
Support Computation

for Mining Frequent Subgraphs

in a Single Graph

Mathias Fiedler and Christian Borgelt

Intelligent Data Analysis and Graphical Models Research Unit
European Center for Soft Computing

c/ Gonzalo Gutiérrez Quirós s/n, 33600 Mieres, Spain
christian.borgelt@softcomputing.es

http://www.borgelt.net/

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 1

Contents

� Frequent Subgraph Mining

� Subgraph Support and Overlap Graphs

� Embeddings (Subgraph Isomorphisms)

� Monotonicity of Subgraph Support

� Maximum Independent Set Support: Overlapping Embeddings

� Harmful Overlap Support: Existence of Equivalent Ancestors

� Subgraph Support Computation

� Finding Equivalent Ancestor Embeddings

� Restriction to Connected Subgraphs

� Experimental Results

� Summary

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 2

Frequent Subgraph Mining

Problem:

Given: a database of (attributed) graphs and
a minimum support value (frequency)

Desired: the set of all frequent subgraphs
(subgraphs that have a support greater than the minimum support)

Basic Search Procedure

� Start with a single node (try all labels/attributes).

� In each step add an edge (and maybe a node).
(Try all possibilities, but avoid redundant search.)

� Prune infrequent subgraphs, extend frequent subgraphs.

� Standard support definition:
number of graphs in the database that contain the subgraph.
(Not applicable to the single graph setting, which is considered here.)

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 3

Embeddings (Subgraph Isomorphisms)

A labeled or attributed graph is a triple G = (V;E; l), where

� V is the set of vertices,
� E � V � V � f(v; v) j v 2 V g is the set of edges, and
� l : V [E ! L assigns labels from the set L to nodes and edges.

Let G = (VG; EG; lG) and S = (VS; ES; lS) be two labeled graphs.
A subgraph isomorphism of S to G is an injective function f : VS ! VG with

� 8v 2 VS : lS(v) = lG(f(v)) and
� 8(u; v) 2 ES : (f(u); f(v)) 2 EG ^ lS((u; v)) = lG((f(u); f(v))).

Let f1 and f2 two subgraph isomorphisms of S to G and
V1 = fv 2 VG j 9u 2 VS : v = f1(u)g and V2 = fv 2 VG j 9u 2 VS : v = f2(u)g.
f1 and f2 are called

� overlapping, written f1��f2, iff V1 \ V2 6= ;,
� equivalent, written f1�f2, iff V1 = V2,
� identical, written f1 � f2, iff 8v 2 VS : f1(v) = f2(v).

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 4

Anti-Monotonicity of Subgraph Support

Most natural definition of subgraph support in a single graph setting:
number of embeddings (subgraph isomorphisms)

Problem: The number of embeddings of a subgraph is not anti-monotone.

Example:

input graph: AB B

subgraphs: A AB B BA
2 1 3

embeddings: B BA

B A B

BAB

AB B
1

AB B
12 3

3 2

But: Anti-monotonicity is vital for the efficiency of frequent subgraph mining.

Question: How should we define subgraph support in a single graph?

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 5

Overlap Graphs of Embeddings

Let G = (VG; EG; lG) and S = (VS; ES; lS) be two labeled graphs and
let VO be the set of all embeddings (subgraph isomorphisms) of S into G.

The overlap graph of S w.r.t. G is the graph O = (VO; EO),
which has the set VO of embeddings as its node set
and the edge set EO = f(f1; f2) j f1; f2 2 VO ^ f1 6� f2 ^ f1��f2g.

Example:

input graph: B A B A B

subgraph: B A B

A BB A B

A BB A B

B A B A B

B A B A B
3 1 2

2 1 3

2 1 3

3 1 2

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 6

Maximum Independent Set Support

Let G = (V;E) be an (undirected) graph with node set V
and edge set E � V � V � f(v; v) j v 2 V g.

An independent node set of G is a set I � V with 8u; v 2 I : (u; v) =2 E.

I is a maximum independent node set iff

� it is an independent node set and

� for all independent node sets J of G it is jI j � jJ j.

Notes: Finding a maximum independent node set is an NP-complete problem.
However, a greedy algorithm usually gives very good approximations.

Let O = (VO; EO) be the overlap graph of the embeddings
of a labeled graph S = (VS; ES; lS) into a labeled graph G = (VG; EG; lG).

The maximum independent set support (or MIS-support for short)
of S w.r.t. G is the size of a maximum independent node set of O.

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 7

Anti-Monotonicity of MIS-Support: Preliminaries

Let G = (VG; EG; lG) and S = (VS; ES; lS) be two labeled graphs.

Let T = (VT ; ET ; lT) a (non-empty) proper subgraph of S
(that is, VT � VS, ET = (VT � VT) \ES, and lT � lSjVT[ET

).

