T}\mathbf{q}\|)$ $(\mathbf{p},\mathbf{q})\in\mathcal{K}$

### $E(\mathbf{T}, \mathbb{L}) = \sum l_{\mathbf{p}, \mathbf{q}} \|\mathbf{p} - \mathbf{T}\mathbf{q}\|^2 + \sum \Psi(l_{\mathbf{p}, \mathbf{q}})$ $(\mathbf{p},\mathbf{q}) \in \mathcal{K}$ $(\mathbf{p},\mathbf{q}) \in \mathcal{K}$

# Optimization

# $\Psi(l_{\mathbf{p},\mathbf{q}}) = \mu(\sqrt{l_{\mathbf{p},\mathbf{q}}} - 1)^2$

Black and Rangarajan, 1996

![](_page_17_Picture_7.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_2.jpeg)

# Results

|                     | $\sigma = 0$ |         | $\sigma = 0.0025$ |         | $\sigma = 0.005$ |     |
|---------------------|--------------|---------|-------------------|---------|------------------|-----|
|                     | Average      | Maximal | Average           | Maximal | Average          | Max |
|                     | RMSE         | RMSE    | RMSE              | RMSE    | RMSE             | RM  |
| GoICP [42]          | 0.029        | 0.130   | 0.032             | 0.133   | 0.037            | 0.1 |
| GoICP-Trimming [42] | 0.035        | 0.473   | 0.039             | 0.475   | 0.044            | 0.4 |
| Super 4PCS [26]     | 0.012        | 0.019   | 0.014             | 0.029   | 0.017            | 0.0 |
| OpenCV [8]          | 0.009        | 0.013   | 0.018             | 0.212   | 0.032            | 0.2 |
| PCL [34, 19]        | 0.003        | 0.005   | 0.009             | 0.061   | 0.111            | 0.4 |
| CZK [7]             | 0.003        | 0.005   | 0.008             | 0.022   | 0.035            | 0.2 |
| Our approach        | 0.003        | 0.005   | 0.006             | 0.011   | 0.008            | 0.0 |

With noisy data, the average RMSE of our approach is more than 2 times lower than the best prior approach. Maximal RMSE is 5.6 times lower.

![](_page_23_Figure_3.jpeg)

|          | Average # of points | GoICP [42] | GoICP-<br>Trimming<br>[42] | OpenCV [8] | Super 4PCS<br>[26] | PCL [34, 19] | CZK [7] | C<br>appr |
|----------|---------------------|------------|----------------------------|------------|--------------------|--------------|---------|-----------|
| Bimba    | 9,416               | 19.3       | 19.4                       | 41.0       | 311.4              | 18.2         | 12.8    | 0.        |
| Children | 11,148              | 21.0       | 19.2                       | 136.3      | 238.2              | 4.8          | 6.6     | 0.        |
| Dragon   | 11,232              | 94.1       | 38.4                       | 57.7       | 483.7              | 8.6          | 11.9    | 0.        |
| Angel    | 12,072              | 21.0       | 20.4                       | 80.9       | 171.5              | 8.7          | 11.3    | 0.        |
| Bunny    | 13,357              | 74.7       | 72.4                       | 12.3       | 283.8              | 55.6         | 12.7    | 0.        |
| Average  | 11,445              | 46.0       | 34.0                       | 65.6       | 297.7              | 19.2         | 11.1    | 0.        |

Our algorithm is 50 times faster than the fastest prior global registration method.

![](_page_24_Figure_3.jpeg)

![](_page_25_Figure_0.jpeg)

(a) Rotation perturbation

Our algorithm matches the accuracy achieved by the local algorithms when they are initialized near the ground-truth pose, but does not require an initialization.

|          | Average # of points | PCL ICP<br>point-to-point | PCL ICP<br>point-to-plane | Sparse ICP<br>point-to-point<br>[5] | Sparse ICP<br>point-to-plane<br>[5] | Our app |
|----------|---------------------|---------------------------|---------------------------|-------------------------------------|-------------------------------------|---------|
| Bimba    | 9,416               | 0.73                      | 0.31                      | 3.1                                 | 11.8                                | 0.1     |
| Children | 11,148              | 0.75                      | 0.46                      | 3.9                                 | 15.0                                | 0.2     |
| Dragon   | 11,232              | 0.99                      | 0.47                      | 3.6                                 | 13.8                                | 0.2     |
| Angel    | 12,072              | 0.81                      | 1.01                      | 4.9                                 | 18.5                                | 0.2     |
| Bunny    | 13,357              | 2.10                      | 1.70                      | 9.2                                 | 10.3                                | 0.2     |
| Average  | 11,445              | 1.08                      | 0.79                      | 4.9                                 | 13.9                                | 0.2     |

Our global algorithm is 2.8 times faster than a state-of-the-art implementation of ICP.

![](_page_26_Figure_2.jpeg)

![](_page_26_Picture_3.jpeg)

- Fast algorithm for global registration of partially overlapping 3D surfaces
- More than an order of magnitude faster than prior global registration algorithms and much more robust to noise
- Matches the accuracy of well-initialized local refinement algorithms such as ICP, without requiring an initialization and at lower computational cost

### Summary

Thank you