The Fast Bilateral Solver

Jonathan T. Barron Google Research University Ben Poole Stanford

ECCV 2016

Bilateral Filter

Blur the input while respected edges in the reference image.

Bilateral Filter

Find the image that is as smooth as possible with respect to the reference image, and as close as possible to the input.

The bilateral filter is one gradient descent step in the bilateral solver.

(assuming: step size =
$$1_{\lambda} = 1$$
, initial state = 1_{λ}

Fast - Can be reformulated to be roughly as fast as a fast bilateral filter.

Fast - Can be reformulated to be roughly as fast as a fast bilateral filter.

General - Can be easily generalized into weighted, robust, low rank, and differentiable variants.

Fast - Can be reformulated to be roughly as fast as a fast bilateral filter.

General - Can be easily generalized into weighted, robust, low rank, and differentiable variants.

Effective - Performs well on a variety of tasks: depth superresolution colorization stereo semantic segmentation, etc.

Review: Bilateral-Space Optimization

Splat resample from pixels into "bilateral-space" Blur apply a series of blurs in bilateral-space

Slice resample back into pixel-space

Adams et al, Eurographics 2010

Review: Bilateral-Space Optimization

resample from pixels into "bilateral-space" Blur apply a series of blurs in bilateral-space

Slice resample back into pixel-space

Adams et al, Eurographics 2010

We can solve optimization problems based on bilateral kernels in this "bilateral space"

Barron et al, CVPR 2015 Märki et al, CVPR 2016

If we know that :

$$W_{i,j} = \exp\left(-\sum_{d} \frac{(R_{i,d} - R_{j,d})^2}{2\sigma^2}\right)$$

If we know that :

$$W_{i,j} = \exp\left(-\sum_{d} \frac{(R_{i,d} - R_{j,d})^2}{2\sigma^2}\right)$$

$$\mathbf{W} = \mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}$$

If we know that :

$$W_{i,j} = \exp\left(-\sum_{d} \frac{(R_{i,d} - R_{j,d})^2}{2\sigma^2}\right)$$

If we know that :

$$W_{i,j} = \exp\left(-\sum_{d} \frac{(R_{i,d} - R_{j,d})^2}{2\sigma^2}\right)$$

If we know that :

$$W_{i,j} = \exp\left(-\sum_{d} \frac{(R_{i,d} - R_{j,d})^2}{2\sigma^2}\right)$$

If we know that :

$$W_{i,j} = \exp\left(-\sum_{d} \frac{(R_{i,d} - R_{j,d})^2}{2\sigma^2}\right)$$

If we know that :

$$W_{i,j} = \exp\left(-\sum_{d} \frac{(R_{i,d} - R_{j,d})^2}{2\sigma^2}\right)$$

If we know that :

$$W_{i,j} = \exp\left(-\sum_{d} \frac{(R_{i,d} - R_{j,d})^2}{2\sigma^2}\right)$$

If we know that :

$$W_{i,j} = \exp\left(-\sum_{d} \frac{(R_{i,d} - R_{j,d})^2}{2\sigma^2}\right)$$

If we know that :

$$W_{i,j} = \exp\left(-\sum_{d} \frac{(R_{i,d} - R_{j,d})^2}{2\sigma^2}\right)$$

$$\mathbf{W} = \mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}$$

$$\mathbf{x} \leftarrow \underset{\mathbf{x}}{\operatorname{arg\,min}} \ \frac{\lambda}{2} \sum_{i,j} W_{i,j} \left(x_i - x_j \right)^2 + \sum_i (x_i - y_i)^2$$

If we know that :

$$W_{i,j} = \exp\left(-\sum_{d} \frac{(R_{i,d} - R_{j,d})^2}{2\sigma^2}\right)$$

$$\mathbf{W} = \mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}$$

$$\begin{split} \mathbf{A} &= \lambda \left(\mathbf{D}_{m} - \mathbf{D}_{n} \mathbf{B} \mathbf{D}_{n} \right) + \mathbf{S} \vec{1} \\ \mathbf{x} &\leftarrow \mathbf{S}^{T} \left(\mathbf{A}^{-1} \left(\mathbf{S} \mathbf{y} \right) \right) \end{split}$$

