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Overview of RDF Stream Processing(RSP)
we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
ate mappings to beconsumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operators aredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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Figure 1: An example continuous query pipeline

By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, the processing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. This motivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, the second reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how the selection operation over a stream S1 works [21].

Theduplicate-preserving projection and union operators arealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operators such aswindow
join, aggregation, duplication elimination and negation.Survey of Data St ream Management 19

Figure 2.1: Examples of persistent query operators over data st reams

case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for it sgroup has changed. The t ime and space requirements of aggregat ion depend upon the type

of funct ion being computed [116]. An aggregate f is distributive if, for two disjoint mult i-sets

X and Y , f (X ∪ Y ) = f (X ) ∪ f (Y ). Dist ribut ive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is

evaluated by storing the current sum and cont inually adding to it the values of new tuples as they

arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.

Figure 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likeahash table or a B-tree
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On boosting the processing throughput 

of RSP engines

 Experience from Implementation CQELS Execution Framework:  Using 

off-the-shelf data structures and algorithms are not enough!!??

Hardly can reach 10000 operator executions/second on large 

windows(100k-1M entries)

Big overhead of using row-based data structures

 Bottom-up perspective: investigating closely to data structures and 

algorithms

Highly efficient data structures for maintaining processing states

Sophisticate incremental evaluation algorithms of query operators
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Incremental Evaluation for continuous 

operators in a Nutshell

L. Golab, M. T. Özsu, Data stream management, Synthesis Lectures on Data 

Management (2010) 1–73. 

stateful sliding window operators: 

reuse previous computing effort

Overhead of maintaining 

previous processing states
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Incremental Evaluation of Continuous Queries 

over RDF Stream: Issues and Challenges

 Row-based data structure is not suitable for :

 very small RDF data elements (encoded as fixed-size integers)

unusually large number individual data points (millions of 

mappings/RDF nodes are generated/evicted per second) 

 Timestamping or negative-tuple solutions for incremental 

computation of RDF data elements and mappings have technical 

issues:

Auxiliary data (extra timestamps or negative tuples) might be 

bigger than original data

Other limitations of state-of-art techniques (double computation 

in evicting expired computing state)
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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By a simple modification of an RDF store, this continu-
ousquery can beprocessed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts[2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
dataelements such asRDF triplesand temporal RDF triplescan
beencoded asfixed-size integers. Hence, theprocessing states
can beencoded asunusually largenumbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, therow-based
data structure used in relational DSMSs is inefficient because
it requires the tupleheader sizes that might dominate the total
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Moreover, asshown in several workson thephysical representa-
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atree-based datastructure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
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than re-evaluation strategy in state-of-the-art literaturediscussed
in Section 6, i.e, incremental evaluation. Beforeanalysing the
shortcomings of current approaches, wepresent an overview of
theoperational aspects in incrementally evaluating somebasic
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a sliding-window operator is dictated by how to maintain the
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuplescan be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams(S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of theseoperators consumes aset of bagsof mappings and
returnsabag of mappings which then can beused as intermedi-
atemappings to beconsumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuousquery operatorsaredefined by extending
thequery operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leavesarebags of mappings stored in thewindow buffersof
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to theoutput stream.
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By a simple modification of an RDF store, this continu-
ousquery can beprocessed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts[2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
dataelements such asRDF triplesand temporal RDF triplescan
beencoded asfixed-size integers. Hence, theprocessing states
can beencoded asunusually largenumbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, therow-based
data structure used in relational DSMSs is inefficient because
it requires the tupleheader sizes that might dominate the total
storagefootprint [17]. In particular, therow-based datastructure
istypically designed for wider and shorter tableswhich might in-
creasesignificantly thememory footprint for stream processing.
Moreover, asshown in several workson thephysical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF dataelements. Thismotivatesusto design
atree-based datastructure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literaturediscussed
in Section 6, i.e, incremental evaluation. Beforeanalysing the
shortcomings of current approaches, wepresent an overview of
theoperational aspects in incrementally evaluating somebasic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

Thecomplexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can bedoneon-the-fly without
having tomaintainany processing state. For instance, Figure2(a)
showshow theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to statelessoperators,
astateful operator needsto probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state isdone differently for each type of operator. Next, wewill
discusshow to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuplescan be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams(S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is
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did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuousquery operatorsaredefined by extending
thequery operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
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sliding window operators and the top, i.e. AVERAGE, returns a
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By a simple modification of an RDF store, this continu-
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queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts[2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
dataelements such asRDF triplesand temporal RDF triplescan
beencoded asfixed-size integers. Hence, theprocessing states
can beencoded asunusually largenumbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, therow-based
data structure used in relational DSMSs is inefficient because
it requires the tupleheader sizes that might dominate the total
storagefootprint [17]. In particular, therow-based datastructure
istypically designed for wider and shorter tableswhich might in-
creasesignificantly thememory footprint for stream processing.
Moreover, asshown in several workson thephysical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF dataelements. Thismotivatesusto design
atree-based datastructure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literaturediscussed
in Section 6, i.e, incremental evaluation. Beforeanalysing the
shortcomings of current approaches, wepresent an overview of
theoperational aspects in incrementally evaluating somebasic
sliding operators of relational DSMSs in the following section.
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stateless operators, re-evaluation can bedoneon-the-fly without
having tomaintainany processing state. For instance, Figure2(a)
showshow theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to statelessoperators,
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuplescan be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams(S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
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can be removed if they cease to sat isfy the query. This can be done by appending corresponding
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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returnsabag of mappings which then can beused as intermedi-
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ators. Such continuousquery operatorsaredefined by extending
thequery operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
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ousquery can beprocessed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
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it requires the tupleheader sizes that might dominate the total
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istypically designed for wider and shorter tableswhich might in-
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Moreover, asshown in several workson thephysical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF dataelements. Thismotivatesusto design
atree-based datastructure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literaturediscussed
in Section 6, i.e, incremental evaluation. Beforeanalysing the
shortcomings of current approaches, wepresent an overview of
theoperational aspects in incrementally evaluating somebasic
sliding operators of relational DSMSs in the following section.
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a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
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showshow theselection operation over astream S1 works [21].
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in every incremental computation step. Maintaining processing
state isdone differently for each type of operator. Next, wewill
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In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuplescan be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams(S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuousquery operatorsaredefined by extending
thequery operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
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AVERAGE./

[[W1]]

[[W3]]

[[W2]]

···
Sfare

···
Spickup

···
Sdropo↵

rangePT2H

count 1000

rangePT1H

Figure1: An examplecontinuousquery pipeline
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common RDF store isdesigned for heavily read-intensivecon-
texts[2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
dataelements such asRDF triplesand temporal RDF triplescan
beencoded asfixed-size integers. Hence, theprocessing states
can beencoded asunusually largenumbers of individual small
data points compared to the amount incoming data in the raw
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it requires the tupleheader sizes that might dominate the total
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istypically designed for wider and shorter tableswhich might in-
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Moreover, asshown in several workson thephysical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF dataelements. Thismotivatesusto design
atree-based datastructure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literaturediscussed
in Section 6, i.e, incremental evaluation. Beforeanalysing the
shortcomings of current approaches, wepresent an overview of
theoperational aspects in incrementally evaluating somebasic
sliding operators of relational DSMSs in the following section.
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a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can bedoneon-the-fly without
having tomaintainany processing state. For instance, Figure2(a)
showshow theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to statelessoperators,
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuplescan be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams(S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for its group has changed. The t ime and space requirements of aggregat ion depend upon the type

