
Introduction
Dense refinement schemas

Results
Conclusions

General Graph Refinement with
Polynomial Delay

Jan Ramon & Siegfried Nijssen

K.U.Leuven

MLG, August 2007

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 1 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Outline

Introduction
Graph enumeration
Earlier work

Dense refinement schemas

Results

Conclusions

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 2 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Graph enumeration
Earlier work

Outline

Introduction
Graph enumeration
Earlier work

Dense refinement schemas

Results

Conclusions

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 3 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Graph enumeration
Earlier work

Introduction - Enumeration

Pattern Mining:
I Given a language L and an (often ’anti-monotonic’)

predicate interesting, list all interesting patterns.
Many pattern mining algorithms perform essentially two
tasks:

I Generating candidate patterns
I Checking interestingness of patterns (e.g. counting

frequency)

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 4 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Graph enumeration
Earlier work

Introduction - Enumeration

This paper deals with the first step:
I Given a (graph) language L
I Enumerate all (graph) patterns p ∈ L from small to

large
I ... allowing for suitable pruning
I ... and do not generate duplicates

In other words, we assume the predicate “interesting” to
be evaluable efficiently.

Avoiding duplicates is non-trivial: for graphs, isomorphism
is not known to be polynomial.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 5 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Graph enumeration
Earlier work

Introduction - Enumeration

Complexity measures:
I Polynomial time – total running time bounded by

polynomial in input
I Polynomial delay – time needed for generating next

solution is bounded by polynomial in size of input
I Incremental polynomial time – time needed for

generating next solution is bounded by polynomial in
size of input and output so far

I Output polynomial time – total running time bounded
by polynomial in input + output.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 6 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Graph enumeration
Earlier work

Introduction - Enumeration

Applications of graph enumerating:
I Pattern mining (e.g. candidate generation)
I Combinatorics (e.g. counting)
I Search

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 7 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Graph enumeration
Earlier work

Introduction - Earlier work

Earlier work
I Data mining and existing enumeration algorithms
I ’Simple’ cases
I Graph listing (L.A. Goldberg)

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 8 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Graph enumeration
Earlier work

Introduction - Earlier work

Literature:
I Systems:

I gSpan, AGM, . . .
I McKay’s Nauty

I All devote much attention to efficient candidate
generation

I Methods: Canonical forms, Joining operators, . . .
I But none of them proves polynomial delay.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 9 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Graph enumeration
Earlier work

Introduction - Earlier work

Special cases:
I Itemsets: Apriori runs with polynomial delay
I Free trees (Wright’86)
I Outerplaner graphs: (Horvath & Ramon’06)
I . . .

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 10 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Graph enumeration
Earlier work

Introduction - Earlier work

L.A.Goldberg’s graph listing work
I One can enumerate all graphs of size at most n

without duplicates with delay O(n6).
I Relies on “most graphs are easy”

I If p is an allmost sure property, then one can
enumerate all graphs that satisfy p (in the original
paper including duplicates) with polynomial delay.
Every FOL property is either allmost always true or
allmost always false.

I For pattern mining, typically not all patterns are
interesting. In particular, the interesting case is when
there are only few interesting patterns.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 11 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Graph enumeration
Earlier work

Contribution

Given:
I a language L of graphs
I a dense refinement schema for L
I an anti-monotonic constraint interesting (that can be

evaluated efficiently)
we enumerate

I all interesting patterns
I with polynomial delay

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 12 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Graph enumeration
Earlier work

Better?

I More general than L.A.Goldberg (L or interesting can
produce only ’difficult’ graphs)

I More general than specialized methods
I More efficient (better proven assymptotic complexity)

than gSpan, AGM, . . .

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 13 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Outline

Introduction
Graph enumeration
Earlier work

Dense refinement schemas

Results

Conclusions

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 14 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Refinement description

Definition

A refinement description is a pair (V (r), E(r)) of vertices
and edges.

g r g+r
ss−r

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 15 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Refinement schema

Definition

A refinement schema is a pair (ρ+, ρ−) of functions from
graphs onto sets of refinement descriptions. Then,

I r ∈ ρ+(g) are the downward refinement descriptions
of g and g + r are (downward refinement /
specialisation / supergraph)

I r ∈ ρ−(g) are the upward refinement descriptions of g
and g − r are (upward refinement / generalisation /
subgraph)

I Consistent: r ∈ ρ+(g) iff r ∈ ρ−(g + r)
I Isomorphism-invariant= If r ∈ ρ+(g) and g ≡ϕ h, then

ϕ(r) ∈ ρ+(h).
J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 16 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Refinement schema (ex)

Connected graphs:
I ρ+(g) : adding edge between two existing vertices or

adding new vertex and connecting it to existing one.
I ρ−(g) : removing vertex with degree 1 and its

adjacent edge, or removing en edge belonging to a
cycle.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 17 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Combining refinements

