Linear Depth Estimation from an Uncalibrated, Monocular Polarisation Image

William Smith

Ravi Ramamoorthi

Silvia Tozza

Overview

- Depth from a single polarisation image
- Only need to solve large, sparse linear system
- Monocular and passive
- Arbitrary uncalibrated illumination (estimated)

Shape-from-polarisation

---- Unpolarised light ray

When light reflects from a surface it becomes partially polarised

Degree of polarisation and phase angle provide shape cue

Polarimetric Image Capture

Rotate linear polarising filter in front of camera

Intensity varies sinusoidally

Polarisation Image

$$DOLP = \frac{I_{max} - I_{min}}{I_{max} + I_{min}}$$

$$I_{\rm unpol} = \frac{I_{\rm max} + I_{\rm min}}{2}$$

Shape-from-polarisation

Shape-from-polarisation

Shape-from-shading

Unpolarised intensity provides shading cue

$$I_{\text{unpol}} = \mathbf{n} \cdot \mathbf{s}$$

$$= n_x s_x + n_y s_y + n_z s_z$$

$$= \frac{-p s_x - q s_y + s_z}{\sqrt{p^2 + q^2 + 1}}$$

$$p = \partial_x z$$
$$q = \partial_y z$$

First linear expression

Ratio between degree of polarisation and unpolarised intensity:

First linear equation in surface gradient

$$\frac{I_{\text{unpol}}}{f(\text{DOLP}, \eta)} = -ps_x - qs_y + s_z$$

$$\mathbf{n} \cdot \begin{bmatrix} \cos(\phi) \\ -\sin(\phi) \end{bmatrix} = 0$$

Second linear equation in surface gradient

$$-p\cos(\phi) + q\sin(\phi) = 0$$

Solving for depth

Finite difference approximations:

$$p(x,y) \approx z(x+1,y) - z(x,y)$$
$$q(x,y) \approx z(x,y+1) - z(x,y)$$

Form linear system from pairs of linear equations for each pixel:

$$\mathbf{z}^* = \arg\min_{\mathbf{z}} \|\mathbf{A}\mathbf{z} - \mathbf{b}\|^2$$