of funct ion being computed [116]. An aggregate f is distributive if, for two disjoint mult i-sets
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may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is
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arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuousquery operatorsaredefined by extending
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the ones defined in [5, 6]. In each query graph, the inputs at
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data points compared to the amount incoming data in the raw
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it requires the tupleheader sizes that might dominate the total
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuplescan be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams(S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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can be removed if they cease to sat isfy the query. This can be done by appending corresponding
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still
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By a simple modification of an RDF store, this continu-
ousquery can beprocessed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts[2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
dataelements such asRDF triplesand temporal RDF triplescan
beencoded asfixed-size integers. Hence, theprocessing states
can beencoded asunusually largenumbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, therow-based
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showshow theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to statelessoperators,
astateful operator needsto probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state isdone differently for each type of operator. Next, wewill
discusshow to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data st reams

case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for itsgroup haschanged. The t imeand space requirements of aggregat ion depend upon the type

of funct ion being computed [116]. An aggregate f is distributive if, for two disjoint mult i-sets

X and Y , f (X ∪Y ) = f (X ) ∪ f (Y). Distribut ive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is

evaluated by storing thecurrent sum and cont inually adding to it the values of new tuples as they

arrive. Moreover, f is algebraic if it can be computed using the values of two or moredistribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify thek most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a stream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two streams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.

Figure 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Window join operator
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Additionally, expired tuples are removed from the processing
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provided that old tuplescan be identified and skipped during the
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S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likeahash tableor aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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[[W2]]

···
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···
Spickup

···
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rangePT2H

count 1000

rangePT1H

Figure 1: An examplecontinuous query pipeline

By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data st reams

case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for its group has changed. The t ime and space requirements of aggregat ion depend upon the type

of funct ion being computed [116]. An aggregate f is distributive if, for two disjoint mult i-sets

X and Y , f (X ∪ Y ) = f (X ) ∪ f (Y ). Dist ribut ive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is

evaluated by storing the current sum and cont inually adding to it the values of new tuples as they

arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.

Figure 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of theseoperators consumes aset of bagsof mappings and
returnsabag of mappings which then can beused as intermedi-
atemappings to beconsumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuousquery operatorsaredefined by extending
thequery operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leavesarebags of mappings stored in thewindow buffersof
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to theoutput stream.
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By a simple modification of an RDF store, this continu-
ousquery can beprocessed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts[2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
dataelements such asRDF triplesand temporal RDF triplescan
beencoded asfixed-size integers. Hence, theprocessing states
can beencoded asunusually largenumbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, therow-based
data structure used in relational DSMSs is inefficient because
it requires the tupleheader sizes that might dominate the total
storagefootprint [17]. In particular, therow-based datastructure
istypically designed for wider and shorter tableswhich might in-
creasesignificantly thememory footprint for stream processing.
Moreover, asshown in several workson thephysical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF dataelements. Thismotivatesusto design
atree-based datastructure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literaturediscussed
in Section 6, i.e, incremental evaluation. Beforeanalysing the
shortcomings of current approaches, wepresent an overview of
theoperational aspects in incrementally evaluating somebasic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

Thecomplexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can bedoneon-the-fly without
having tomaintainany processing state. For instance, Figure2(a)
showshow theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to statelessoperators,
astateful operator needsto probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state isdone differently for each type of operator. Next, wewill
discusshow to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for itsgroup haschanged. The t imeand space requirements of aggregat ion depend upon the type

of funct ion being computed [116]. An aggregate f is distributive if, for two disjoint mult i-sets

X and Y , f (X ∪Y ) = f (X ) ∪ f (Y). Distribut ive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is

evaluated by storing thecurrent sum and cont inually adding to it the values of new tuples as they

arrive. Moreover, f is algebraic if it can be computed using the values of two or moredistribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify thek most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a stream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two streams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.

Figure 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuplescan be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams(S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likeahash tableor aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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···
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···
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count 1000
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Figure 1: An examplecontinuous query pipeline

By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data st reams

case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for its group has changed. The t ime and space requirements of aggregat ion depend upon the type

of funct ion being computed [116]. An aggregate f is distributive if, for two disjoint mult i-sets

X and Y , f (X ∪ Y ) = f (X ) ∪ f (Y ). Dist ribut ive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is

evaluated by storing the current sum and cont inually adding to it the values of new tuples as they

arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.

