The Fast Bilateral Solver

Jonathan T. Barron
Google Research
University
Ben Poole Stanford

ECCV 2016

Bilateral Filter

Blur the input while respected edges in the reference image.

Bilateral Filter

Input y

Bilateral
Filter

Referenc
R
Output \mathbf{x}
e

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma_{d}^{2}}\right)
$$

Bilateral Solver

Find the image that is as smooth as possible with respect to the reference image, and as close as possible to the input.

Bilateral Solver

Input y

Referenc

R

Output x
$\mathbf{x} \leftarrow \underset{\mathbf{x}}{\arg \min } \frac{\lambda}{2} \sum_{i, j} W_{i, j}\left(x_{i}-x_{j}\right)^{2}+\sum_{i}\left(x_{i}-y_{i}\right)^{2}$

Bilateral Solver

The bilateral filter is one gradient descent step in the bilateral solver.

(assuming: step size $=1, \lambda=1$, initial state $=$

Bilateral Solver

Bilateral Solver

Fast - Can be reformulated to be roughly as fast as a fast bilateral filter.

Bilateral Solver

Fast - Can be reformulated to be roughly as fast as a fast bilateral filter.

General - Can be easily generalized into weighted, robust, low rank, and differentiable variants.

Bilateral Solver

Fast - Can be reformulated to be roughly as fast as a fast bilateral filter.

General - Can be easily generalized into weighted, robust, low rank, and differentiable variants.

Effective - Performs well on a variety of tasks:
depth superresolution
colorization
stereo
semantic segmentation, etc.

Review: Bilateral-Space Optimization

Splat
resample from pixels into "bilateral-space"

Blur
apply a series of blurs in bilateral-space

Output

Slice
resample back into pixel-space

Adams et al, Eurographics 2010

Review: Bilateral-Space Optimization

Input

Splat
resample from pixels into "bilateral-space"

Blur
apply a series of blurs in bilateral-space

Output

Slice
resample back into pixel-space

Adams et al, Eurographics 2010
We can solve optimization problems based on bilateral kernels in this "bilateral space"

Barron et al, CVPR 2015
Märki et al, CVPR 2016

Bilateral Solver

If we know that :

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma^{2}}\right)
$$

Bilateral Solver

If we know that :

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma^{2}}\right)
$$

We can show that:

$$
\mathbf{W}=\mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}
$$

Bilateral Solver

If we know that :

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma^{2}}\right)
$$

We can show that:

$$
\mathbf{W}=\mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}
$$

Bilateral Solver

If we know that :

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma^{2}}\right)
$$

We can show that:

$$
\mathbf{W}=\mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}
$$

Bilateral Solver

If we know that :

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma^{2}}\right)
$$

We can show that:

$$
\mathbf{W}=\mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}
$$

Bilateral Solver

If we know that :

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma^{2}}\right)
$$

We can show that:

$$
\mathbf{W}=\mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}
$$

Bilateral Solver

If we know that :

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma^{2}}\right)
$$

We can show that:

$$
\mathbf{W}=\mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}
$$

Bilateral Solver

If we know that :

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma^{2}}\right)
$$

We can show that:

$$
\mathbf{W}=\mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}
$$

Bilateral Solver

If we know that :

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma^{2}}\right)
$$

We can show that:

$$
\mathbf{W}=\mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}
$$

Bilateral Solver

If we know that :

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma^{2}}\right)
$$

We can show that:

$$
\mathbf{W}=\mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}
$$

$$
\mathbf{x} \leftarrow \underset{\mathbf{x}}{\arg \min } \frac{\lambda}{2} \sum_{i, j} W_{i, j}\left(x_{i}-x_{j}\right)^{2}+\sum_{i}\left(x_{i}-y_{i}\right)^{2}
$$

Bilateral Solver

If we know that :

