ShapeFit and ShapeKick for Robust, Scalable Structure from Motion

Thomas Goldstein Univ. of Maryland

Paul Hand

Choongbum Lee MIT

Rice Univ.

Vladislav Voroninski

Helm.ai

Stefano Soatto UCLA

13 October 2016 - ECCV

Location recovery from relative directions with outliers and known camera rotations

Precise formulation: location recovery from relative directions with outliers

Let:
$$t_1 \dots t_n \in \mathbb{R}^3$$

$$G = ([n], E = E_g \sqcup E_b)$$

$$v_{ij} = \frac{t_i - t_j}{\|t_i - t_j\|_2} \text{ for } ij \in E_g$$

$$v_{ij} \in \mathcal{S}^2 \qquad \text{for } ij \in E_b$$

Given: $G, \{v_{ij}\}$

Find: $\{t_i\}$ up to translation and scale

ShapeFit:

A convex program for location recovery with outliers

$$\begin{aligned} & \underset{\{t_i\}}{\text{minimize}} & & \sum_{ij \in E} \|P_{v_{ij}^{\perp}}(t_i - t_j)\|_2 \\ & \text{subject to} & & \sum_{ij \in E} \langle t_i - t_j, v_{ij} \rangle = 1, & \sum_{i \in [n]} t_i = 0 \end{aligned}$$

ShapeKick:

A fast ADMM implementation of ShapeFit using kicking

ShapeFit is provably robust to adversarial outliers

Let: $t_1 cdots t_n \sim \mathcal{N}(0, I_{3\times 3})$ be i.i.d. $ij \in E$ with prob. $p = \Omega(n^{-1/5} \log^{3/5} n)$ $E_b \subset E$ be an arbitrary subset $v_{ij} \in \mathcal{S}^2$ be arbitrary for $ij \in E_b$ $\gamma = cp^5/\log^3 n$ for some c > 0

Theorem

If n is large enough, and $\max \deg(E_b) \leq \gamma n$, then with probability at least $1 - \frac{1}{n^4}$, the minimizer of Shapefit is unique and exactly equals $\{t_i\}$ up to translation and scale.

ShapeKick: comparable accuracy and 10x faster than the state of the art

Median recovery error (m)

	1d+Huber	1d + SK	1d+LUD
NYC Library	2.2	2.4	2.8
Piazza Pop.	3.2	1.7	2.0
Metropolis	4.0	2.4	3.7
Montreal ND	0.9	1.5	1.1
Tow. London	3.5	3.3	4.3
Notre Dame	0.5	0.5	0.5
Alamo	0.8	0.8	0.9
Union Sq.	7.9	7.4	7.9
Vienna Cath.	4.3	7.6	5.8
Roman For.	6.4	19	7.7
Piccadilly	1.8	2.1	2.1

Solution time (s)

1d+Huber	1d+SK	LUD
26	2.2	57
115	1.9	35
83	2.4	27
50	3.5	112
43	2.8	41
66	7.1	247
202	11	186
116	3.7	
462	8.2	255
130	9.5	
593	40	

Shown for Robust PCA translations formulation in Ozyesil and Singer (2015).

ShapeFit suggests a simpler global Structure from Motion pipeline:

Bipartite pipeline:

Set up bipartite locations problem