↑ is an operator ’lifting’ an upward refinement. In
particular, if r1, r2 ∈ ρ−(g) and removing r2 from g − r1

makes sense, r2 ↑g r1 is the ’lifted’ version of r2 which can
be applied to g − r1.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 18 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Combining refinements

v1

v2

v5

v3

v4

v5

v4

v1

v2 v3

v4

v5

v3v2

v1 v5

v3v2

v1

r1=({},{{v4,v5}}) r2=({},{{v4,v3}})

r1 r2=({v4},{{v5,v4}})r2 r1=({v4},{{v3,v4}})

g

g−r1
g−r2

g g
g−r1−(r2 r1) =? g−r2−(r1 r2))

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 19 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Graph of parents GoPρ−,↑(g)

g−r1

g−r2g−r4

g−r3

g

(not connected,
no edge)

g
g−r1−(r2 r1)

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 20 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Dense refinement schema

Definition

A dense refinement schema is a triple (ρ+, ρ−, ↑) s.t.
I (ρ+, ρ−) is a refinement schema
I The graph GoPρ−,↑(g) is connected.

This requirement has far-reaching implications, but still
allows for dense refinement schemas for a wide range of
graph classes.

Lemma

For every dense refinement schema, one can define a
size function | · | such that for every graph g and
r ∈ ρ+(g), |g + r | = |g|+ 1.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 21 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Outline

Introduction
Graph enumeration
Earlier work

Dense refinement schemas

Results

Conclusions

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 22 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Complexity theorem

Theorem

Consider a dense refinement schema (ρ+, ρ−, ↑). If the
following conditions hold:

I |ρ+(g)| and |ρ−(g)| are O(|g|)
I For every r ∈ ρ+(g), |r ∩ g| is bounded by a constant
I The refinements r have an easy structure or |r | is

bounded by a constant.
Then, our algorithm runs with polynomial delay

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 23 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Data structure

I Our algorithm builds a data structure storing one
representative for every isomorphism class.

I This may take exponential space in the input size (if
the number of solutions is exponential), but for mining
purposes this is not to be expected

I Given any graph, the data structure can be used to
search the representative in polynomial time.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 24 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Key idea of algorithm

I We construct a candidate pattern from a parent.
I Since the refinement schema is dense, we can hop

from one parent to the next one through
grandparents.

I In this way we can avoid to generate children from
different parents that are isomorphic.

I Finally, we can avoid isomorphic children from one
single parent by (incrementally) computing
automorphism groups.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 25 / 34

Introduction
Dense refinement schemas

Results
Conclusions

What can we enumerate?

I ’Monotone’ classes
I Hereditary classes with bounded degree
I Classes restricted to connected graphs

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 26 / 34

Introduction
Dense refinement schemas

Results
Conclusions

’Monotone’1 classes

interesting is monotone iff for every graph G such that
interesting(G), and for every subgraph S � G,
interesting(S).

I Minimal (efficient) frequency constraints under
subgraph isomorphism.

I Maximal vertex & edge counts
I Maximal degree, treewidth, . . .
I Forbidden subgraphs and minors
I . . .

1 : in different communities, monotone and anti-monotone are
reversed

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 27 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Complexity

Corollary

Let interesting be an antimonotonic predicate on the set
of all (connected) graphs. Then, we can list all interesting
graphs g with delay O(|V (g)|5).

Compare with L.A.Goldberg: enumerates all graphs with
delay O(|V (g)|6)

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 28 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Hereditary classes with bounded degree

interesting is hereditary iff for every graph G such that
interesting(G), and for every induced subgraph S �i G,
interesting(S).

I Minimal (efficient) frequency constraints under
induced subgraph isomorphism.

I Maximal degree, treewidth, edge count, vertex count
I Forbidden induced subgraphs, e.g. claw-free graphs

(graphs not containing an induced claw K1,3)
I . . .

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 29 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Connected graphs

We can combine both previous examples with the
constraint that the graphs should be connected. (even
though e.g. connectedness is not closed under taking
subgraphs).

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 30 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Outline

Introduction
Graph enumeration
Earlier work

Dense refinement schemas

Results

Conclusions

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 31 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Conclusions

We proposed:
I A (more) general method
I to list all interesting graphs
I of a wide range of graph classes (dense refinement

schema needed)
I with polynomial delay

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 32 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Open problems

Theory:
I Enumerate graphs under induced subgraph

isomorphism (e.g. claw-free graphs, no degree
bound).

I How about homomorphism (aka theta-subsumption
in ILP) ? (some negative results are already known).

I Larger refinement steps ? (e.g. for closed pattern
mining)

Practice:
I Can a canonical form help?
I Experiments?

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 33 / 34

Introduction
Dense refinement schemas

Results
Conclusions

Questions or comments?

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 34 / 34

	Introduction
	Graph enumeration
	Earlier work

	Dense refinement schemas
	Results
	Conclusions