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma^{2}}\right)
$$

We can show that:

$$
\mathbf{W}=\mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}
$$

$$
\begin{aligned}
& \mathbf{A}=\lambda\left(\mathbf{D}_{\mathrm{m}}-\mathbf{D}_{\mathrm{n}} \mathbf{B D}_{\mathrm{n}}\right)+\mathbf{S} \overrightarrow{1} \\
& \mathbf{x} \leftarrow \mathbf{S}^{\mathrm{T}}\left(\mathrm{~A}^{-1}(\mathbf{S y})\right)
\end{aligned}
$$

Bilateral Solver

If we know that :

$$
W_{i, j}=\exp \left(-\sum_{d} \frac{\left(R_{i, d}-R_{j, d}\right)^{2}}{2 \sigma^{2}}\right)
$$

We can show that:

$$
\mathbf{W}=\mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}
$$

$$
\begin{aligned}
& \mathbf{A}=\lambda\left(\mathbf{D}_{\mathrm{m}}-\mathbf{D}_{\mathrm{n}} \mathbf{B D}_{\mathrm{n}}\right)+\mathbf{S} \overrightarrow{1} \\
& \mathbf{x} \leftarrow \mathbf{S}^{\mathrm{T}}\left(\mathrm{~A}^{-1}(\mathbf{S y})\right)
\end{aligned}
$$

(see paper for details)

Depth Superresolution

Depth Superresolution

Input y

task from Ferstl et al ICCV 2013, data from the Middlebury stereo dataset

Depth Superresolution

task from Ferstl et al ICCV 2013, data from the Middlebury stereo dataset

Depth Superresolution

task from Ferstl et al ICCV 2013, data from the Middlebury stereo dataset

Reference Image

Input Depth

True Depth

Chan et al.

Park et al.

FGF

GF

DT

Yang 2015

Ferstl et al.

Min et al.

Ma et al.

Yang 2007

$\dagger \mathrm{Lu}$

Zhang et al.

WLS

Bilateral Solver

$$
\mathbf{x} \leftarrow \underset{\mathbf{x}}{\arg \min } \frac{\lambda}{2} \sum_{i, j} W_{i, j}\left(x_{i}-x_{j}\right)^{2}+\sum_{i}\left(x_{i}-y_{i}\right)^{2}
$$

$$
\begin{aligned}
& \mathbf{A}=\lambda\left(\mathbf{D}_{\mathrm{m}}-\mathbf{D}_{\mathrm{n}} \mathbf{B D}_{\mathrm{n}}\right)+\mathbf{S} \overrightarrow{\mathbf{1}} \\
& \mathbf{x} \leftarrow \mathbf{S}^{\mathrm{T}}\left(\mathrm{~A}^{-1}(\mathbf{S y})\right)
\end{aligned}
$$

Weighted Bilateral Solver

$\mathbf{x} \leftarrow \underset{\mathbf{x}}{\arg \min } \frac{\lambda}{2} \sum_{i, j} W_{i, j}\left(x_{i}-x_{j}\right)^{2}+\sum_{i} c_{i}\left(x_{i}-y_{i}\right)^{2}$

$$
\begin{aligned}
& \mathbf{A}=\lambda\left(\mathbf{D}_{\mathrm{m}}-\mathbf{D}_{\mathrm{n}} \mathbf{B D} \mathbf{D}_{\mathrm{n}}\right)+\mathbf{S c} \\
& \mathbf{x} \leftarrow \mathbf{S}^{\mathrm{T}}\left(\mathrm{~A}^{-1}(\mathbf{S} \mathbf{y})\right)
\end{aligned}
$$

