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Introduction - Enumeration

Pattern Mining:
I Given a language L and an (often ’anti-monotonic’)

predicate interesting, list all interesting patterns.
Many pattern mining algorithms perform essentially two
tasks:

I Generating candidate patterns
I Checking interestingness of patterns (e.g. counting

frequency)
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Introduction - Enumeration

This paper deals with the first step:
I Given a (graph) language L
I Enumerate all (graph) patterns p ∈ L from small to

large
I ... allowing for suitable pruning
I ... and do not generate duplicates

In other words, we assume the predicate “interesting” to
be evaluable efficiently.

Avoiding duplicates is non-trivial: for graphs, isomorphism
is not known to be polynomial.
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Introduction - Enumeration

Complexity measures:
I Polynomial time – total running time bounded by

polynomial in input
I Polynomial delay – time needed for generating next

solution is bounded by polynomial in size of input
I Incremental polynomial time – time needed for

generating next solution is bounded by polynomial in
size of input and output so far

I Output polynomial time – total running time bounded
by polynomial in input + output.
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Introduction - Enumeration

Applications of graph enumerating:
I Pattern mining (e.g. candidate generation)
I Combinatorics (e.g. counting)
I Search
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Introduction - Earlier work

Earlier work
I Data mining and existing enumeration algorithms
I ’Simple’ cases
I Graph listing (L.A. Goldberg)
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Introduction - Earlier work

Literature:
I Systems:

I gSpan, AGM, . . .
I McKay’s Nauty

I All devote much attention to efficient candidate
generation

I Methods: Canonical forms, Joining operators, . . .
I But none of them proves polynomial delay.
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Introduction - Earlier work

Special cases:
I Itemsets: Apriori runs with polynomial delay
I Free trees (Wright’86)
I Outerplaner graphs: (Horvath & Ramon’06)
I . . .
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Introduction - Earlier work

L.A.Goldberg’s graph listing work
I One can enumerate all graphs of size at most n

without duplicates with delay O(n6).
I Relies on “most graphs are easy”

I If p is an allmost sure property, then one can
enumerate all graphs that satisfy p (in the original
paper including duplicates) with polynomial delay.
Every FOL property is either allmost always true or
allmost always false.

I For pattern mining, typically not all patterns are
interesting. In particular, the interesting case is when
there are only few interesting patterns.
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Contribution

Given:
I a language L of graphs
I a dense refinement schema for L
I an anti-monotonic constraint interesting (that can be

evaluated efficiently)
we enumerate

I all interesting patterns
I with polynomial delay
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Better?

I More general than L.A.Goldberg (L or interesting can
produce only ’difficult’ graphs)

I More general than specialized methods
I More efficient (better proven assymptotic complexity)

than gSpan, AGM, . . .
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Refinement description

Definition

A refinement description is a pair (V (r), E(r)) of vertices
and edges.

g r g+r
ss−r
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Refinement schema

Definition

A refinement schema is a pair (ρ+, ρ−) of functions from
graphs onto sets of refinement descriptions. Then,

I r ∈ ρ+(g) are the downward refinement descriptions
of g and g + r are (downward refinement /
specialisation / supergraph)

I r ∈ ρ−(g) are the upward refinement descriptions of g
and g − r are (upward refinement / generalisation /
subgraph)

I Consistent: r ∈ ρ+(g) iff r ∈ ρ−(g + r)
I Isomorphism-invariant= If r ∈ ρ+(g) and g ≡ϕ h, then

ϕ(r) ∈ ρ+(h).
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Refinement schema (ex)

Connected graphs:
I ρ+(g) : adding edge between two existing vertices or

adding new vertex and connecting it to existing one.
I ρ−(g) : removing vertex with degree 1 and its

adjacent edge, or removing en edge belonging to a
cycle.
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Combining refinements

↑ is an operator ’lifting’ an upward refinement. In
particular, if r1, r2 ∈ ρ−(g) and removing r2 from g − r1

makes sense, r2 ↑g r1 is the ’lifted’ version of r2 which can
be applied to g − r1.
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Combining refinements
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Graph of parents GoPρ−,↑(g)

g−r1

g−r2g−r4

g−r3

g

(not connected,
no edge)

g
g−r1−(r2    r1)  
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Dense refinement schema

Definition

A dense refinement schema is a triple (ρ+, ρ−, ↑) s.t.
I (ρ+, ρ−) is a refinement schema
I The graph GoPρ−,↑(g) is connected.

This requirement has far-reaching implications, but still
allows for dense refinement schemas for a wide range of
graph classes.

Lemma

For every dense refinement schema, one can define a
size function | · | such that for every graph g and
r ∈ ρ+(g), |g + r | = |g|+ 1.
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Complexity theorem

Theorem

Consider a dense refinement schema (ρ+, ρ−, ↑). If the
following conditions hold:

I |ρ+(g)| and |ρ−(g)| are O(|g|)
I For every r ∈ ρ+(g), |r ∩ g| is bounded by a constant
I The refinements r have an easy structure or |r | is

bounded by a constant.
Then, our algorithm runs with polynomial delay
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Data structure

I Our algorithm builds a data structure storing one
representative for every isomorphism class.

I This may take exponential space in the input size (if
the number of solutions is exponential), but for mining
purposes this is not to be expected

I Given any graph, the data structure can be used to
search the representative in polynomial time.
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Key idea of algorithm

I We construct a candidate pattern from a parent.
I Since the refinement schema is dense, we can hop

from one parent to the next one through
grandparents.

I In this way we can avoid to generate children from
different parents that are isomorphic.

I Finally, we can avoid isomorphic children from one
single parent by (incrementally) computing
automorphism groups.
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What can we enumerate?

I ’Monotone’ classes
I Hereditary classes with bounded degree
I Classes restricted to connected graphs
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’Monotone’1 classes

interesting is monotone iff for every graph G such that
interesting(G), and for every subgraph S � G,
interesting(S).

I Minimal (efficient) frequency constraints under
subgraph isomorphism.

I Maximal vertex & edge counts
I Maximal degree, treewidth, . . .
I Forbidden subgraphs and minors
I . . .

1 : in different communities, monotone and anti-monotone are
reversed
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Complexity

Corollary

Let interesting be an antimonotonic predicate on the set
of all (connected) graphs. Then, we can list all interesting
graphs g with delay O(|V (g)|5).

Compare with L.A.Goldberg: enumerates all graphs with
delay O(|V (g)|6)
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Hereditary classes with bounded degree

interesting is hereditary iff for every graph G such that
interesting(G), and for every induced subgraph S �i G,
interesting(S).

I Minimal (efficient) frequency constraints under
induced subgraph isomorphism.

I Maximal degree, treewidth, edge count, vertex count
I Forbidden induced subgraphs, e.g. claw-free graphs

(graphs not containing an induced claw K1,3)
I . . .
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Connected graphs

We can combine both previous examples with the
constraint that the graphs should be connected. (even
though e.g. connectedness is not closed under taking
subgraphs).
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Conclusions

We proposed:
I A (more) general method
I to list all interesting graphs
I of a wide range of graph classes (dense refinement

schema needed)
I with polynomial delay
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Open problems

Theory:
I Enumerate graphs under induced subgraph

isomorphism (e.g. claw-free graphs, no degree
bound).

I How about homomorphism (aka theta-subsumption
in ILP) ? (some negative results are already known).

I Larger refinement steps ? (e.g. for closed pattern
mining)

Practice:
I Can a canonical form help?
I Experiments?
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Questions or comments?
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