If we know that :

$$W_{i,j} = \exp\left(-\sum_{d} \frac{(R_{i,d} - R_{j,d})^2}{2\sigma^2}\right)$$

We can show that:

$$\mathbf{W} = \mathbf{S}^{\mathrm{T}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} \mathbf{D}_{\mathrm{m}}^{-1} \mathbf{S}$$

$$\begin{aligned} \mathbf{A} &= \lambda \left(\mathbf{D}_{m} - \mathbf{D}_{n} \mathbf{B} \mathbf{D}_{n} \right) + \mathbf{S} \vec{1} \\ \mathbf{x} &\leftarrow \mathbf{S}^{T} \left(\mathbf{A}^{-1} \left(\mathbf{S} \mathbf{y} \right) \right) \end{aligned}$$

(see paper for details)

Input y

Reference Image

Park et al.

 \mathbf{FGF}

 GF

 ${\rm Input\,Depth}$

Min *et al*.

Ma et al.

Yang 2007

† Liet al.

Ferstl *et al*.

 ${\rm True}\,{\rm Depth}$

Zhang *et al*.

Method	Err	Time (sec
Nearest Neighbor	7.26	0.003
Bicubic	5.91	0.007
Kiechle <i>et al</i> .	5.86	450
Bilinear	5.16	0.004
Liu <i>et al</i> .	5.10	16.60
Shen <i>et al</i> .	4.24	31.48
Diebel & Thrun	3.98	
Chan <i>et al</i> .	3.83	3.02
Guided Filter	3.76	23.89
Min <i>et al</i> .	3.74	0.383
Lu & Forsyth	3.69	20
Park <i>et al</i> .	3.61	24.05
Domain Transform	3.56	0.021
Ma et al.	3.49	18
GuidedFilter (Matlab)	3.47	0.434
Zhang <i>et al</i> .	3.45	1.346
Fast Guided Filter	3.41	0.225
Yang 2015	3.41	0.304
Yang <i>et al.</i> 2007	3.25	
Farbman <i>et al</i> .	3.19	6.11
Joint Bilateral Upsample	3.14	1.98
Ferstl <i>et al</i> .	2.93	140
Li et al.	2.56	700
Kwon <i>et al</i> .	1.21	300
Bilateral Solver	2.70	0.234

Reference Image

Park et al.

 \mathbf{FGF}

 GF

 ${\rm Input\,Depth}$

Min *et al*.

Ma et al.

Yang 2007

Yang 2015

 ${\rm True\,Depth}$

Zhang et al.

WLS

Method	Err	Time (sec
Nearest Neighbor	7.26	0.003
Bicubic	5.91	0.007
Kiechle <i>et al</i> .	5.86	450
Bilinear	5.16	0.004
Liu <i>et al</i> .	5.10	16.60
Shen <i>et al</i> .	4.24	31.48
Diebel & Thrun	3.98	
Chan <i>et al</i> .	3.83	3.02
Guided Filter	3.76	23.89
Min <i>et al</i> .	3.74	0.383
Lu & Forsyth	3.69	20
Park <i>et al</i> .	3.61	24.05
Domain Transform	3.56	0.021
Ma et al.	3.49	18
GuidedFilter (Matlab)	3.47	0.434
Zhang <i>et al</i> .	3.45	1.346
Fast Guided Filter	3.41	0.225
Yang 2015	3.41	0.304
Yang <i>et al.</i> 2007	3.25	
Farbman <i>et al</i> .	3.19	6.11
Joint Bilateral Upsample	3.14	1.98
Ferstl <i>et al</i> .	2.93	140
Li et al.	2.56	700
Kwon <i>et al</i> .	1.21	300
Bilateral Solver	2.70	0.234

Reference Image

Park et al.