Weighted Bilateral Solver

nevian R

Input y

Confidence c

Weighted Bilateral Solver

Bilateral Solver
$0.85 \mathrm{sec} /$ megapixel

Levin et al $81.0 \mathrm{sec} / \mathrm{meg}$ apixel

$95 \times$ speedup

Levin et al, Colorization using optimization. SIGGRAPH 2004

Weighted Bilateral Solver

$\mathbf{x} \leftarrow \underset{\mathbf{x}}{\arg \min } \frac{\lambda}{2} \sum_{i, j} W_{i, j}\left(x_{i}-x_{j}\right)^{2}+\sum_{i} c_{i}\left(x_{i}-y_{i}\right)^{2}$

$$
\begin{aligned}
& \mathbf{A}=\lambda\left(\mathbf{D}_{\mathrm{m}}-\mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}}\right)+\mathbf{S c} \\
& \mathbf{x} \leftarrow \mathbf{S}^{\mathrm{T}}\left(\mathrm{~A}^{-1}(\mathbf{S} \mathbf{y})\right)
\end{aligned}
$$

Robust Bilateral Solver

$$
\begin{gathered}
\mathbf{x} \leftarrow \underset{\mathbf{x}}{\arg \min } \frac{\lambda}{2} \sum_{i, j} W_{i, j}\left(x_{i}-x_{j}\right)^{2}+\sum_{i} \rho\left(x_{i}-y_{i}\right) \\
\equiv
\end{gathered}
$$

while not converged :

$$
\begin{aligned}
& \mathbf{c} \leftarrow \frac{\rho^{\prime}(\mathbf{x}-\mathbf{y})}{\mathbf{x}-\mathbf{y}} \\
& \mathbf{A}=\lambda\left(\mathbf{D}_{\mathrm{m}}-\mathbf{D}_{\mathrm{n}} \mathbf{B D}_{\mathrm{n}}\right)+\mathbf{S c} \\
& \mathbf{x} \leftarrow \mathbf{S}^{\mathrm{T}}\left(\mathrm{~A}^{-1}(\mathbf{S} \mathbf{y})\right)
\end{aligned}
$$

Robust Bilateral Solver

$$
\mathbf{x} \leftarrow \underset{\mathbf{x}}{\arg \min } \frac{\lambda}{2} \sum_{i, j} W_{i, j}\left(x_{i}-x_{j}\right)^{2}+\sum_{i} \rho\left(x_{i}-y_{i}\right)
$$

while not converged :

$$
\begin{aligned}
& \mathbf{c} \leftarrow \frac{\rho^{\prime}(\mathbf{x}-\mathbf{y})}{\mathbf{x}-\mathbf{y}} \\
& \mathbf{A}=\lambda\left(\mathbf{D}_{\mathrm{m}}-\mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}}\right)+\mathbf{S c} \\
& \mathbf{x} \leftarrow \mathbf{S}^{\mathrm{T}}\left(\mathrm{~A}^{-1}(\mathbf{S} \mathbf{y})\right)
\end{aligned}
$$

can be done in
bilateral space

Stereo

MC-CNN

Stereo

MC-CNN + Robust Bilateral Solver

Stereo

MC-CNN

Stereo

MC-CNN + Robust Bilateral Solver

Zbontar \& LeCun, CVPR 2015

Stereo

Middlebury Test Set V3		
Method	MAE	RMSE
MC-CNN	17.9	55.0
MC-CNN + RBS	8.19	29.9

(Lowest test-set MAE and RMSE at submission time)

Stereo

Middlebury Test Set V3

Method	MAE RMSE	
MC-CNN	17.9	55.0
MC-CNN + RBS	8.19	29.9

Middlebury Training Set V3

Method	MAE RMSE	
MC-CNN	5.93	18.36
MC-CNN + TF	5.67	16.18
MC-CNN + FGF	5.91	16.32
MC-CNN + WMF	5.30	15.62
MC-CNN + DT	5.69	16.53
MC-CNN + RBS	2.81	8.44

Stereo

Middlebury Test Set V3

Method	MAE RMSE	
MC-CNN	17.9	55.0
MC-CNN + RBS	8.19	29.9

Middlebury Training Set V3

Method	MAE	RMSE
MeshStereo	3.83	10.75
MeshStereo + TF	3.81	9.91
MeshStereo + FGF	3.96	10.03
MeshStereo + WMF	3.87	10.10
MeshStereo + DT	3.77	10.12
MeshStereo + RBS	3.22	8.72

