Learning Without Forgetting

Zhizhong Li, Derek Hoiem
University of Illinois, Urbana Champaign

Motivation

Goal

- Add new capabilities, keep existing capabilities
- Using only data from the new task.

\checkmark Outperforms fine-tuning
\checkmark Outperforms feature extraction on new task
\checkmark Simple

Method

1. Obtain old task responses

Method

2. Train on new images

$$
\mathcal{L}=\sum_{i=1}^{m} \mathcal{L}_{o l d}\left(Y_{o i}, \hat{Y}_{o i}\right)+\mathcal{L}_{n e w}\left(Y_{n}, \hat{Y}_{n}\right)+\mathcal{R}(\theta)
$$

Experiments

- AlexNet

1 old task
$+$
1 new task

- Compared Methods:
- Feature extraction (keep original network)
- Fine-tuning (keep original last layer)
- Joint training (requires old data)

Results (vs. Feature Extraction)

- Shown: accuracy (ours) relative to the baseline's on seven task pairs

Results (vs. Feature Extraction)

- Shown: accuracy (ours) relative to the baseline's on seven task pairs

Results (vs. Feature Extraction)

- Shown: accuracy (ours) relative to the baseline's on seven task pairs

Results (vs. Fine-tuning)

- Old task: actively preserves performance
- New task: mimics joint training

Results (vs. Joint Training)

- Similar performance

Results (vs. Joint Training)

- Similar performance