Figure 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree

3

we use the term "mapping" for "solution mapping". In effect,
each of theseoperators consumes aset of bagsof mappings and
returnsabag of mappings which then can beused as intermedi-
atemappings to beconsumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuousquery operatorsaredefined by extending
thequery operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leavesarebags of mappings stored in thewindow buffersof
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to theoutput stream.

AVERAGE./

[[W1]]

[[W3]]

[[W2]]

···
Sfare

···
Spickup

···
Sdropo↵

rangePT2H

count 1000

rangePT1H

Figure1: An examplecontinuousquery pipeline

By a simple modification of an RDF store, this continu-
ousquery can beprocessed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts[2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
dataelements such asRDF triplesand temporal RDF triplescan
beencoded asfixed-size integers. Hence, theprocessing states
can beencoded asunusually largenumbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, therow-based
data structure used in relational DSMSs is inefficient because
it requires the tupleheader sizes that might dominate the total
storagefootprint [17]. In particular, therow-based datastructure
istypically designed for wider and shorter tableswhich might in-
creasesignificantly thememory footprint for stream processing.
Moreover, asshown in several workson thephysical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF dataelements. Thismotivatesusto design
atree-based datastructure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literaturediscussed
in Section 6, i.e, incremental evaluation. Beforeanalysing the
shortcomings of current approaches, wepresent an overview of
theoperational aspects in incrementally evaluating somebasic
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Thecomplexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can bedoneon-the-fly without
having tomaintainany processing state. For instance, Figure2(a)
showshow theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to statelessoperators,
astateful operator needsto probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
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COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify thek most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a stream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two streams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuplescan be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams(S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likeahash tableor aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.

AVERAGE./

[[W1]]

[[W3]]

[[W2]]

···
Sfare

···
Spickup

···
Sdropo↵

rangePT2H

count 1000

rangePT1H

Figure 1: An examplecontinuous query pipeline

By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is
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arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.
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elimination (c), aggregation (d), and negation (e).

Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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texts[2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
dataelements such asRDF triplesand temporal RDF triplescan
beencoded asfixed-size integers. Hence, theprocessing states
can beencoded asunusually largenumbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, therow-based
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it requires the tupleheader sizes that might dominate the total
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creasesignificantly thememory footprint for stream processing.
Moreover, asshown in several workson thephysical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF dataelements. Thismotivatesusto design
atree-based datastructure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literaturediscussed
in Section 6, i.e, incremental evaluation. Beforeanalysing the
shortcomings of current approaches, wepresent an overview of
theoperational aspects in incrementally evaluating somebasic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

Thecomplexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can bedoneon-the-fly without
having tomaintainany processing state. For instance, Figure2(a)
showshow theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to statelessoperators,
astateful operator needsto probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state isdone differently for each type of operator. Next, wewill
discusshow to deal with basic stateful operatorssuch aswindow
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuplescan be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams(S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of theseoperators consumes aset of bagsof mappings and
returnsabag of mappings which then can beused as intermedi-
atemappings to beconsumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuousquery operatorsaredefined by extending
thequery operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leavesarebags of mappings stored in thewindow buffersof
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to theoutput stream.
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By a simple modification of an RDF store, this continu-
ousquery can beprocessed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts[2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
dataelements such asRDF triplesand temporal RDF triplescan
beencoded asfixed-size integers. Hence, theprocessing states
can beencoded asunusually largenumbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, therow-based
data structure used in relational DSMSs is inefficient because
it requires the tupleheader sizes that might dominate the total
storagefootprint [17]. In particular, therow-based datastructure
istypically designed for wider and shorter tableswhich might in-
creasesignificantly thememory footprint for stream processing.
Moreover, asshown in several workson thephysical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF dataelements. Thismotivatesusto design
atree-based datastructure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literaturediscussed
in Section 6, i.e, incremental evaluation. Beforeanalysing the
shortcomings of current approaches, wepresent an overview of
theoperational aspects in incrementally evaluating somebasic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

Thecomplexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can bedoneon-the-fly without
having tomaintainany processing state. For instance, Figure2(a)
showshow theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to statelessoperators,
astateful operator needsto probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state isdone differently for each type of operator. Next, wewill
discusshow to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data st reams

case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for itsgroup haschanged. The t imeand space requirements of aggregat ion depend upon the type
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuplescan be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams(S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likeahash tableor aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for its group has changed. The t ime and space requirements of aggregat ion depend upon the type

of funct ion being computed [116]. An aggregate f is distributive if, for two disjoint mult i-sets

X and Y , f (X ∪ Y ) = f (X ) ∪ f (Y ). Dist ribut ive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is

evaluated by storing the current sum and cont inually adding to it the values of new tuples as they

arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of theseoperators consumes aset of bagsof mappings and
returnsabag of mappings which then can beused as intermedi-
atemappings to beconsumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuousquery operatorsaredefined by extending
thequery operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leavesarebags of mappings stored in thewindow buffersof
sliding window operators and the top, i.e. AVERAGE, returns a
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By a simple modification of an RDF store, this continu-
ousquery can beprocessed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts[2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
dataelements such asRDF triplesand temporal RDF triplescan
beencoded asfixed-size integers. Hence, theprocessing states
can beencoded asunusually largenumbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, therow-based
data structure used in relational DSMSs is inefficient because
it requires the tupleheader sizes that might dominate the total
storagefootprint [17]. In particular, therow-based datastructure
istypically designed for wider and shorter tableswhich might in-
creasesignificantly thememory footprint for stream processing.
Moreover, asshown in several workson thephysical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF dataelements. Thismotivatesusto design
atree-based datastructure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literaturediscussed
in Section 6, i.e, incremental evaluation. Beforeanalysing the
shortcomings of current approaches, wepresent an overview of
theoperational aspects in incrementally evaluating somebasic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

Thecomplexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can bedoneon-the-fly without
having tomaintainany processing state. For instance, Figure2(a)
showshow theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to statelessoperators,
astateful operator needsto probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state isdone differently for each type of operator. Next, wewill
discusshow to deal with basic stateful operatorssuch aswindow
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X and Y , f (X ∪Y ) = f (X ) ∪ f (Y). Distribut ive aggregates, such as COUNT, SUM, MAX and MIN,
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unique values and one of the values occurring twice.
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negative tuples to the output st ream [12, 125]. This way, negat ion over two streams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuplescan be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams(S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likeahash tableor aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data st reams

case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for its group has changed. The t ime and space requirements of aggregat ion depend upon the type

of funct ion being computed [116]. An aggregate f is distributive if, for two disjoint mult i-sets

X and Y , f (X ∪ Y ) = f (X ) ∪ f (Y ). Dist ribut ive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is

evaluated by storing the current sum and cont inually adding to it the values of new tuples as they

arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and
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unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of theseoperators consumes aset of bagsof mappings and
returnsabag of mappings which then can beused as intermedi-
atemappings to beconsumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuousquery operatorsaredefined by extending
thequery operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leavesarebags of mappings stored in thewindow buffersof
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to theoutput stream.
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In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuplescan be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams(S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joinsof more than two streamsand joins
of streams with static relations arestraightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger theprobing of the relation.

