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Pose (yaw) Variations
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The two keys to successful face
recognition

1. During training: Learn the variability of same-subject
appearances
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2. During testing: Make same subjects easier to compare
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Domain (face) specific data  GLalv
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Increasing appearance variability in the training set

09999999
dd 3333343
$855555555

3D shape




pDomain (face) speciiic aata ¢4

VE

augmentation
Increasing appearance variability in the training set
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Reducing appearance variability in the test set

CNN tramed on
augmented data
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Reducing appearance variability in the test set

» In case we have multiple frames from
videos in a template (set of images)
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Deep Feature Space



GLA|VE

Reducing appearance variability in the test set

» In case we have multiple frames from
videos in a template (set of images)

» Each video track is pooled across frames

A In the feature space with average
&
» Pair-wise similarity scores are then
. ® pooled with Soft-Max operator
@ pooled feature
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Deep Feature Space
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What does this do to performance?
Example: IJB-A
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XEXEX.

Come see us at the poster (S-4B-09) or visit our
webpage for more information, code and results

Thank you!
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