General Graph Refinement with
Polynomial Delay

Jan Ramon & Siegfried Nijssen
K.U.Leuven

MLG, August 2007

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 1/34

Outline

Introduction
Graph enumeration
Earlier work

Dense refinement schemas

Results

Conclusions

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement

MLG, August 2007

2/34

Introduction

Dense refinement schemas Graph enumeration

Results Earlier work
Conclusions

Outline

Introduction
Graph enumeration

Earlier work
Dense refinement schemas

Results

Conclusions

[m] = =] =

oA

MLG, August 2007 3/34

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement

Introduction
Graph enumeration

Introduction - Enumeration

Pattern Mining:

» Given a language £ and an (often 'anti-monotonic’)
predicate interesting, list all interesting patterns.

Many pattern mining algorithms perform essentially two
tasks:

» Generating candidate patterns

» Checking interestingness of patterns (e.g. counting
frequency)

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 4/34

Introduction
Graph enumeration

Introduction - Enumeration

This paper deals with the first step:
» Given a (graph) language £
» Enumerate all (graph) patterns p € £ from small to
large
» ... allowing for suitable pruning
» ... and do not generate duplicates

In other words, we assume the predicate “interesting” to
be evaluable efficiently.

Avoiding duplicates is non-trivial: for graphs, isomorphism
is not known to be polynomial.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 5/34

Introduction
Graph enumeration

Introduction - Enumeration

Complexity measures:

» Polynomial time — total running time bounded by
polynomial in input

» Polynomial delay — time needed for generating next
solution is bounded by polynomial in size of input

» Incremental polynomial time — time needed for
generating next solution is bounded by polynomial in
size of input and output so far

» Output polynomial time — total running time bounded
by polynomial in input + output.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 6/34

Introduction
Graph enumeration

Introduction - Enumeration

Applications of graph enumerating:
» Pattern mining (e.g. candidate generation)
» Combinatorics (e.g. counting)
» Search

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007

7/34

Introduction

Earlier work

Introduction - Earlier work

Earlier work
» Data mining and existing enumeration algorithms
» 'Simple’ cases
» Graph listing (L.A. Goldberg)

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007

8/34

Introduction

Earlier work

Introduction - Earlier work

Literature:
» Systems:
» gSpan, AGM, ...
» McKay’s Nauty

» All devote much attention to efficient candidate
generation

» Methods: Canonical forms, Joining operators, ...
» But none of them proves polynomial delay.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 9/34

Introduction

Earlier work

Introduction - Earlier work

Special cases:

ltemsets: Apriori runs with polynomial delay
Free trees (Wright'86)

Outerplaner graphs: (Horvath & Ramon’06)

>
>
>
>

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007

10/34

Introduction

Earlier work

Introduction - Earlier work

L.A.Goldberg’s graph listing work
» One can enumerate all graphs of size at most n
without duplicates with delay O(n®).
» Relies on “most graphs are easy”

» If pis an allmost sure property, then one can
enumerate all graphs that satisfy p (in the original
paper including duplicates) with polynomial delay.
Every FOL property is either allmost always true or
allmost always false.

» For pattern mining, typically not all patterns are
interesting. In particular, the interesting case is when
there are only few interesting patterns.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 11/34

Introduction

Earlier work

Contribution

Given:
» alanguage L of graphs
» a dense refinement schema for £

» an anti-monotonic constraint interesting (that can be
evaluated efficiently)

we enumerate
» all interesting patterns
» with polynomial delay

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 12/34

Introduction

Earlier work

Better?

» More general than L.A.Goldberg (£ or interesting can
produce only ‘difficult’ graphs)

» More general than specialized methods

» More efficient (better proven assymptotic complexity)
than gSpan, AGM, ...

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 13/34

Introduction
Dense refinement schemas

Results
Conclusions

Outline

Introduction

Graph enumeration
Earlier work

Dense refinement schemas
Results

Conclusions

o = = =

nae
MLG, August 2007 14 /34

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement

Dense refinement schemas

Refinement description

Definition
A refinement description is a pair (V(r), E(r)) of vertices

and edges.

g r g+r

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 15/34

Dense refinement schemas

Refinement schema

Definition
A refinement schema is a pair (p™, p~) of functions from
graphs onto sets of refinement descriptions. Then,

» r € p(g) are the downward refinement descriptions
of g and g + r are (downward refinement /
specialisation / supergraph)

» r € p—(g) are the upward refinement descriptions of g
and g — r are (upward refinement / generalisation /
subgraph)

» Consistent: r € pt(g)iffre p=(g+r)

» Isomorphism-invariant= If r € p*(g) and g =, h, then
p(r) € p*(h).

