D UNIVERSITÄT BERN

5TH INT. WORKSHOP ON MLG, FIRENZE, 2007 SPEEDING UP GRAPH EDIT DISTANCE COMPUTATION WITH A BIPARTITE HEURISTIC

Kaspar Riesen and Horst Bunke riesen@iam.unibe.ch Institute of Computer Science and Applied Mathematics University of Bern, Switzerland

Outline

b UNIVERSITÄT BERN

- Graph edit distance
- Tree search for graph edit distance
- Munkres' algorithm
- Munkres' algorithm as a heuristic for graph edit distance
- Experimental results
- Conclusions

Outline

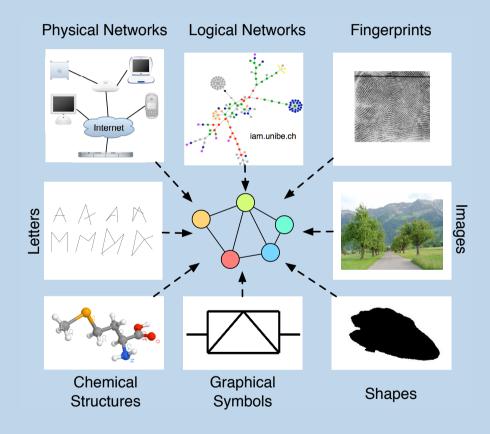
b UNIVERSITÄT BERN

- Graph edit distance
- Tree search for graph edit distance
- Munkres' algorithm
- Munkres' algorithm as a heuristic for graph edit distance
- Experimental results
- Conclusions

• **Main contribution:** We provide a new heuristic for speeding up graph edit distance computation.

Graph Based Representation

^b UNIVERSITÄT BERN



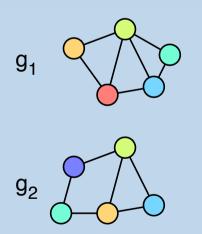
A graph g is defined by the 4-tuple $g=(V,E,\mu,\nu),$ where

- *V* is the finite set of nodes
- $E \subseteq V \times V$ is the set of edges
- $\mu: V \to L$ is the node labeling function
- $\nu : E \to L$ is the edge labeling function

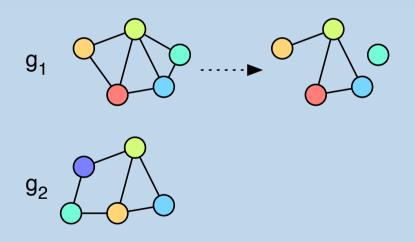
$$L = \{1, 2, 3, ...\}, L = \mathbb{R}^n$$
, or $L = \{\alpha, \beta, \gamma, ...\}.$

August 1, 2007

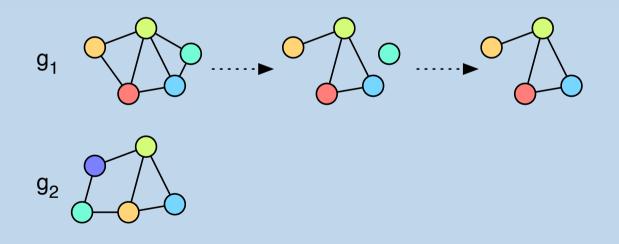
- Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another.
- The edit operations e_i consist of deletions, insertions, and substitutions of nodes and edges.



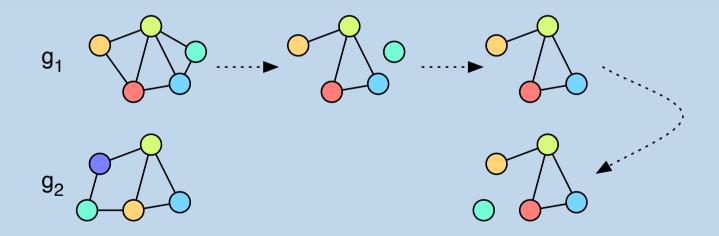
- Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another.
- The edit operations e_i consist of deletions, insertions, and substitutions of nodes and edges.