Let f be an embedding of S into G.

An embedding f 0 of the subgraph T is called a T-ancestor of the embedding f
iff f 0 � f jVT

, that is, if f 0 coincides with f on the node set VT of T .

Observations:

For given G, S, T and f the T -ancestor f 0 of the embedding f is uniquely defined.

Let f1 and f2 be two (non-identical, but maybe equivalent) embeddings of S into G.

f1 and f2 overlap if there exist overlapping T -ancestors f 01 and f 02
of the embeddings f1 and f2, respectively.

(Note: The inverse implication does not hold generally.)

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 8

Anti-Monotonicity of MIS-Support: Proof

Theorem: MIS-support is anti-monotone.

Proof: We have to show that the MIS-support of a subgraph S w.r.t. a graph G
cannot exceed the MIS-support of any (non-empty) proper subgraph T of S.

� Let I be an arbitrary independent node set of the overlap O graph of S w.r.t. G.

� The set I induces a subset I 0 of the nodes of the overlap graph O0

of an (arbitrary, but fixed) subgraph T of the considered subgraph S,
which consists of the (uniquely defined) T -ancestors of the nodes in I .

� It is jI j = jI 0j, because no two elements of I can have the same T -ancestor.

� With similar argument: I 0 is an independent node set of the overlap graph O0.

� As a consequence, since I is arbitrary, every independent node set of O
induces an independent node set of O0 of the same size.

� Hence the maximum independent node set of O0

must be at least as large as the maximum independent node set of O.

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 9

Harmful and Harmless Overlaps of Embeddings

Not all overlaps of embeddings are harmful:

input graph: A B C A B C A

subgraph: A B C A

embeddings: B C AA B C A

A B C A B C A

Let G = (VG; EG; lG) and S = (VS; ES; lS) be two labeled graphs and
let f1 and f2 be two embeddings (subgraph isomorphisms) of S to G.

f1 and f2 are called harmfully overlapping, written f1��f2, iff

� they are equivalent or

� there exists a (non-empty) proper subgraph T of S,
so that the T -ancestors f 01 and f 02 of f1 and f2, respectively, are equivalent.

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 10

Harmful Overlap Graphs and Subgraph Support

Let G = (VG; EG; lG) and S = (VS; ES; lS) be two labeled graphs and
let VH be the set of all embeddings (subgraph isomorphisms) of S into G.

The harmful overlap graph of S w.r.t. G is the graph H = (VH ; EH),
which has the set VH of embeddings as its node set
and the edge set EH = f(f1; f2) j f1; f2 2 VH ^ f1 6� f2 ^ f1��f2g.

Let H = (VH ; EH) be the harmful overlap graph of the embeddings of a labeled
graph S = (VS; ES; lS) into a labeled graph G = (VG; EG; lG).

The harmful overlap support (or HO-support for short) of the graph S
w.r.t. G is the size of a maximum independent node set of H.

Theorem: HO-support is anti-monotone.

Proof: Identical to proof for MIS-support.
(The same two observations hold, which were all that was needed.)

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 11

Harmful Overlap Graphs and Ancestor Relations

input graph: B A B A B

B B BA A A AB B B

B A BA B

B A BB A

B A BB A

B A B A B

A BB A B

A BB A B

B A B A B

B A B A B
3 1 2

2 1 3

2 1 3

3 1 2

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 12

Subgraph Support Computation

Checking whether two embeddings overlap is easy, but:

How do we check whether two embeddings overlap harmfully?

Core ideas of the harmful overlap test:

� Try to construct a subgraph SE = (VE; EE; lE) that yields equivalent ancestors
of two given embeddings f1 and f2 of a graph S = (VS; ES; lS).

� For such a subgraph SE the mapping g : VE ! VE with v 7! f�1
2 (f1(v)),

where f�1
2 is the inverse of f2, must be a bijective mapping.

� More generally, g must be an automorphism of SE,
that is, a subgraph isomorphism of SE to itself.

� Exploit the properties of automorphism
to exclude nodes from the graph S that cannot be in VE.

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 13

Subgraph Support Computation

Input: Two (different) embeddings f1 and f2
of a labeled graph S = (VS; ES; lS)
into a labeled graph G = (VG; EG; lG).

Output: Whether f1 and f2 overlap harmfully.

1) Form the sets V1 = fv 2 VG j 9u 2 VS : v = f1(u)g
and V2 = fv 2 VG j 9u 2 VS : v = f2(u)g.

2) Form the sets W1 = fv 2 VS j f1(v) 2 V1 \ V2g
and W2 = fv 2 VS j f2(v) 2 V1 \ V2g.