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 16/34

Dense refinement schemas

Refinement schema (ex)

Connected graphs:

» p7(g) : adding edge between two existing vertices or
adding new vertex and connecting it to existing one.
» p—(g) : removing vertex with degree 1 and its

adjacent edge, or removing en edge belonging to a
cycle.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 17/34

Dense refinement schemas

Combining refinements

1 is an operator ’'lifting’ an upward refinement. In
particular, if ry, r. € p~(g) and removing r. from g — r;
makes sense, . 19 r; is the ’lifted’ version of r, which can
be applied to g — r;.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 18/34

Dense refinement schemas

Combining refinements

\Val V5
g—rl—(rZTg r1) =? g—r2—(ﬁ] r

7 v3
r2t ri=({v4},{v3,v4}} rit r2=({va},{{v5,v4}})
Y)\g > v5

g-rl v4 v4
" g-r2
v2 v3 Ve v3
r1=({},{{V4,V5m /é({}.{{v4.v3}})

vi v5

g v4
V2 v3

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement

MLG, August 2007 19/34

Introduction

Dense refinement schemas
Results

Conclusions

Graph of parents GoP,- 1(g)

__ (not connected,
~ nho edge)

m4<> g-12

g-rl

“g=ri=(29)

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 20/34

Dense refinement schemas

Dense refinement schema

Definition

A dense refinement schema is a triple (p™, p, 1) s.t.
» (pt,p7) is a refinement schema
» The graph GoP,- ;(g) is connected.

This requirement has far-reaching implications, but still
allows for dense refinement schemas for a wide range of
graph classes.

Lemma

For every dense refinement schema, one can define a
size function | - | such that for every graph g and

rept(9),lg+rl=1g/+1.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 21/34

Introduction
Dense refinement schemas

Results
Conclusions

Outline

Introduction
Graph enumeration

Earlier work
Dense refinement schemas

Results

Conclusions

o = = = = 9ace

MLG, August 2007 22/34

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement

Results

Complexity theorem

Theorem

Consider a dense refinement schema (p*, p~,1). If the
following conditions hold:

> [p"(g)l and |p~(9)| are O(|gl)
» Foreveryr e p™(g), |rn gl is bounded by a constant

» The refinements r have an easy structure or |r| is
bounded by a constant.

Then, our algorithm runs with polynomial delay

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 23/34

Results

Data structure

» Our algorithm builds a data structure storing one
representative for every isomorphism class.

» This may take exponential space in the input size (if
the number of solutions is exponential), but for mining
purposes this is not to be expected

» Given any graph, the data structure can be used to
search the representative in polynomial time.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 24 /34

Results

Key idea of algorithm

» We construct a candidate pattern from a parent.

» Since the refinement schema is dense, we can hop
from one parent to the next one through
grandparents.

» In this way we can avoid to generate children from
different parents that are isomorphic.

» Finally, we can avoid isomorphic children from one
single parent by (incrementally) computing
automorphism groups.

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007

25/34

Results

What can we enumerate?

» 'Monotone’ classes
» Hereditary classes with bounded degree
» Classes restricted to connected graphs

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007

26/34

Results

'Monotone’! classes

interesting is monotone iff for every graph G such that
interesting(G), and for every subgraph S < G,
interesting(S).

» Minimal (efficient) frequency constraints under
subgraph isomorphism.

Maximal vertex & edge counts

Maximal degree, treewidth, ...

Forbidden subgraphs and minors

vV v v Y

1 in different communities, monotone and anti-monotone are
reversed

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 27 /34

Results

Complexity

Corollary

Let interesting be an antimonotonic predicate on the set
of all (connected) graphs. Then, we can list all interesting
graphs g with delay O(|V(9)[°).

Compare with L.A.Goldberg: enumerates all graphs with
delay O(|V(g)[°)

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 28 /34

Results

Hereditary classes with bounded degree

interesting is hereditary iff for every graph G such that
interesting(@G), and for every induced subgraph S <; G,
interesting(S).

» Minimal (efficient) frequency constraints under
induced subgraph isomorphism.
» Maximal degree, treewidth, edge count, vertex count

» Forbidden induced subgraphs, e.g. claw-free graphs
(graphs not containing an induced claw K 3)

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 29/34

Results

Connected graphs

We can combine both previous examples with the
constraint that the graphs should be connected. (even
though e.g. connectedness is not closed under taking
subgraphs).

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 30/34

Introduction
Dense refinement schemas

Results
Conclusions

Outline

Introduction

Graph enumeration
Earlier work

Dense refinement schemas

Results

Conclusions

o = = =

DA
MLG, August 2007 31/34

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement

Conclusions

Conclusions

We proposed:
» A (more) general method
» to list all interesting graphs

» of a wide range of graph classes (dense refinement
schema needed)

» with polynomial delay

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 32/34

Conclusions

Open problems

Theory:

» Enumerate graphs under induced subgraph
isomorphism (e.g. claw-free graphs, no degree
bound).

» How about homomorphism (aka theta-subsumption

in ILP) ? (some negative results are already known).

» Larger refinement steps ? (e.g. for closed pattern
mining)
Practice:
» Can a canonical form help?
» Experiments?

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007

33/34

Conclusions

Questions or comments?

J. Ramon & S. Nijssen (K.U.Leuven) General Graph Refinement MLG, August 2007 34/34

	Introduction
	Graph enumeration
	Earlier work

	Dense refinement schemas
	Results
	Conclusions