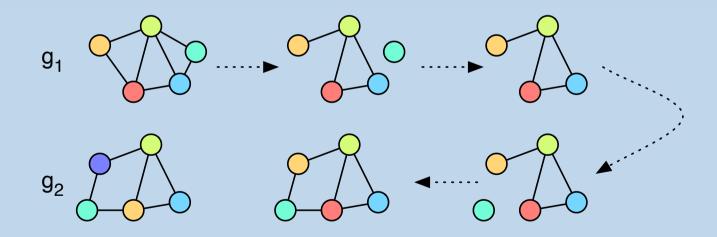
- Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another.
- The edit operations e_i consist of deletions, insertions, and substitutions of nodes and edges.



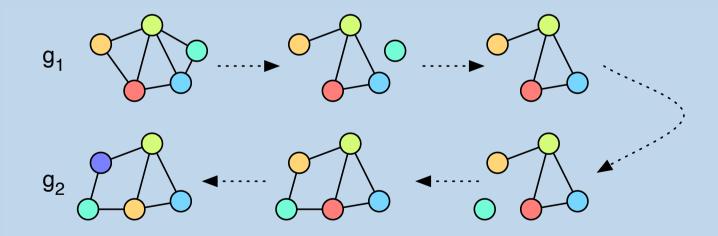
- Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another.
- The edit operations e_i consist of deletions, insertions, and substitutions of nodes and edges.



- Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another.
- The edit operations e_i consist of deletions, insertions, and substitutions of nodes and edges.



- Define the dissimilarity of graphs by the minimum amount of distortion that is needed to transform one graph into another.
- The edit operations e_i consist of deletions, insertions, and substitutions of nodes and edges.



⁶ UNIVERSITÄT BERN

- Let $g_1 = (V_1, E_1, \mu_1, \nu_1)$ be the source graph and $g_2 = (V_2, E_2, \mu_2, \nu_2)$ be the target graph.
- The graph edit distance between g_1 and g_2 is defined by

$$d(g_1, g_2) = \min_{(e_1, \dots, e_k) \in \Upsilon(g_1, g_2)} \sum_{i=1}^k c(e_i),$$

where $\Upsilon(g_1, g_2)$ denotes the set of edit paths transforming g_1 into g_2 , and c denotes the edit cost function measuring the strength $c(e_i)$ of edit operation e_i .

b UNIVERSITÄT BERN

- Let $g_1 = (V_1, E_1, \mu_1, \nu_1)$ be the source graph and $g_2 = (V_2, E_2, \mu_2, \nu_2)$ be the target graph.
- The graph edit distance between g_1 and g_2 is defined by

$$d(g_1, g_2) = \min_{(e_1, \dots, e_k) \in \Upsilon(g_1, g_2)} \sum_{i=1}^k c(e_i),$$

where $\Upsilon(g_1, g_2)$ denotes the set of edit paths transforming g_1 into g_2 , and c denotes the edit cost function measuring the strength $c(e_i)$ of edit operation e_i .

• Graph edit distance provides us with a general dissimilarity model for graphs.

b UNIVERSITÄT BERN

Applications of Graph Edit Distance

- Classifiers Applicable in the Graph Domain
 - k-NN classifier

• Edit Distance Based Graph Kernels

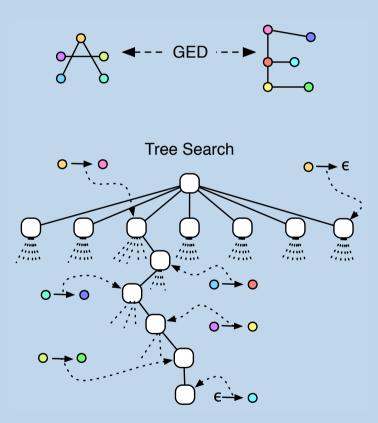
- Trivial graph kernels in conjunction with SVM, e.g. $\kappa(g,g') = exp(-d(g,g'))$
- Graph kernels based on graph edit distance, e.g. Random Walk Edit Kernel [Neuhaus, 2006]
- Graph embedding in real vector spaces by means of prototype selection [Riesen and Bunke, 2007]
- Graph Clustering

Complexity of Graph Edit Distance

- In contrast with exact graph matching algorithms, the nodes of the source graph can potentially be mapped to any node of the target graph.
- The computational complexity for edit distance is exponential in the number of nodes of the involved graphs. (For graphs with unique node labels the complexity is linear.)
- Graph edit distance is usually computed by a tree search algorithm which explores the space of all possible mappings of the nodes and edges of g_1 to the nodes and edges of g_2 .
- Note that edit operations on edges are implied by edit operations on their adjacent nodes.

