
5TH INT. WORKSHOP ON MLG, FIRENZE, 2007

SPEEDING UP GRAPH EDIT DISTANCE

COMPUTATION WITH A BIPARTITE HEURISTIC

Kaspar Riesen and Horst Bunke

riesen@iam.unibe.ch

Institute of Computer Science and Applied Mathematics

University of Bern, Switzerland

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 2

Outline

• Graph edit distance

• Tree search for graph edit distance

• Munkres’ algorithm

• Munkres’ algorithm as a heuristic for graph edit distance

• Experimental results

• Conclusions

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 2

Outline

• Graph edit distance

• Tree search for graph edit distance

• Munkres’ algorithm

• Munkres’ algorithm as a heuristic for graph edit distance

• Experimental results

• Conclusions

• Main contribution: We provide a new heuristic for speeding up graph
edit distance computation.

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 3

Graph Based Representation

!"#$%&'()*+,-./0$

12,+/2+,

3.4%&'()*+,-./0$

%'5672%8+6&"

9%24+/:/%2,$

;"+5%&'()

<,/7&,7/+$

=/':"%&'()

<#58.($ <"':+$

15
'
4
+
$

3
+
,,
+
/$

A graph g is defined by the 4-tuple g =
(V, E, µ, ν), where

• V is the finite set of nodes

• E ⊆ V × V is the set of edges

• µ : V → L is the node labeling
function

• ν : E → L is the edge labeling

function

L = {1, 2, 3, . . .}, L = Rn, or L = {α, β, γ, . . .}.

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 4

Graph Edit Distance 1/2

• Define the dissimilarity of graphs by the minimum amount of distortion

that is needed to transform one graph into another.

• The edit operations ei consist of deletions, insertions, and substitutions
of nodes and edges.

!"

!#

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 4

Graph Edit Distance 1/2

• Define the dissimilarity of graphs by the minimum amount of distortion

that is needed to transform one graph into another.

• The edit operations ei consist of deletions, insertions, and substitutions
of nodes and edges.

!"

!#

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 4

Graph Edit Distance 1/2

• Define the dissimilarity of graphs by the minimum amount of distortion

that is needed to transform one graph into another.

• The edit operations ei consist of deletions, insertions, and substitutions
of nodes and edges.

!"

!#

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 4

Graph Edit Distance 1/2

• Define the dissimilarity of graphs by the minimum amount of distortion

that is needed to transform one graph into another.

• The edit operations ei consist of deletions, insertions, and substitutions
of nodes and edges.

!"

!#

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 4

Graph Edit Distance 1/2

• Define the dissimilarity of graphs by the minimum amount of distortion

that is needed to transform one graph into another.

• The edit operations ei consist of deletions, insertions, and substitutions
of nodes and edges.

!"

!#

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 4

Graph Edit Distance 1/2

• Define the dissimilarity of graphs by the minimum amount of distortion

that is needed to transform one graph into another.

• The edit operations ei consist of deletions, insertions, and substitutions
of nodes and edges.

!"

!#

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 5

Graph Edit Distance 2/2

• Let g1 = (V1, E1, µ1, ν1) be the source graph and g2 = (V2, E2, µ2, ν2) be
the target graph.

• The graph edit distance between g1 and g2 is defined by

d(g1, g2) = min
(e1,...,ek)∈Υ(g1,g2)

k∑

i=1

c(ei),

where Υ(g1, g2) denotes the set of edit paths transforming g1 into g2, and

c denotes the edit cost function measuring the strength c(ei) of edit
operation ei.

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 5

Graph Edit Distance 2/2

• Let g1 = (V1, E1, µ1, ν1) be the source graph and g2 = (V2, E2, µ2, ν2) be
the target graph.

• The graph edit distance between g1 and g2 is defined by

d(g1, g2) = min
(e1,...,ek)∈Υ(g1,g2)

k∑

i=1

c(ei),

where Υ(g1, g2) denotes the set of edit paths transforming g1 into g2, and

c denotes the edit cost function measuring the strength c(ei) of edit
operation ei.