 \mathbf{FGF}

 GF

Input Depth

Min *et al*.

Ma et al.

Yang 2007

† Liet al.

Yang 2015

Ferstl et al.

 ${\rm True\,Depth}$

Zhang et al.

WLS

\mathbf{DC}
\sim

Method	Err	$\left \operatorname{Time}\left(\operatorname{sec}\right)\right $
Nearest Neighbor	7.26	0.003
Bicubic	5.91	0.007
Kiechle <i>et al</i> .	5.86	450
Bilinear	5.16	0.004
Liu <i>et al</i> .	5.10	16.60
Shen <i>et al</i> .	4.24	31.48
Diebel & Thrun	3.98	—
Chan <i>et al</i> .	3.83	3.02
Guided Filter	3.76	23.89
Min <i>et al</i> .	3.74	0.383
Lu & Forsyth	3.69	20
Park <i>et al</i> .	3.61	24.05
Domain Transform	3.56	0.021
Ma et al.	3.49	18
GuidedFilter (Matlab)	3.47	0.434
Zhang <i>et al</i> .	3.45	1.346
Fast Guided Filter	3.41	0.225
Yang 2015	3.41	0.304
Yang <i>et al.</i> 2007	3.25	—
Farbman <i>et al</i> .	3.19	6.11
Joint Bilateral Upsample	3.14	1.98
Ferstl <i>et al</i> .	2.93	140
Li <i>et al</i> .	2.56	700
Kwon <i>et al</i> .	1.21	300
Bilateral Solver	2.70	0.234

Reference Image

 ${\rm Input\,Depth}$

 ${\rm True\,Depth}$

Zhang *et al*.

WLS

Method	Err	$\operatorname{Time}(\operatorname{sec})$
Nearest Neighbor	7.26	0.003
Bicubic	5.91	0.007
Kiechle <i>et al</i> .	5.86	450
Bilinear	5.16	0.004
Liu <i>et al</i> .	5.10	16.60
Shen <i>et al</i> .	4.24	31.48
Diebel & Thrun	3.98	
Chan <i>et al</i> .	3.83	3.02
Guided Filter	3.76	23.89
Min <i>et al</i> .	3.74	0.383
Lu & Forsyth	3.69	20
Park et al.	3.61	24.05
Domain Transform	3.56	0.021
Ma et al.	3.49	18
GuidedFilter (Matlab)	3.47	0.434
Zhang <i>et al</i> .	3.45	1.346
Fast Guided Filter	3.41	0.225
Yang 2015	3.41	0.304
Yang <i>et al.</i> 2007	3.25	—
Farbman <i>et al</i> .	3.19	6.11
Joint Bilateral Up sample	3.14	1.98
Ferstl <i>et al</i> .	2.93	140
Li et al.	2.56	700
Kwon <i>et al</i> .	1.21	300
Bilateral Solver	2.70	0.234

 $_{\mathrm{JB}}$

 \mathbf{FGF}

Ferstl *et al*.

Yang 2007

† Liet al.

BS

$$\mathbf{x} \leftarrow \underset{\mathbf{x}}{\operatorname{arg\,min}} \ \frac{\lambda}{2} \sum_{i,j} W_{i,j} \left(x_i - x_j \right)^2 + \sum_i (x_i - y_i)^2$$

$$\begin{split} \mathbf{A} &= \lambda \left(\mathbf{D}_{m} - \mathbf{D}_{n} \mathbf{B} \mathbf{D}_{n} \right) + \mathbf{S} \vec{1} \\ \mathbf{x} &\leftarrow \mathbf{S}^{T} \left(\mathbf{A}^{-1} \left(\mathbf{S} \mathbf{y} \right) \right) \end{split}$$

$$\mathbf{x} \leftarrow \underset{\mathbf{x}}{\operatorname{arg\,min}} \ \frac{\lambda}{2} \sum_{i,j} W_{i,j} \left(x_i - x_j \right)^2 + \sum_i c_i (x_i - y_i)^2$$