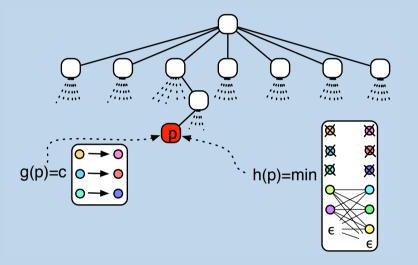
Tree Search

b UNIVERSITÄT BERN



- Underlying search space is a tree.
- Search tree is constructed dynamically at runtime by creating successor nodes linked by edges to the currently considered node.
- A heuristic function is usually used to determine the node *p* used for further expansion.

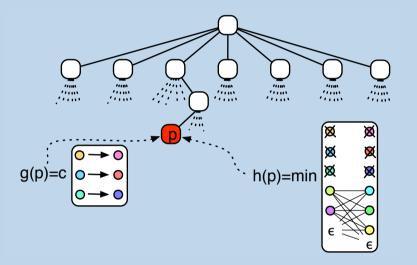
Tree Search Heuristics



- For each node p in the search tree g(p) + h(p) is computed.
- g(p): Cost of the partial edit path accumulated so far.
- *h*(*p*): Estimated lower bound for the costs from *p* to a leaf node.

- h(p) = 0: efficient but inaccurate estimation.
- h(p) =exact GED to leaf node: accurate estimation but inefficient.

Tree Search Heuristics

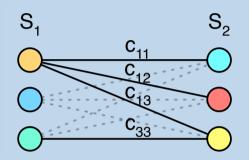


- For each node p in the search tree g(p) + h(p) is computed.
- g(p): Cost of the partial edit path accumulated so far.
- *h*(*p*): Estimated lower bound for the costs from *p* to a leaf node.

- h(p) = 0: efficient but inaccurate estimation.
- h(p) =exact GED to leaf node: accurate estimation but inefficient.
- How do we estimate a lower bound of the future cost **efficiently** and **accurately**?

The Assignment Problem 1/2

b UNIVERSITÄT BERN

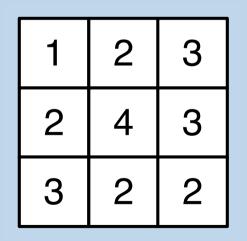


- Find an optimal assignment of n elements of a set $S_1 = \{u_1, \ldots, u_n\}$ to n elements of a set $S_2 = \{v_1, \ldots, v_n\}$.
- Let c_{ij} be the costs of the assignment $(u_i \rightarrow v_j)$.
- The optimal assignment is a permutation $p = (p_1, \dots, p_n)$ of the integers $1, \dots, n$ that minimizes $\sum_{i=1}^n c_{ip_i}$.

The Assignment Problem 2/2

- Given the $n \times n$ matrix (c_{ij}) of real numbers corresponding to the assignment ratings.
- The assignment problem can be stated as finding a set of n independent elements of (c_{ij}) such that the sum of these elements is minimum.

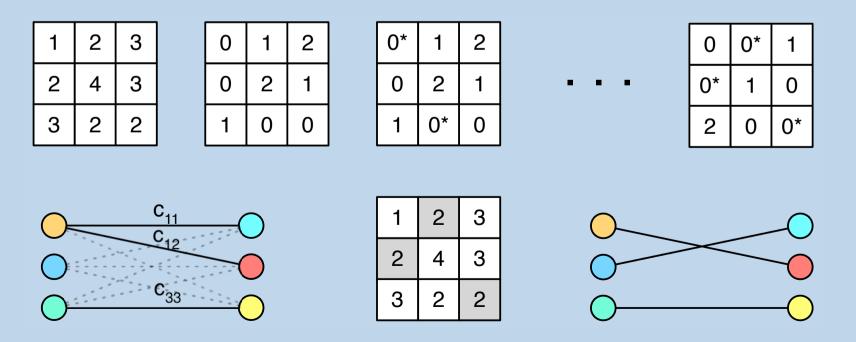
p	$\sum_{i=1}^{n} c_{ip_i}$
123	7
132	6
213	6
231	8
312	7
321	10