• Graph edit distance provides us with a general dissimilarity model
for graphs.

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 6

Applications of Graph Edit Distance

• Classifiers Applicable in the Graph Domain

◦ k-NN classifier

• Edit Distance Based Graph Kernels

◦ Trivial graph kernels in conjunction with SVM, e.g.

κ(g, g′) = exp(−d(g, g′))
◦ Graph kernels based on graph edit distance, e.g. Random Walk Edit
Kernel [Neuhaus, 2006]

◦ Graph embedding in real vector spaces by means of prototype
selection [Riesen and Bunke, 2007]

• Graph Clustering

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 7

Complexity of Graph Edit Distance

• In contrast with exact graph matching algorithms, the nodes of the

source graph can potentially be mapped to any node of the target graph.

• The computational complexity for edit distance is exponential in the
number of nodes of the involved graphs. (For graphs with unique node

labels the complexity is linear.)

• Graph edit distance is usually computed by a tree search algorithm
which explores the space of all possible mappings of the nodes and

edges of g1 to the nodes and edges of g2.

• Note that edit operations on edges are implied by edit operations on
their adjacent nodes.

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 8

Tree Search

!"#

$%&&'(&)%*+
!

!

• Underlying search space is a tree.

• Search tree is constructed dynamically
at runtime by creating successor nodes
linked by edges to the currently
considered node.

• A heuristic function is usually used to de-
termine the node p used for further ex-
pansion.

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 9

Tree Search Heuristics

!

!

!

"#!$%&'()#!$%*+

• For each node p in the search tree
g(p) + h(p) is computed.

• g(p): Cost of the partial edit path
accumulated so far.

• h(p): Estimated lower bound for the costs
from p to a leaf node.

• h(p) = 0: efficient but inaccurate estimation.

• h(p) = exact GED to leaf node: accurate estimation but inefficient.

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 9

Tree Search Heuristics

!

!

!

"#!$%&'()#!$%*+

• For each node p in the search tree
g(p) + h(p) is computed.

• g(p): Cost of the partial edit path
accumulated so far.

• h(p): Estimated lower bound for the costs
from p to a leaf node.

• h(p) = 0: efficient but inaccurate estimation.

• h(p) = exact GED to leaf node: accurate estimation but inefficient.

• How do we estimate a lower bound of the future cost efficiently and
accurately?

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 10

The Assignment Problem 1/2

!
"

!
#

$
"#

$
""

$
"%

$
%%

• Find an optimal assignment of n elements of a set S1 = {u1, . . . , un} to n
elements of a set S2 = {v1, . . . , vn}.

• Let cij be the costs of the assignment (ui → vj).

• The optimal assignment is a permutation p = (p1, . . . , pn) of the integers
1, . . . , n that minimizes

∑n
i=1 cipi .

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 11

The Assignment Problem 2/2

• Given the n × n matrix (cij) of real numbers corresponding to the
assignment ratings.

• The assignment problem can be stated as finding a set of n independent
elements of (cij) such that the sum of these elements is minimum.

p
∑n

i=1 cipi

1 2 3 7

1 3 2 6

2 1 3 6

2 3 1 8

3 1 2 7

3 2 1 10

! " #

" $ #

" "

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 12

Munkres’ Algorithm

• Munkres’ algorithm finds the best, i.e. the minimum cost, assignment in

O(n3) time.

• It finds an n × n matrix (bij) equivalent to the initial one (aij) having n
independent zero elements.

! " #

" $ #

" "

% ! "

% " !

! % %

%& ! "

% " !

! %& %

% %& !

%& ! %

" % %&

! " #

" $ #

" "

'
!"

'
!!

'
##

()()(

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 13

Munkres’ Algorithm as a Heuristic

• The problem of estimating a lower bound h(p) for the costs from the

current node p to a leaf node can be seen as an assignment problem:

• How can one assign the unprocessed nodes of graph g1 to the
unprocessed nodes of g2 such that the resulting edit costs are minimal?

!

!

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 14

Node Cost Matrix

• V1 = {u1, . . . , un} and V2 = {v1, . . . , vm} are the unprocessed nodes of
g1 and g2. Define an (n + m) × (n + m) node cost matrix Cn.