Duplicate elimination operator

Duplicateelimination operator isusually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuousquery operatorsaredefined by extending
thequery operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
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By a simple modification of an RDF store, this continu-
ousquery can beprocessed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts[2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
dataelements such asRDF triplesand temporal RDF triplescan
beencoded asfixed-size integers. Hence, theprocessing states
can beencoded asunusually largenumbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, therow-based
data structure used in relational DSMSs is inefficient because
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DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over aslidingwindow may alsoproduce
new output when an input tupleexpires. Thisoccurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe isused for operations of searching aprocessing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likeahash tableor aB-tree

3

W
1

[C
O

U
N

T
 4

]

W
2

[R
A

N
G

E
 1

0
]

W
3

[R
A

N
G

E
 5

]

<
1

2
1

,2
0

,1
,2

0
1

,4
>

<
2

0
1

,5
>

<,?taxi,?hourlyRate>
W1▹▹W2▹▹W3

<?trans,?fare,?pTime,?taxi,tripTime>

<
2

0
3

,3
>

Evicting expired data might lead to double 

computation to update final outputs

9

<
?

tra
n

s
,?

fa
re

,?
p

T
im

e
><
?

rid
e

,?
p

T
im

e
,?

ta
x
i>

<
?

rid
e

,?
 trip

T
im

e
>



Operator-aware Approach

 Operator-aware data structures designed for:

Bookkeeping how the processing states were generated by the 

the query operators 

 Indexing windowing buffers tailored for query operators’ 

behaviors

 Algorithms for incremental evaluations driven by operator-aware data 

structures
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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[[W2]]

···
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···
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Figure 1: An examplecontinuous query pipeline

By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data st reams

case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for its group has changed. The t ime and space requirements of aggregat ion depend upon the type

of funct ion being computed [116]. An aggregate f is distributive if, for two disjoint mult i-sets

X and Y , f (X ∪ Y ) = f (X ) ∪ f (Y ). Dist ribut ive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is

evaluated by storing the current sum and cont inually adding to it the values of new tuples as they

arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.

Figure 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value
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evaluated by storing the current sum and cont inually adding to it the values of new tuples as they

arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for its group has changed. The t ime and space requirements of aggregat ion depend upon the type

of funct ion being computed [116]. An aggregate f is distributive if, for two disjoint mult i-sets

X and Y , f (X ∪ Y ) = f (X ) ∪ f (Y ). Dist ribut ive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is

evaluated by storing the current sum and cont inually adding to it the values of new tuples as they

arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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Figure 1: An examplecontinuous query pipeline

By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive
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proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
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In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
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the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.
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The complexity of an algorithm for incrementally evaluating
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stateless operators, re-evaluation can be doneon-the-fly without
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shows how theselection operation over astream S1 works [21].
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still
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structures likea hash table or aB-tree

3

we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
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In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree

3
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each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
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common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for its group has changed. The t ime and space requirements of aggregat ion depend upon the type

of funct ion being computed [116]. An aggregate f is distributive if, for two disjoint mult i-sets

X and Y , f (X ∪ Y ) = f (X ) ∪ f (Y ). Dist ribut ive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is

evaluated by storing the current sum and cont inually adding to it the values of new tuples as they

arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.

Figure 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
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can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
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texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
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crease significantly the memory footprint for stream processing.
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In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19

Figure 2.1: Examples of persistent query operators over data st reams

case of aggregat ion, where a newly arrived tuple may produce new output if the aggregate value

for its group has changed. The t ime and space requirements of aggregat ion depend upon the type

of funct ion being computed [116]. An aggregate f is distributive if, for two disjoint mult i-sets

X and Y , f (X ∪ Y ) = f (X ) ∪ f (Y ). Dist ribut ive aggregates, such as COUNT, SUM, MAX and MIN,
may be computed incrementally using constant space and t ime (per tuple). For instance, SUM is

evaluated by storing the current sum and cont inually adding to it the values of new tuples as they

arrive. Moreover, f is algebraic if it can be computed using the values of two or more dist ribut ive

aggregates using constant space and t ime (e.g., AVG is algebraic because AVG = SUM / COUNT).
Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.