Stereo

Middlebury Test Set V3

Method	MAE RMSE	
MC-CNN	17.9	55.0
MC-CNN + RBS	8.19	29.9

Middlebury Training Set V3

Method	MAE RMSE	
TMAP	3.98	11.55
TMAP + TF	3.94	10.90
TMAP + FGF	4.17	10.79
TMAP + WMF	4.11	11.01
TMAP + DT	3.86	10.92
TMAP + RBS	3.31	9.44

Stereo

Middlebury Test Set V3

Method	MAE RMSE	
MC-CNN	17.9	55.0
MC-CNN + RBS	8.19	29.9

Middlebury Training Set V3

Method	MAE RMSE	
SGM	3.85	10.68
SGM + TF	3.82	9.55
SGM + FGF	4.05	9.66
SGM + WMF	3.97	9.99
SGM + DT	3.85	9.90
SGM + RBS	3.44	9.21

Bilateral Solver as a "Layer"

Bilateral Solver as a "Layer"

Reference

Bilateral Solver as a "Layer"

Forward: $\quad \mathbf{x} \leftarrow \mathbf{S}^{\mathrm{T}}\left(\mathrm{A}^{-1}(\mathbf{S y})\right)$

Bilateral Solver as a "Layer"

$$
\text { Forward: } \quad \mathbf{x} \leftarrow \mathbf{S}^{\mathrm{T}}\left(\mathrm{~A}^{-1}(\mathbf{S y})\right)
$$

$$
\text { Backward: } \quad \nabla_{\mathbf{y}} \leftarrow \mathbf{S}^{\mathrm{T}}\left(\mathrm{~A}^{-1}\left(\mathbf{S} \nabla_{\mathbf{x}}\right)\right)
$$

Bilateral Solver as a "Layer"

$$
\text { Forward: } \quad \mathbf{x} \leftarrow \mathbf{S}^{\mathrm{T}}\left(\mathrm{~A}^{-1}(\mathbf{S y})\right)
$$

$$
\text { Backward: } \quad \nabla_{\mathbf{y}} \leftarrow \mathbf{S}^{\mathrm{T}}\left(\mathrm{~A}^{-1}\left(\mathbf{S} \nabla_{\mathbf{x}}\right)\right)
$$

No annoying bookkeeping, "unrolling", etc.

Semantic Segmentation

Reference

Semantic Segmentation

Semantic Segmentation

Accuracy Runtime (IOU) (ms)

Deeplab
62.3\% | 58

Deeplab + DenseCRF $67.6 \% \mid 58+918$

Deeplab + DenseCRF

Semantic Segmentation

Deeplab + Bilateral Solver

Deeplab + Bilateral Solver Ь৮.U\% | Ђర + ૪Ь

70\% as accurate
11x faster

Preview: Optical Flow for VR

Anderson et al, Jump: Virtual Reality Video, SIGGRAPH Asia 2016

Preview: Optical Flow for VR

Anderson et al, Jump: Virtual Reality Video, SIGGRAPH Asia 2016

Preview: Optical Flow for VR

Anderson et al, Jump: Virtual Reality Video, SIGGRAPH Asia 2016

To Conclude

The bilateral solver is a simple, fast, and effective tool.

To Conclude

The bilateral solver is a simple, fast, and effective tool.

Nearly as fast as a bilateral filter, but significantly more accurate.

To Conclude

The bilateral solver is a simple, fast, and effective tool.

Nearly as fast as a bilateral filter, but significantly more accurate.

Works well on a variety of tasks: depth superresolution, colorization, stereo, semantic segmentation, etc.

To Conclude

The bilateral solver is a simple, fast, and effective tool.

Nearly as fast as a bilateral filter, but significantly more accurate.

Works well on a variety of tasks: depth superresolution, colorization, stereo, semantic segmentation, etc.

Can be easily integrated into deep learning pipelines.

Code Available*

*not the exact same code that was used for the paper

github.com/poolio/bilateral solver

Thanks!