Munkres' Algorithm

b UNIVERSITÄT BERN

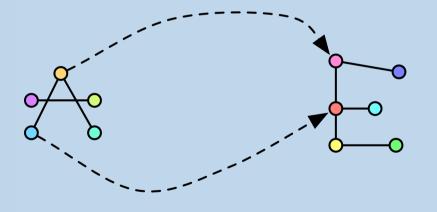
- Munkres' algorithm finds the best, i.e. the minimum cost, assignment in ${\cal O}(n^3)$ time.
- It finds an $n \times n$ matrix (b_{ij}) equivalent to the initial one (a_{ij}) having n independent zero elements.

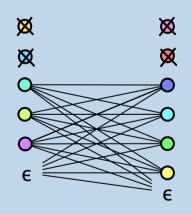


August 1, 2007

Munkres' Algorithm as a Heuristic

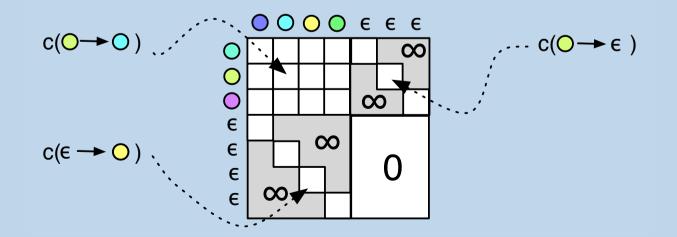
- The problem of estimating a lower bound h(p) for the costs from the current node p to a leaf node can be seen as an assignment problem:
- How can one assign the unprocessed nodes of graph g_1 to the unprocessed nodes of g_2 such that the resulting edit costs are minimal?





Node Cost Matrix

- $V_1 = \{u_1, \ldots, u_n\}$ and $V_2 = \{v_1, \ldots, v_m\}$ are the unprocessed nodes of g_1 and g_2 . Define an $(n+m) \times (n+m)$ node cost matrix \mathbf{C}_n .
- The left upper corner represents the costs of all possible node substitutions.
- The diagonal of the right/left upper/bottom corner represents the costs of all possible node deletions/insertions.



Bipartite Heuristic

- We construct an edge cost matrix C_e analogously.
- For each open node p in the search tree we run Munkres algorithm twice: Once with C_n and once with C_e .
- The accumulated minimum cost of both assignments serves us as a lower bound for the future costs to reach a leaf node.
- $h(p) = Munkres(\mathbf{C}_n) + Munkres(\mathbf{C}_e).$

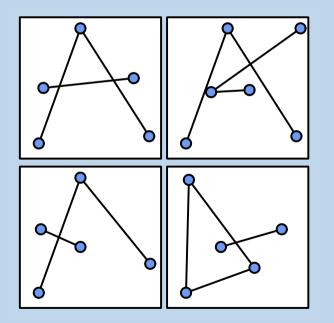
Experimental Setup

- We use four different graph datasets: *Letter*, *Image*, *Fingerprint*, and *Molecule*.
- We compute the edit distance between graphs with and without bipartite heuristic.
- We measure the mean computation time and the mean number of open paths in the search tree during the graph matching process.

Letter Dataset

⁶ UNIVERSITÄT BERN

• Graphs representing capital letter line drawings, 15 classes, 562'500 matchings, $\emptyset |V| = 4.6$, $\emptyset |E| = 4.5$

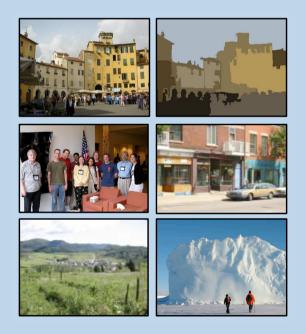


Method	Time [ms]	OPEN
Plain-A*	465	478
BP-A*	14	72

August 1, 2007

Image Dataset

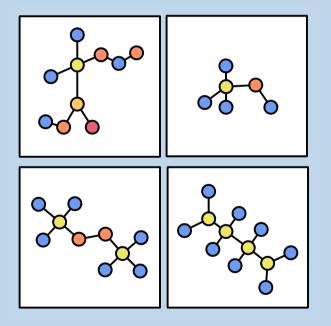
• Graphs representing images, 5 classes (city, countryside, people, snowy, streets), 26'244 matchings, $\emptyset |V| = 2.7$, $\emptyset |E| = 2.4$