3) If VE = W1 \W2 = ;, return false, otherwise return true.

� VE is the node set of a subgraph SE that induces equivalent ancestors.

� Any node v 2 VS � VE cannot contribute to such equivalent ancestors.

� Hence VE is a maximal set of nodes for which g is a bijection.

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 14

Restriction to Connected Subgraphs

The search for frequent subgraphs is usually restricted to connected graphs.

We cannot conclude that no edge is needed if the subgraph SE is not connected:
there may be a connected subgraph of SE that induces equivalent ancestors of the
embeddings f1 and f2.

Hence we have to consider subgraphs of SE in this case.
However, checking all possible subgraphs is prohibitively costly.

Computing the edge set EE of the subgraph SE:

1) Let E1 = f(v1; v2) 2 EG j 9(u1; u2) 2 ES : (v1; v2) = (f1(u1); f1(u2))g
and E2 = f(v1; v2) 2 EG j 9(u1; u2) 2 ES : (v1; v2) = (f2(u1); f2(u2))g.

2) Let F1 = f(v1; v2) 2 ES j (f1(v1); f1(v2)) 2 E1 \E2g
and F2 = f(v1; v2) 2 ES j (f2(v1); f2(v2)) 2 E1 \E2g.

3) Let EE = F1 \ F2.

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 15

Restriction to Connected Subgraphs

Lemma: Let SC = (VC ; EC ; lC) be an (arbitrary, but fixed) connected component
of the subgraph SE and let W = fv 2 VC j g(v) 2 VCg

(reminder: 8v 2 VE : g(v) = f�1
2 (f1(v)), g is an automorphism of SE)

Then it is either W = ; or W = VC .

Proof: (by contradiction)

� Suppose that there is a connected component SC with W 6= ; and W 6= VC .

� Choose two nodes v1 2W and v2 2 VC �W .

� v1 and v2 are connected by a path in SC , since SC is a connected component.
On this path there must be an edge (va; vb) with va 2W and vb 2 VC �W .

� It is (va; vb) 2 EE and therefore (g(va); g(vb)) 2 EE (g is an automorphism).

� Since g(va) 2 VC , it follows g(vb) 2 VC .

� However, this implies vb 2W , contradicting vb 2 VC �W .

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 16

Further Optimization

The test can be further optimized by the following simple insight:

� Two embeddings f1 and f2 overlap harmfully if 9v 2 VS : f1(v) = f2(v),
because then such a node v alone gives rise to equivalent ancestors.

� This test can be performed very quickly, so it should be the first step.

� Additional advantage:
connected components consisting of isolated nodes can be neglected afterwards.

A simple example of harmful overlap without identical images:

input graph: B A A B subgraph: A A B

embeddings: BB A A B A A B

Note that the subgraph inducing equivalent ancestors can be arbitrarily complex
even if 8v 2 VS : f1(v) 6= f2(v).

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 17

Final Procedure for Harmful Overlap Test

Input: Two (different) embeddings f1 and f2
of a labeled graph S = (VS; ES; lS)
into a labeled graph G = (VG; EG; lG).

Output: Whether f1 and f2 overlap harmfully.

1) If 9v 2 S : f1(v) = f2(v), return true.

2) Form the edge set EE of the subgraph SE (as described above) and
form the (reduced) node set V 0

E
= fv 2 VS j 9u 2 VS : (v; u) 2 EEg.

(Note that V 0

E
does not contain isolated nodes.)

3) Let Si
C

= (V i
C
; Ei

C
), 1 � i � n,

be the connected components of S0
E

= (V 0

E
; EE).

If 9i; 1 � i � n : 9v 2 V i
C

: g(v) = f�1
2 (f1(v)) 2 V i

C
,

return true, otherwise return false.

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 18

Experimental Results

Index
Chemicus
1993

200 250 300 350 400 450 500

0

100

200

300

400

500
subgraphs

HO-support

MIS-support

graphs

Tic-
Tac-
Toe
win

120 140 160 180 200 220 240 260 280 300
0

50

100

150

200

250
subgraphs

HO-support

MIS-support

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 19

Summary

� Defining subgraph support in the single graph setting:
maximum independent node set of an overlap graph of the embeddings

� Simple proof that MIS-support is anti-monotone:
look at induced independent node sets for substructures

� Definition of harmful overlap support of a subgraph:
existence of equivalent ancestor embeddings

� Simple procedure for testing whether two embeddings overlap harmfully.

� Simple proof that harmful overlap support is anti-monotone.

� Restriction to connected substructures and optimizations.

Software: MoSS — Molecular Substructure Miner

http://www.borgelt.net/moss.html

Mathias Fiedler and Christian Borgelt Support Computation for Mining Frequent Subgraphs in a Single Graph 20

