Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation

M. Ghifary ${ }^{1,2}$, W. Bastiaan Kleijn², M. Zhang ${ }^{2}$, D. Balduzzi², W. Li ${ }^{3}$
mghifary@gmail.com, \{bastiaan.kleijn,mengjie.zhang\}@ecs.vuw.ac.nz, david.balduzzi@vuw.ac.nz, liwen@vision.ee.ethz.ch

Unsupervised Domain Adaptation

- Dataset bias [TOR'2011]
- Domain adaptation (DA): solve dataset bias between source and target domains
- Unsupervised domain adaptation (uDA): DA without labeled target data
- Deep learning has played an important role [DON'14, GAN'15], but still awaiting more effective approaches to come

[TOR'11] A. Torralba and A. Efros. Unbiased look at dataset bias. In CVPR, 2011.
[DON'14] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, T. Darrell. DeCAF: a deep convolutional activation feature for generic visual recognition. In ICML, 2014.
[GAN'15] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In ICML, 2015.

Main Contribution

- Deep multi-task learning method for uDA: Deep ReconstructionClassification Networks (DRCN)
- Motivated from semi-supervised learning hypothesis
- When labels are lacking, modelling both the labels, $Q(y \mid x)$, and the structure of the data, $Q(x)$, would produce a better labelling function
- In uDA, we could model $\mathrm{Q}(\mathrm{x})$ from the target domain , but not $\mathrm{Q}(\mathrm{y} \mid \mathrm{x})$ since no labelled samples -- need to borrow labels from somewhere else (source domain)
- Our proposed method jointly learns two functions with a shared encoding representation:

1. (Source) labelling function
2. (Target) reconstruction function

Deep Reconstruction-Classification Networks (DRCN)

- Architecture

- Algorithm
- Define two empirical losses:

$$
\mathcal{L}^{s}\left(\theta_{c}\right)=\frac{1}{n_{s}} \sum_{i=1}^{n_{s}} \ell_{c}\left(f_{\theta_{c}}\left(x_{i}^{s}\right), y_{i}^{s}\right)
$$

$$
\mathcal{L}^{t}\left(\theta_{r}\right)=\frac{1}{n_{t}} \sum_{i=1}^{n_{t}} \ell_{r}\left(f_{\theta_{r}}\left(x_{i}^{t}\right), x_{i}^{t}\right)
$$

- Solve

$$
\left\{\hat{\theta}_{c}, \hat{\theta}_{r}\right\}:=\arg \min _{\theta_{c}, \theta_{r}} \lambda \mathcal{L}^{s}\left(\theta_{c}\right)+(1-\lambda) \mathcal{L}^{t}\left(\theta_{r}\right)
$$

- Optimized by stochastic gradient descent

Results (1)

- Cross-domain object classification accuracy
- Benchmarks: MNIST (MN), USPS (US), SVHN (SV), STL (ST), CIFAR (CI)
- ~8\% improvement on SVHN -> MNIST over the prior state-of-the-art

Methods	MN \rightarrow US	US \rightarrow MN	$\mathrm{SV} \rightarrow \mathrm{MN}$	$\mathrm{MN} \rightarrow$ SV	ST \rightarrow CI	$\mathrm{Cl} \rightarrow \mathrm{ST}$
ConvNet	85.55 ± 0.12	65.77 ± 0.06	62.33 ± 0.09	25.95 ± 0.04	54.17 ± 0.21	63.61 ± 0.17
$\mathrm{SDA}_{\text {sh }}$ [32]	43.14 ± 0.16	37.30 ± 0.12	55.15 ± 0.08	8.23 ± 0.11	35.82 ± 0.07	42.27 ± 0.12
SA [27]	85.89 ± 0.13	51.54 ± 0.06	63.17 ± 0.07	28.52 ± 0.10	54.04 ± 0.19	62.88 ± 0.15
SCAE [44]	85.78 ± 0.08	63.11 ± 0.04	60.02 ± 0.16	27.12 ± 0.08	54.25 ± 0.13	62.18 ± 0.04
SCAE_{t} [44]	86.24 ± 0.11	65.37 ± 0.03	65.57 ± 0.09	27.57 ± 0.13	54.68 ± 0.08	61.94 ± 0.06
ReverseGrad [18]	$\underline{91.11 \pm 0.07}$	74.01 ± 0.05	73.91 ± 0.07	$\underline{35.67 \pm 0.04}$	56.91 ± 0.05	66.12 ± 0.08
DRCN	$\overline{91.80 \pm 0.09}$	$\underline{73.67 \pm 0.04}$	$\overline{81.97 \pm 0.16}$	40.05 ± 0.07	$\overline{58.86 \pm 0.07}$	66.37 ± 0.10
ConvNet $_{\text {tgt }}$	96.12 ± 0.07	98.67 ± 0.04	98.67 ± 0.04	91.52 ± 0.05	78.81 ± 0.11	66.50 ± 0.07

