A Polynomial-time Metric for Outerplanar Graphs

Leander Schietgat
Jan Ramon
Maurice Bruynooghe

Mining and Learning with Graphs
August 1-3 2007, Florence

Introduction

- Drug discovery
- find new drug molecules that are active against some disease
- need for automatic techniques that select interesting molecules
- How to find interesting molecules
- similarity measure: which molecules are close to known drug molecules?
- observation: molecules with the same structure tend to have the same activity
- Problem
- how to represent molecules?

Examples of molecules

Graphs

- Very suitable to represent (binary) relational data
- vertices are entities, edges are relationships between entities
- molecules: vertices are atoms, edges are bonds
- graphs can be labeled
- atoms: $\mathrm{C}, \mathrm{O}, \mathrm{Cu}, \mathrm{Cl}, \mathrm{H}, \ldots$
- bonds: single, double, aromatic, ...
- Problem
- operations on graphs are computationally expensive!
- hence: algorithms that handle graphs directly are avoided

Related work

- Feature-based distances (fingerprints)
- defining of some features
- molecule is represented by a vector
- advantages: efficiently computable, use of existing machine learning techniques
- disadvantages: loss of information, feature selection
- Cost-based distances aka. graph edit distances
- approximation algorithms
- exact algorithms
- advantage: original graph structure preserved
- disadvantage: efficiency

The problem

- Goal of this work: to develop an efficiently computable metric on graphs representing molecules
- Bunke \& Shearer (1998) proposed a distance function on graphs based on the maximum common subgraph (MCS):

$$
d_{b s}(G, H)=1-\frac{|\operatorname{MCS}(G, H)|}{\max (|G|,|H|)}
$$

with $|G|$ equal to the number of vertices in G.

- $d_{b s}$ is a metric
- Other size functions can be used too

Maximum Common Subgraph (MCS)

- Given two graphs G and H
- The MCS is the graph /
- which is subgraph isomorphic to G and H
- there exists no other graph J which is also subgraph isomorphic to G and H and $|J|>|I|$

$\downarrow d_{b s}(G, H)=1-\frac{|M C S(G, H)|}{\max (|G|,|H|)}=1-\frac{12}{\max (26,18)}=0.54$

However...

- Problem: the computation of the MCS is not easy
- the subgraph isomorphism problem is NP-hard for general graphs (unless $P=N P$)
- Previous work on graphs has shown that the complexity of some problems can be reduced by imposing some constraints on the graph structure
- sequences
- trees
- planar graphs
- graphs of bounded degree
- graph of with treewidth at most k
- k-connected graphs
- Task: find an "easier" class of graphs to represent molecules?

Planar and outerplanar graphs

- Planar graph
- can be drawn in the plane in such a way that no two edges intersect except at a vertex in common
- Outerplanar graph
- planar graph with all the vertices adjacent to the outer face

A molecule

- 95% of the molecules in the NCI database can be represented by outerplanar graphs [Horváth et al. 2006]
- Problem: the subgraph isomorphism problem for outerplanar graphs is still NP-hard [Syslo 1982]

The subgraph isomorphism revisited

- New terminology
- block: maximal subgraph for which every pair of vertices is involved in a cycle
- bridge: edge that does not belong to a block
- Block-and-bridge preserving (BBP) subgraph isomorphism
- variant of the general subgraph isomorphism
- blocks are mapped onto blocks
- bridges are mapped onto bridges
- Motivation
- the BBP subgraph isomorphism for outerplanar graphs is computable in polynomial time [Horváth et al. 2006]
- chemist viewpoint: ring structures and linear fragments usually behave differently

The maximum common subgraph revisited

- $d_{b s}(G, H)=1-\frac{|M C S(G, H)|}{\max (|G|,|H|)}=1-\frac{10}{\max (26,18)}=0.62$

$$
d_{b s}(G, H)=0.54
$$

Sketch of the algorithm

- Dynamic programming approach
- Generate subgraphs
- non-block-splitting subgraphs
- half-graphs
- Order the subgraphs by ascending "size"
- Solve them (bottom-up)
- simple subgraphs (1 node): trivial solution
- difficult subgraphs (multiple nodes): combine the earlier computed solutions of parts of the subgraphs
- Results in polynomial time complexity

Non-block-splitting subgraphs

- Based on block-bridge trees

- Example of a non-block-splitting subgraph

Half-graphs

- Half-graph $\left.G\right|_{o[u, v]}$: maximal connected subgraph of G containing all vertices of $o[u, v]$ but none of the vertices $V(B) \backslash o[u, v]$ and none of the edges adjacent to v, which do not belong to the block B

$$
(o=\curvearrowright)
$$

- Example of a half-graph

Finding the size of the MCS of two outerplanar graphs

Datasets

- NCl cancer dataset
- publicly available (National Cancer Institute)
- screening results for the ability of more than 70,000 compounds to suppress or inhibit the growth of a panel of 60 human tumour cell lines
- 60 datasets from Swamidass et al. (2006)
- for each cell line: two-class classification problem
- more or less balanced datasets
- ~3500 examples, $\sim 90 \%$ outerplanar

kNN-classification

- find the nearest neighbour(s) according to the defined distance measure
- parameters
- $k=5$
- distance measure:

$$
d_{b s}(G, H)=1-\frac{|M C S(G, H)|}{\max (|G|,|H|)}
$$

- $|G|$: number of nodes in G
- prediction for molecule m :
- majority voting
- weighted voting: e.g., $|\operatorname{MCS}(G, H)| * \operatorname{class}(H)$

Preliminary results

- Evaluation method:
- leave-one-out crossvalidation

Dataset	\#examples	\#positives	\#negatives	Acc	AUROC
1	3085	1572	1513	69	0.75
2	3047	1520	1527	70	0.76
3	3278	1624	1654	70	0.76
4	3105	1545	1560	70	0.76
5	2426	1190	1236	70	0.76
6	3136	1607	1529	70	0.76
7	3049	1903	1146	69	0.73
8	3191	1648	1543	68	0.75
9	1053	701	352	70	0.72
10	1072	768	304	74	0.72

Time complexity

- molecule NCI 76026, \#nodes $=30$

Time complexity

- molecule NCI 76026, \#nodes = 30, \#halfgraphs = 1104

Time complexity

Conclusions

- We introduced
- a polynomial algorithm to find the size of the maximum connected common subgraph between two outerplanar graphs under the block and bridge preserving subgraph isomorphism
- which can be used to construct a metric on outerplanar graphs and have a similarity measure between molecules
- Preliminary results
- predictive performance
- running time

Further work

- Full-scale experiments
- investigating other distance measures, size functions, ...
- comparison with similar algorithms and metrics
- Swamidass et al. (2006)
- Ceroni et al. (2007)
- ...
- Investigation of other subclasses of graphs
- 10% of molecules in this dataset are not outerplanar
- look for other graph properties for which we can develop polynomial algorithms
- e.g., graphs with bounded treewidth

Questions?

