Facilitating and Exploring Planar Homogeneous Texture for Indoor Scene Understanding

Shahzor Ahmad and Loong-Fah Cheong

National University of Singapore

Motivation \& Challenges

Recovering Affine-Ambiguous Homography

- Minimize reprojection error in estimated image frequency to recover $\mathrm{h}_{7}, \mathrm{~h}_{8}$

Estimating Optimal Image Frequency

$$
E(f)=\sum_{p \in \mathcal{P}} D_{p}\left(f_{p}\right)+\sum_{\{p, q\} \in \mathcal{N}} V_{p, q}\left(f_{p}, f_{q}\right)
$$

Graph Cuts Optimization (GCO)		Gabor filter center radial frequency
$f_{p}=\left(\Omega_{p}, \theta_{p}\right) \in \mathcal{L}$		
	$D_{p}\left(f_{p}\right)=\frac{\alpha}{A\left(f_{p} ; p\right)}$	radial orientation

$$
\begin{array}{l|l}
\begin{array}{l}
\text { Pairwise Term: } \\
\text { smooths radial frequency } \\
\text { and orientation }
\end{array} & \begin{aligned}
V\left(f_{p}, f_{q}\right)= & \beta\left(\Omega_{p}-\Omega_{q}\right)^{2} \\
& +\gamma\left\{\left(\sin \theta_{p}-\sin \theta_{q}\right)^{2}+\left(\cos \theta_{p}-\cos \theta_{q}\right)^{2}\right\}
\end{aligned} \\
\hline
\end{array}
$$

Affine Rectification (1/2)

GIVEN TILT REM DEMOD RANSAC GCO GT

Texture with limited spatial support and/or outliers / clutter

TILT: Transform-Invariant Low-Rank Texture
(Zhang et. al, 2010)

REM: Repetition Maximization
(Aiger et. al. 2012)

DEMOD: Demodulation
(Super and Bovik 1995)

Affine Rectification (2/2)

non low-rank texture
significant perspective distortion
photometric severities

Detection in the Wild

Geometric Class Assignment

Our AP = 0.53 vs. TILT's AP = 0.15

Scene Geometric Layout Estimation scene Hedua et. al. Proposed 2009

incorrect face localization

>3 principal
directions
no straight lines in
a principal direction
forked layout
non-Manhattan
scene structure

Indoor Scene Recognition (1/2)

Rectification mitigates in-class variation, hence can improve classification performance

Indoor Scene Recognition (2/2) MIT Indoor 67 (Quattoni \& Torralba 2009)

Representation	\% Accuracy
LBP_u2(16,2)	37.10%
LBP_u2_Rect(16,2)	$\mathbf{4 0 . 8 4 \%}$
LBP_u2 + LBP_u2_Rect	$\mathbf{4 1 . 2 8 \%}$
CEN	46.44%
CEN_Rect	46.30%
CEN + CEN_Rect	$\mathbf{5 0 . 2 2 \%}$
SIFT	59.14%
SIFT_Rect	57.98%
SIFT + SIFT_Rect	$\mathbf{6 1 . 0 0 \%}$
HOG	57.69%
HOG_Rect	56.65%
HOG + HOG_Rect	$\mathbf{6 0 . 4 2 \%}$
CEN + SIFT + HOG	61.66%
SIFT_Rect + HOG_Rect	60.88%
CEN + SIFT + HOG +	$\mathbf{6 4 . 5 4 \%}$
SIFT_Rect + HOG_Rect	

Rectification produces features that are discriminative and complementary to regular, non-rectified features.

No learning for feature extraction!

Thank You!

October 8 - 16, 2016 | Amsterdam | the Netherlands