Figure 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree
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atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
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By a simple modification of an RDF store, this continu-
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queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree

3



Evicting expired mappings

<
1

,1
,2

0
1

>

<
2

,3
,2

0
2

>

<
1

,4
>

<
1

2
1

,2
0

,1
>

<
4

,7
,2

0
4

>
<

2
,4

>

<
3

,5
,2

0
3

>

<
4

,2
>

<
1

2
2

,1
2

,3
>

<
5

,9
,2

0
2

>

<
6

,1
1

,2
0

1
>

<
1

2
3

,1
4

,7
>

<
3

,6
>

<
1

2
4

,1
8

,5
>

1 3 5 7 9 11

W
1

[C
O

U
N

T
 4

]

W
2

[R
A

N
G

E
 1

0
]

W
3

[R
A

N
G

E
 5

]

we use the term "mapping" for "solution mapping". In effect,
each of these operators consumes a set of bags of mappings and
returns abag of mappings which then can beused as intermedi-
atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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By a simple modification of an RDF store, this continu-
ous query can be processed by repeatedly executing SPARQL
queries on the RDF Store. However, the data layout of a
common RDF store isdesigned for heavily read-intensivecon-
texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
form, i.e. RDF serialised format. Consequently, the row-based
data structure used in relational DSMSs is inefficient because
it requires the tuple header sizes that might dominate the total
storage footprint [17]. In particular, the row-based datastructure
is typically designed for wider and shorter tableswhich might in-
crease significantly the memory footprint for stream processing.
Moreover, as shown in several works on the physical representa-
tion of RDF data[18, 19, 20, 2, 17, 3, 4], relational tablesarenot
ideal for storing RDF data elements. Thismotivates us to design
a tree-based data structure associated with indexing strategies to
remedy this issue. More importantly, thesecond reason leading
to this design is to enable a more efficient evaluation strategy
than re-evaluation strategy in state-of-the-art literature discussed
in Section 6, i.e, incremental evaluation. Before analysing the
shortcomings of current approaches, we present an overview of
the operational aspects in incrementally evaluating some basic
sliding operators of relational DSMSs in the following section.

2.2. Incremental evaluation of sliding-window operators

The complexity of an algorithm for incrementally evaluating
a sliding-window operator is dictated by how to maintain the
processing state for an execution of re-evaluation triggered. For
stateless operators, re-evaluation can be doneon-the-fly without
having to maintain any processing state. For instance, Figure2(a)
shows how theselection operation over astream S1 works [21].

Theduplicate-preserving projection and union operatorsarealso
examplesof statelessoperators. In contrast to stateless operators,
astateful operator needs to probe6 thepreviousprocessing states
in every incremental computation step. Maintaining processing
state is done differently for each type of operator. Next, we will
discuss how to deal with basic stateful operatorssuch aswindow
join, aggregation, duplication elimination and negation.Survey of Data Stream Management 19
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Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
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atemappings to be consumed by another operator. Basically, a
query pipeline forms an acyclic graph of continuous query oper-
ators. Such continuous query operatorsaredefined by extending
the query operators of CQL [15] and SPARQL [16] similar to
the ones defined in [5, 6]. In each query graph, the inputs at
the leaves are bags of mappings stored in the window buffers of
sliding window operators and the top, i.e. AVERAGE, returns a
bag of mappings to the output stream.
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queries on the RDF Store. However, the data layout of a
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texts [2, 3, 4] whileRDF stream dataneedshigh writing through-
put: each new stream element isan update, i.e., awriteoperation.
Typically, DSMSs remedy this requirement by using sliding-
window operators on in-memory storage. However, RDF-based
data elements such as RDF triples and temporal RDF triples can
beencoded asfixed-size integers. Hence, theprocessing states
can be encoded as unusually large numbers of individual small
data points compared to the amount incoming data in the raw
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data structure used in relational DSMSs is inefficient because
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Algebraic aggregates are also incrementally computable using constant space and t ime. On the

other hand, f is holistic if, for two mult i-sets X and Y , comput ing f (X ∪ Y ) requires space

proport ional to the size of X ∪Y . Examples of holist ic aggregates include TOP-k, QUANTILE, and

COUNT DISTINCT. For instance, mult iplicit ies of each dist inct value seen so far may have to be

maintained in order to ident ify the k most frequent item types at any point in t ime. This requires

Ω(n) space, where n is the number of st ream tuples seen so far—consider a st ream with n − 1

unique values and one of the values occurring twice.