Method	Time [ms]	OPEN
Plain-A*	0.5	9
BP-A*	0.5	4

Molecule Dataset

• Graphs representing molecules, 2 classes (active and inactive), 21'300 matchings, $\emptyset |V| = 5.5$, $\emptyset |E| = 4.7$



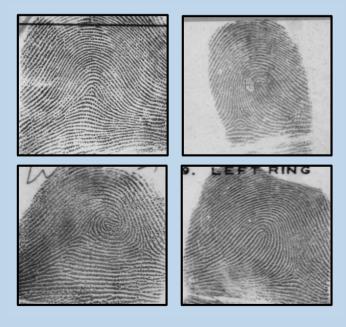
Time [ms]	OPEN
3799	2195
2	18
	3799

August 1, 2007

Fingerprint Dataset

^b UNIVERSITÄT BERN

• Graphs representing fingerprint images, 4 classes (arch, left loop, right loop, whorl), 65'025 matchings, $\emptyset |V| = 5.4$, $\emptyset |E| = 4.4$



Method	Time [ms]	OPEN
Plain-A*	6140	2465
BP-A*	374	507

Summary

b UNIVERSITÄT BERN

- Thanks to the bipartite heuristic we can achieve significant speed-ups for **exact** graph edit distance.
- Further speed-ups can be achieved if we resort to **suboptimal** algorithms.

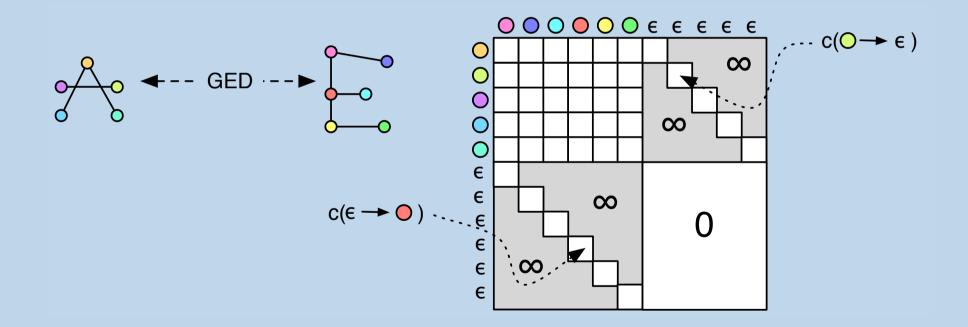
Summary

- Thanks to the bipartite heuristic we can achieve significant speed-ups for **exact** graph edit distance.
- Further speed-ups can be achieved if we resort to **suboptimal** algorithms.
- Transform the bipartite heuristic h(p) into a suboptimal graph matching procedure.

Fast Suboptimal Edit Distance 1/2

b UNIVERSITÄT BERN

• Define node cost matrix for whole graphs g_1 and g_2 .



Fast Suboptimal Edit Distance 2/2

- Munkres' algorithm finds the optimal node assignment by considering node operations or the local structure only.
- The implied edge operations are added at the end of the computation.
- Consequently, the edit distance found by Munkres' algorithm need not necessarily correspond to the exact edit distance.
- However, a significant speed-up can be expected.

Fast Suboptimal Edit Distance 2/2

- Munkres' algorithm finds the optimal node assignment by considering node operations or the local structure only.
- The implied edge operations are added at the end of the computation.
- Consequently, the edit distance found by Munkres' algorithm need not necessarily correspond to the exact edit distance.
- However, a significant speed-up can be expected.
- **Future Work:** Find out whether or not the suboptimal distance remains sufficiently accurate for pattern recognition and machine learning applications.

Conclusions

- We propose a new heuristic based on Munkres' algorithm for speeding up graph edit distance.
- Our heuristic finds an optimal node and an optimal edge assignment for the unprocessed nodes and edges of both graphs in polynomial time.
- Our heuristic helps in speeding up exact graph edit distance substantially.
- The proposed heuristic can also be used for fast suboptimal graph matching.