$egin{aligned} \mathbf{A} &= \lambda \left(\mathbf{D}_{\mathrm{m}} - \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}} ight) + \mathbf{S} \mathbf{c} \ \mathbf{x} &\leftarrow \mathbf{S}^{\mathrm{T}} \left(\mathrm{A}^{-1} \left(\mathbf{S} \mathbf{y} ight) ight) \end{aligned}$

Bilateral Solver 0.85 sec/megapixel

Levin *et al* 81.0 sec/megapixel

95× speedup

Levin et al, Colorization using optimization. SIGGRAPH 2004

$$\mathbf{x} \leftarrow \underset{\mathbf{x}}{\operatorname{arg\,min}} \ \frac{\lambda}{2} \sum_{i,j} W_{i,j} \left(x_i - x_j \right)^2 + \sum_i c_i (x_i - y_i)^2$$

$$egin{aligned} \mathbf{A} &= \lambda \left(\mathbf{D}_{\mathrm{m}} - \mathbf{D}_{\mathrm{n}} \mathbf{B} \mathbf{D}_{\mathrm{n}}
ight) + \mathbf{S} \mathbf{c} \ \mathbf{x} &\leftarrow \mathbf{S}^{\mathrm{T}} \left(\mathbf{A}^{-1} \left(\mathbf{S} \mathbf{y}
ight)
ight) \end{aligned}$$

Robust Bilateral Solver

$$\mathbf{x} \leftarrow \underset{\mathbf{x}}{\operatorname{arg\,min}} \frac{\lambda}{2} \sum_{i,j} W_{i,j} \left(x_i - x_j \right)^2 + \sum_i \rho(x_i - y_i) = =$$

 $\mathbf{while} \operatorname{not} \operatorname{converged}$:

$$\begin{split} \mathbf{c} &\leftarrow \frac{\rho'(\mathbf{x} - \mathbf{y})}{\mathbf{x} - \mathbf{y}} \\ \mathbf{A} &= \lambda \left(\mathbf{D}_{m} - \mathbf{D}_{n} \mathbf{B} \mathbf{D}_{n} \right) + \mathbf{S} \mathbf{c} \\ \mathbf{x} &\leftarrow \mathbf{S}^{T} \left(\mathbf{A}^{-1} \left(\mathbf{S} \mathbf{y} \right) \right) \end{split}$$

Robust Bilateral Solver

$$\mathbf{x} \leftarrow \underset{\mathbf{x}}{\operatorname{arg\,min}} \ \frac{\lambda}{2} \sum_{i,j} W_{i,j} \left(x_i - x_j \right)^2 + \sum_i \rho(x_i - y_i)$$

$$\begin{split} \mathbf{while} & \text{not converged} : \\ \mathbf{c} \leftarrow \frac{\rho'(\mathbf{x} - \mathbf{y})}{\mathbf{x} - \mathbf{y}} \\ \mathbf{A} &= \lambda \left(\mathbf{D}_{m} - \mathbf{D}_{n} \mathbf{B} \mathbf{D}_{n} \right) + \mathbf{S} \mathbf{c} \\ \mathbf{x} \leftarrow \mathbf{S}^{T} \left(\mathbf{A}^{-1} \left(\mathbf{S} \mathbf{y} \right) \right) \end{split}$$

can be done in bilateral space

MC-CNN

MC-CNN + Robust Bilateral Solver

MC-CNN

MC-CNN + Robust Bilateral Solver

Method MAE RMSE MC-CNN 17.9 55.0 MC-CNN + RBS 8.19 29.9

(Lowest test-set MAE and RMSE at submission time)

Method MAE RMSE MC-CNN 17.9 55.0 MC-CNN + RBS 8.19 29.9

Middlebury Training Set V3

Method	MAE	RMSE
MC-CNN	5.93	18.36
MC-CNN + TF	5.67	16.18
MC-CNN + FGF	5.91	16.32
MC-CNN + WMF	5.30	15.62
MC-CNN + DT	5.69	16.53
MC-CNN + RBS	2.81	8.44