Non-monotonic queries over unbounded st reams are possible if previously reported results

can be removed if they cease to sat isfy the query. This can be done by appending corresponding

negative tuples to the output st ream [12, 125]. This way, negat ion over two st reams, S1− S2, may

produce results that are valid at a given t ime and possibly invalidate them later. An example is

shown in Figure 2.1(e), where a tuple with value d was appended to the output because there

did not exist any matching S2-tuples at that t ime. However, a negat ive tuple (denoted by d̄) was

generated on the output st ream upon subsequent arrival of an S2-tuple with value d.

Figure 2: Operator implementations : selection (a), window join (b), duplication
elimination (c), aggregation (d), and negation (e).

Window join operator

In a sliding window join, newly arrived tuples on one of
the inputs trigger the probing the states of the other inputs.
Additionally, expired tuples are removed from the processing
state [9, 22, 23, 10, 12]. Expiration can be done periodically,
provided that old tuples can be identified and skipped during the
processing. Figure2(b) isan exampleof anon-blocking pipeline
join [24, 25, 26, 22, 27, 28]. It stores the input streams (S1 and
S2), possibly in the form of hash tables, and for each arrival
on one of the inputs, the state of the other input is probed to
generate new results. Joins of more than two streams and joins
of streams with static relations are straightforward extensions.
In the former, for each arrival on one input, the states of the
other inputs are probed [26]. In the latter, new arrivals on the
streams trigger the probing of the relation.

Duplicate elimination operator

Duplicate elimination operator is usually used to process the
DISTINCT modifier of output streams. The duplicate elimi-
nation, as illustrated in Figure 2(c), maintains a list of distinct
values already seen and filters out duplicates from the output
stream. When a new tuple with value b arrives, the operator
probes its output list, and drops the new tuple if a tuple with
valueb hasalready been seen and appended to theoutput stream.

Duplicateelimination over asliding window may also produce
new output when an input tuple expires. This occurs if a tuple
with valuev wasproduced on theoutput stream and later expires
from its window, yet there are other tuples with value v still

6term probe is used for operations of searching a processing state for needed
data and the processing state can be an original data storage or auxiliary data
structures likea hash table or aB-tree

3



13

Ring Indexes on bags of mappings

 Operator-aware indexes for quick lookup operations

 Low maintenance cost for fast insert/delete operations
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Throughputs of Ring indexes 

Insert throughput for 1M keys Probing time for 1M-mapping windows

Hash outperforms over AVL Tree and Red-Black Tree
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Throughputs of Ring indexes (Cont.)

Inserting throughput : 500-900k
Probing/searching throughput: 1M-1.6M



Throughputs of Query Operators

 Operator-aware implementations outperform to relational implementations

 ... are marginally faster than ad-hoc implementations of ESPER in most 

cases

Log scaleLog scale

16
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Throughputs & Memory footprint

Processing Throughputs: 5-12 times more than relational 

Memory Footprint: twice less memory than relational and 20-50% less than ESPER 



Summary

 Incremental evaluation algorithms based on operator-aware data 

structures: 

Overcome technical issues on traditional incremental evaluation 

techniques/algorithms

Perform several orders of magnitude faster than relation-based 

implementations

 Throughputs on operator-aware operations on processing state:

Up to 1 million of updates/sec vs. 10k of relation-based one

Up to 1.6 million lookup operations/second

Outperform over relational operations by order of magnitutes

Consume twice less memory than relation-based implementations

 The implementation will be open sourced in the next release of 

CQELS(cqels.org)


