Identity Mappings in Deep Residual Networks

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun Microsoft Research

Contributions

- Importance of "direct" information path
-- Identity mapping for shortcut path
-- Identity activation function
- Novel "pre-activation" design

Contributions

- Importance of "direct" information path -- Identity mapping for shortcut path -- Identity activation function
- Novel "pre-activation" design

(a) original

(b) proposed

Deep Residual Network: a Review

- Residual units in general form

$$
\begin{gathered}
\mathbf{y}_{l}=h\left(\mathbf{x}_{l}\right)+\mathcal{F}\left(\mathbf{x}_{l}, \mathcal{W}_{l}\right), \\
\mathbf{x}_{l+1}=f\left(\mathbf{y}_{l}\right),
\end{gathered}
$$

Deep Residual Network: a Review

- Residual units in general form

Skip Connection

$$
\begin{gathered}
\mathbf{y}_{l}=h\left(\mathbf{x}_{l}\right)+\mathcal{F}\left(\mathbf{x}_{l}, \mathcal{W}_{l}\right), \\
\mathbf{x}_{l+1}=f\left(\mathbf{y}_{l}\right),
\end{gathered}
$$

Deep Residual Network: a Review

- Residual units in general form

$$
\begin{gathered}
\mathbf{y}_{l}=h\left(\mathbf{x}_{l}\right)+\mathcal{F}\left(\mathbf{x}_{l}, \mathcal{W}_{l}\right) \\
\mathbf{x}_{l+1}=f\left(\mathbf{y}_{l}\right) \\
\text { Activation Function }
\end{gathered}
$$

Analysis of Deep Residual Networks

- What if both h and f are identity mappings?
- Forward view

$$
\mathbf{x}_{L}=\mathbf{x}_{l}+\sum_{i=l}^{L-1} \mathcal{F}\left(\mathbf{x}_{i}, \mathcal{W}_{i}\right)
$$

- Backward view

$$
\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{l}}=\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \frac{\partial \mathbf{x}_{L}}{\partial \mathbf{x}_{l}}=\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}}\left(1+\frac{\partial}{\partial \mathbf{x}_{l}} \sum_{i=l}^{L-1} \mathcal{F}\left(\mathbf{x}_{i}, \mathcal{W}_{i}\right)\right)
$$

Analysis of Deep Residual Networks

- What if both h and f are identity mappings?
- Forward view

$$
\mathbf{x}_{L}=\mathbf{x}_{l}+\sum_{i=l}^{L-1} \mathcal{F}\left(\mathbf{x}_{i}, \mathcal{W}_{i}\right)
$$

- Backward view
"Clean" Information Path

$$
\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{l}}=\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}} \frac{\partial \mathbf{x}_{L}}{\partial \mathbf{x}_{l}}=\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}}\left(1+\frac{\partial}{\partial \mathbf{x}_{l}} \sum_{i=l}^{L-1} \mathcal{F}\left(\mathbf{x}_{i}, \mathcal{W}_{i}\right)\right)
$$

On the Importance of Identity Skip Connections

- Let $h\left(\boldsymbol{x}_{l}\right)=\lambda_{l} \boldsymbol{x}_{l}$ to break identity shortcut
- Forward view

$$
\mathbf{x}_{L}=\prod_{i=l}^{L-1} \lambda_{i} \mathbf{x}_{l}+\sum_{i=l}^{L-1} \hat{\mathcal{F}}\left(\mathbf{x}_{i}, \mathcal{W}_{i}\right)
$$

- Backward view

$$
\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{l}}=\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}}\left(\prod_{i=l}^{L-1} \lambda_{i}+\frac{\partial}{\partial \mathbf{x}_{l}} \sum_{i=l}^{L-1} \hat{\mathcal{F}}\left(\mathbf{x}_{i}, \mathcal{W}_{i}\right)\right)
$$

On the Importance of Identity Skip Connections

- Let $h\left(\boldsymbol{x}_{l}\right)=\lambda_{l} \boldsymbol{x}_{l}$ to break identity shortcut
- Forward view
- Backward view

$$
\mathbf{x}_{L}=\prod_{i=l}^{L-1} \lambda_{i} \mathbf{x}_{l}+\sum_{i=l}^{L-1} \hat{\mathcal{F}}\left(\mathbf{x}_{i}, \mathcal{W}_{i}\right)
$$

Risk of exponentially explosion or vanishing!

$$
\left.\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{l}}=\frac{\partial \mathcal{E}}{\partial \mathbf{x}_{L}}\left(\mid \prod_{i=l}^{L-1} \lambda_{i}\right]+\frac{\partial}{\partial \mathbf{x}_{l}} \sum_{i=l}^{L-1} \hat{\mathcal{F}}\left(\mathbf{x}_{i}, \mathcal{W}_{i}\right)\right)
$$

Experiments on Skip Connections

- Various types of shortcut connections

(d) shortcut-only gating

Experiments on Skip Connections

case	Fig.	on shortcut	on \mathcal{F}	error (\%)	remark
original [1]	Fig. 2(a)	1	1	$\mathbf{6 . 6 1}$	
constant	Fig. 2(b)	0	1	fail	This is a plain net
		0.5	1	fail	
		0.5	0.5	12.35	
exclusive	Fig. 2(c)	$1-g(\mathbf{x})$	$g(\mathbf{x})$	fail	init $b_{g}=0$ to -5
		$1-g(\mathbf{x})$	$g(\mathbf{x})$	8.70	init $b_{g}=-6$
		$1-g(\mathbf{x})$	$g(\mathbf{x})$	9.81	init $b_{g}=-7$
shortcut-only	Fig. 2(d)	$1-g(\mathbf{x})$	1	12.86	init $b_{g}=0$
gating		$1-g(\mathbf{x})$	1	6.91	init $b_{g}=-6$
1×1 conv shortcut	Fig. 2(e)	1×1 conv	1	12.22	
dropout shortcut	Fig. 2(f)	dropout 0.5	1	fail	

On the Usage of Activation Functions

- Not only identity shortcut, but also identity activation function
- Pre-activation design

Experiments on Activation

(a) original

(b) BN after addition

(c) ReLU before addition

(d) ReLU-only pre-activation

(e) full pre-activation

Experiments on Activation

case	Fig.	ResNet-110	ResNet-164
original Residual Unit [1]	Fig. 4(a)	6.61	5.93
BN after addition	Fig. 4(b)	8.17	6.50
ReLU before addition	Fig. 4(c)	7.84	6.14
ReLU-only pre-activation	Fig. 4(d)	6.71	5.91
full pre-activation	Fig. 4(e)	$\mathbf{6 . 3 7}$	$\mathbf{5 . 4 6}$

Analysis

- Ease of optimization for very deep networks

Analysis

- Reducing overfitting

Experiments on ImageNet

method	train crop size	test crop size	top-1 (\%)	top-5 $(\%)$
ResNet-152, original Residual Unit [1]	224×224	224×224	23.0	6.7
ResNet-152, original Residual Unit [1]	224×224	320×320	21.3	5.5
ResNet-152, proposed Residual Unit	224×224	320×320	21.1	5.5
ResNet-200, original Residual Unit [1]	224×224	320×320	21.8	6.0
ResNet-200, proposed Residual Unit	224×224	320×320	$\mathbf{2 0 . 7}$	$\mathbf{5 . 3}$
Inception v3 [17]	299×299	299×299	21.2	5.6

Thank you