- Comparison with other DRCN versions: $\mathrm{DRCN}_{\mathrm{s}}$ and $\mathrm{DRCN}_{\text {st }}$
- DRCN ${ }_{s}$ and $D R C N_{s t}$ underperform the original DRCN - unlabeled source data do not help
- Partially explained by our theoretical analysis in connection to SSL

Methods	MN \rightarrow US	US \rightarrow MN	SV \rightarrow MN	MN \rightarrow SV	ST \rightarrow CI	CI \rightarrow ST
DRCN $_{s}$	89.92 ± 0.12	65.96 ± 0.07	73.66 ± 0.04	34.29 ± 0.09	55.12 ± 0.12	63.02 ± 0.06
DRCN $_{\text {st }}$	91.15 ± 0.05	68.64 ± 0.05	75.88 ± 0.09	37.77 ± 0.06	55.26 ± 0.06	64.55 ± 0.13
DRCN $^{\mathbf{D R C N}}$	$\mathbf{9 1 . 8 0} \pm \mathbf{0 . 0 9}$	$\mathbf{7 3 . 6 7} \pm \mathbf{0 . 0 4}$	$\mathbf{8 1 . 9 7} \pm \mathbf{0 . 1 6}$	$\mathbf{4 0 . 0 5} \pm \mathbf{0 . 0 7}$	$\mathbf{5 8 . 8 6} \pm \mathbf{0 . 0 7}$	$\mathbf{6 6 . 3 7} \pm \mathbf{0 . 1 0}$

Results (2)

- The Office dataset [SAE'10] experiments
- Use AlexNet
- Competitive performance
- Best when the target is Amazon, which has the most number of unlabelled data among others

Method	$\mathrm{A} \rightarrow \mathrm{W}$	$\mathrm{W} \rightarrow \mathrm{A}$	$\mathrm{A} \rightarrow \mathrm{D}$	$\mathrm{D} \rightarrow \mathrm{A}$	$\mathrm{W} \rightarrow \mathrm{D}$	$\mathrm{D} \rightarrow \mathrm{W}$
DDC [41]	61.8 ± 0.4	52.2 ± 0.4	64.4 ± 0.3	52.1 ± 0.8	98.5 ± 0.4	95.0 ± 0.5
DAN [40]	68.5 ± 0.4	$\underline{53.1} \pm 0.3$	$\underline{67.0} \pm 0.4$	54.0 ± 0.4	$\underline{99.0} \pm 0.2$	$\underline{96.0} \pm 0.3$
ReverseGrad [18]	$\mathbf{7 2 . 6} \pm 0.3$	52.7 ± 0.2	$\mathbf{6 7 . 1} \pm 0.3$	$\underline{54.5} \pm 0.4$	99.2 ± 0.3	96.4 ± 0.1
DRCN	$\underline{68.7} \pm 0.3$	54.9 ± 0.5	66.8 ± 0.5	56.0 ± 0.5	$\underline{99.0} \pm 0.2$	96.4 ± 0.3

[SAE'10] K. Saenko, B. Kulis, M. Friz, and T. Darrell. Adapting visual category models to new domains. In ECCV, 2010.

Results (3)

- Insights from data reconstruction $f_{\hat{\theta}_{r}}\left(x^{t}\right)$
- Reconstructed source images from DRCN resemble the appearance of the target images

Source Inp	Reconstruction				ce
SVHN					IST
					1,11111111
					1111111111
					5555555555 666666666
					NIST
					5555555555 666666666
					88888 989 9

Summary

1. Propose a deep learning approach for unsupervised domain adaptation: Deep Reconstruction Classification Networks (DRCN) that jointly learns a shared representation for two tasks: i) source output classification, ii) target input reconstruction
2. DRCN achieves state-of-the-art performance over a range of crossdomain object classification benchmarks
3. Reconstructed source images from DRCN resemble the appearance of target images
4. DRCN's learning objective is closely related to a semi-supervised learning framework, which leads to the soundness of the approach