Method MAE RMSE MC-CNN 17.9 55.0 MC-CNN + RBS 8.19 29.9

Middlebury Training Set V3

Method	MAE	RMSE
MeshStereo	3.83	10.75
MeshStereo + TF	3.81	9.91
MeshStereo + FGF	3.96	10.03
MeshStereo + WMF	3.87	10.10
MeshStereo + DT	3.77	10.12
MeshStereo + RBS	3.22	8.72

Method MAE RMSE MC-CNN 17.9 55.0 MC-CNN + RBS 8.19 29.9

Middlebury Training Set V3		
Method	MAE	RMSE
TMAP	3.98	11.55
TMAP + TF	3.94	10.90
TMAP + FGF	4.17	10.79
TMAP + WMF	4.11	11.01
TMAP + DT	3.86	10.92
TMAP + RBS	3.31	9.44

Method MAE RMSE MC-CNN 17.9 55.0 MC-CNN + RBS 8.19 29.9

Middlebury Training Set V3

Method	MAE	RMSE
SGM	3.85	10.68
SGM + TF	3.82	9.55
SGM + FGF	4.05	9.66
SGM + WMF	3.97	9.99
SGM + DT	3.85	9.90
SGM + RBS	3.44	9.21

Reference

Forward:
$$\mathbf{x} \leftarrow \mathbf{S}^{\mathrm{T}} \left(\mathrm{A}^{-1} \left(\mathbf{S} \mathbf{y} \right) \right)$$

Forward:
$$\mathbf{x} \leftarrow \mathbf{S}^{\mathrm{T}} \left(\mathrm{A}^{-1} \left(\mathbf{S} \mathbf{y} \right) \right)$$

Backward:
$$\nabla_{\mathbf{y}} \leftarrow \mathbf{S}^{\mathrm{T}} \left(\mathrm{A}^{-1} \left(\mathbf{S} \nabla_{\mathbf{x}} \right) \right)$$

Forward:
$$\mathbf{x} \leftarrow \mathbf{S}^{T} \left(A^{-1} \left(\mathbf{S} \mathbf{y} \right) \right)$$

Backward:
$$\nabla_{\mathbf{y}} \leftarrow \mathbf{S}^{\mathrm{T}} \left(\mathrm{A}^{-1} \left(\mathbf{S} \nabla_{\mathbf{x}} \right) \right)$$

No annoying bookkeeping, "unrolling", etc.

Reference

Deeplab

Chen et al, ICLR 2015

Deeplab + DenseCRF

Chen et al, ICLR 2015

(ms)

58

Deeplab + Bilateral Solver

Accuracy Runtime (IOU) (ms) Deeplab 62.3% 58 Deeplab + DenseCRF 67.6% 58 +918 Deeplab + Bilateral Solver 66.0% 58 + 85

70% as accurate 11x faster

Preview: Optical Flow for VR

Anderson et al, Jump: Virtual Reality Video, SIGGRAPH Asia 2016

Preview: Optical Flow for VR

Anderson et al, Jump: Virtual Reality Video, SIGGRAPH Asia 2016

Preview: Optical Flow for VR

Anderson et al, Jump: Virtual Reality Video, SIGGRAPH Asia 2016

The bilateral solver is a simple, fast, and effective tool.

The bilateral solver is a simple, fast, and effective tool.

Nearly as fast as a bilateral filter, but significantly more accurate.

The bilateral solver is a simple, fast, and effective tool.

Nearly as fast as a bilateral filter, but significantly more accurate.

Works well on a variety of tasks: depth superresolution, colorization, stereo, semantic segmentation, etc.

The bilateral solver is a simple, fast, and effective tool.

Nearly as fast as a bilateral filter, but significantly more accurate.

Works well on a variety of tasks: depth superresolution, colorization, stereo, semantic segmentation, etc.

Can be easily integrated into deep learning pipelines.

Code Available*

*not the exact same code that was used for the paper

github.com/poolio/bilateral_solver

Thanks!