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Tracking Challenges
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Feature Point Tracking

Our C-COT
(discriminative)

KLT
(generative)
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Discriminative Correlation Filters (DCF)
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Discriminative Correlation Filters (DCF)

Single-resolution Coarse output

Limitations:
/ feature map scores
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Our Approach: Overview
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Interpolation Operator
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Interpolation Operator
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Interpolation Operator
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Interpolation Operator
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Convolution Operator

Sr{x} = Zfd * Jd{xd}
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Training Loss
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Training Loss
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Training Loss
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Localization
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Object Tracking Framework

* Features: VGG
— Pre-trained on ImageNet

— No fine-tuning on application specific data
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Object Tracking Framework

* Features: VGG
— Pre-trained on ImageNet
— No fine-tuning on application specific data

e Optimization: Conjugate Gradient

12

II LINKOPING
) UNIVERSITY



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

Experiments: Object Tracking

« 3 datasets: OTB-100, Temple-Color, VOT2015
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Experiments: Object Tracking

« 3 datasets: OTB-100, Temple-Color, VOT2015

* VGG layer fusion on OTB:

83 +3.8%
82
81
80
79
78
77
76
75

+0.6%

Mean Overlap
Precision

Convl Convl + RGB + Convl
Conv5 + Conv5
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Experiments: Object Tracking

e Compared to explicit resampling in DCF
— Performance gain: +7.4% AUC
— Efficiency gain: —80% data size
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OTB Dataset (100 videos)

Success plot
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Temple-Color Dataset (128 videos)

Success plot
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Visual Object Tracking Challenge 2016

Tracker EAO A R A;onk BRranke AO EFO Impl.
1. (O C-COT 0.331 0.539 0.238 12.000 1.000 0.507 D M
2. TCNN 0.325 0.554 0.268 4.000 2.000 0.485 1.049 S M
3. SSAT 0.577 0.291 1.000 0.515 0475 S M
4. MLDF 0.311 0.490 0.233 36.000 1.000 0.428 1.483 DM
5. < Staple 0.295 0.544 0.378 5.000 10.000 0.388 11.144 D C

[Matej et al., ECCV VOT workshop 2016]
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Feature Point Tracking Framework

« Image intensity features

* Uniform regularization

18

II LINKOPING
) UNIVERSITY



Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

Feature Point Tracking Framework

« Image intensity features

* Uniform regularization
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Experiments: Feature Point Tracking

e Dataset: Sintel

Precision plot
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Conclusions

* Learn Continuous Convolution Operators
— Multi-resolution deep feature maps
— Sub-pixel accurate localization
— Sub-pixel supervision
 Superior results for two applications
— Object tracking

— Feature point tracking
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