• The left upper corner represents the costs of all possible node
substitutions.

• The diagonal of the right/left upper/bottom corner represents the costs of

all possible node deletions/insertions.

!"############$

!

!

!

!

%

!

!

!

!

! ! !

!"############$!

!

!"############$

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 15

Bipartite Heuristic

• We construct an edge cost matrix Ce analogously.

• For each open node p in the search tree we run Munkres algorithm
twice: Once with Cn and once with Ce.

• The accumulated minimum cost of both assignments serves us as a

lower bound for the future costs to reach a leaf node.

• h(p) = Munkres(Cn) + Munkres(Ce).

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 16

Experimental Setup

• We use four different graph datasets: Letter, Image, Fingerprint, and
Molecule.

• We compute the edit distance between graphs with and without bipartite
heuristic.

• We measure the mean computation time and the mean number of open
paths in the search tree during the graph matching process.

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 17

Letter Dataset

• Graphs representing capital letter line drawings, 15 classes, 562′500
matchings, ∅|V | = 4.6, ∅|E| = 4.5

Method Time [ms] OPEN

Plain-A* 465 478

BP-A* 14 72

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 18

Image Dataset

• Graphs representing images, 5 classes (city, countryside, people,

snowy, streets), 26′244 matchings, ∅|V | = 2.7, ∅|E| = 2.4

Method Time [ms] OPEN

Plain-A* 0.5 9

BP-A* 0.5 4

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 19

Molecule Dataset

• Graphs representing molecules, 2 classes (active and inactive), 21′300
matchings, ∅|V | = 5.5, ∅|E| = 4.7

Method Time [ms] OPEN

Plain-A* 3799 2195

BP-A* 2 18

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 20

Fingerprint Dataset

• Graphs representing fingerprint images, 4 classes (arch, left loop, right

loop, whorl), 65′025 matchings, ∅|V | = 5.4, ∅|E| = 4.4

Method Time [ms] OPEN

Plain-A* 6140 2465

BP-A* 374 507

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 21

Summary

• Thanks to the bipartite heuristic we can achieve significant speed-ups

for exact graph edit distance.

• Further speed-ups can be achieved if we resort to suboptimal
algorithms.

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 21

Summary

• Thanks to the bipartite heuristic we can achieve significant speed-ups

for exact graph edit distance.

• Further speed-ups can be achieved if we resort to suboptimal
algorithms.

• Transform the bipartite heuristic h(p) into a suboptimal graph
matching procedure.

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 22

Fast Suboptimal Edit Distance 1/2

• Define node cost matrix for whole graphs g1 and g2.

!"############$

!

!

!

!

%

!

!

!

!

!

!

! ! ! ! !
!"############$!

!

&'(

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 23

Fast Suboptimal Edit Distance 2/2

• Munkres’ algorithm finds the optimal node assignment by considering
node operations or the local structure only.

• The implied edge operations are added at the end of the computation.

• Consequently, the edit distance found by Munkres’ algorithm need not
necessarily correspond to the exact edit distance.

• However, a significant speed-up can be expected.

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 23

Fast Suboptimal Edit Distance 2/2

• Munkres’ algorithm finds the optimal node assignment by considering
node operations or the local structure only.

• The implied edge operations are added at the end of the computation.

• Consequently, the edit distance found by Munkres’ algorithm need not
necessarily correspond to the exact edit distance.

• However, a significant speed-up can be expected.

• Future Work: Find out whether or not the suboptimal distance remains
sufficiently accurate for pattern recognition and machine learning
applications.

Speeding up Graph Edit Distance Computation with a Bipartite Heuristic August 1, 2007 24

Conclusions

• We propose a new heuristic based on Munkres’ algorithm for speeding
up graph edit distance.

• Our heuristic finds an optimal node and an optimal edge assignment for

the unprocessed nodes and edges of both graphs in polynomial time.

• Our heuristic helps in speeding up exact graph edit distance
substantially.

• The proposed heuristic can also be used for fast suboptimal graph
matching.

