Do We Really Need to Collect Millions of Faces for Effective Face Recognition?

Iacopo Masi*,1, Anh Tuan Tran*,1, Tal Hassner*,2,3, Jatuporn Toy Leksut1 and Gerard Medioni1

Institute for Robotics and Intelligent Systems, USC, CA, USA
Information Sciences Institute, USC, CA, USA
The Open University of Israel, Israel

Motivation

Intra-subject Variations

Method	# train img.	subj.	img. / subj.
DeepFaces'14 (FB)	4 m	4,030	1k
VGG Face'15	2.6 m	2,622	1k
Face Net'15 (Google	e) 200 m	8 m	25
Fusion'15 (FB)	500 m	10 m	50
MegaFace'16	1.02 m	690.5 k	1.5

Even with lots of resources, it's hard to ensure sufficient intrasubject and pose variations

Motivation

Intra-subject Variations

Pose (yaw) Variations

Method	# train img.	subj.	img. / subj.
DeepFaces'14 (FB)	4 m	4,030	1k
VGG Face'15	2.6 m	2,622	1k
Face Net'15 (Google	e) 200 m	8 m	25
Fusion'15 (FB)	500 m	10 m	50
MegaFace'16	1.02 m	690.5 k	1.5

Even with lots of resources, it's hard to ensure sufficient intrasubject and pose variations

The two keys to successful face recognition

During training: Learn the variability of same-subject appearances

Increase training set intra-subject appearance variations

2. During testing: Make same subjects easier to compare

Reduce test set intra-subject appearance variations

Domain (face) specific data augmentation

Increasing appearance variability in the training set

3D pose

Domain (face) specific data augmentation

GLA VE

Increasing appearance variability in the training set

Domain (face) specific data augmentation

GLA VE

Increasing appearance variability in the training set

Expression

Reducing appearance variability in the test set

Reducing appearance variability in the test set

In case we have multiple frames from videos in a template (set of images)

Deep Feature Space

Reducing appearance variability in the test set

- In case we have multiple frames from videos in a template (set of images)
- Each video track is pooled across frames in the feature space with average
- Pair-wise similarity scores are then pooled with Soft-Max operator

$$\mathbf{s}^{\star} = \frac{\sum_{i=1}^{N} \mathbf{s}_{i} \exp(\alpha \ \mathbf{s}_{i})}{\sum_{i=1}^{N} \exp(\alpha \ \mathbf{s}_{i})}$$

What does this do to performance?

Example: IJB-A

Training better CNNs with less effort using domain (face) specific data augmentation!!!

Do We Really Need to Collect Millions of Faces for Effective Face Recognition?

Iacopo Masi*,1, Anh Tuan Tran*,1, Tal Hassner*,2,3, Jatuporn Toy Leksut1 and Gerard Medioni1

Come see us at the poster (S-4B-09) or visit our webpage for more information, code and results

Thank you!