A Polynomial-time Metric for Outerplanar Graphs

Leander Schietgat Jan Ramon Maurice Bruynooghe

Mining and Learning with Graphs August 1-3 2007, Florence

Introduction

The problem Algorithm Experiments Conclusions and further work

Motivation Example

Introduction

- Drug discovery
 - find new drug molecules that are active against some disease
 - need for automatic techniques that select *interesting* molecules
- How to find interesting molecules
 - similarity measure: which molecules are *close* to known drug molecules?
 - observation: molecules with the <u>same structure</u> tend to have the <u>same activity</u>
- Problem
 - how to represent molecules?

Introduction

The problem Algorithm Experiments Conclusions and further work

Motivation Example

Examples of molecules

Graphs Related work Problem description Complexity Special classes of graphs

Graphs

- Very suitable to represent (binary) relational data
 - vertices are entities, edges are relationships between entities
 - molecules: vertices are atoms, edges are bonds
 - graphs can be labeled
 - ▶ atoms: C, O, Cu, Cl, H, ...
 - bonds: single, double, aromatic, ...
- Problem
 - operations on graphs are computationally expensive!
 - hence: algorithms that handle graphs directly are avoided

Graphs Related work Problem description Complexity Special classes of graphs

Related work

- Feature-based distances (fingerprints)
 - defining of some features
 - molecule is represented by a vector
 - advantages: efficiently computable, use of existing machine learning techniques
 - disadvantages: loss of information, feature selection
- Cost-based distances aka. graph edit distances
 - approximation algorithms
 - exact algorithms
 - advantage: original graph structure preserved
 - disadvantage: efficiency

Graphs Related work **Problem description** Complexity Special classes of graphs

The problem

- Goal of this work: to develop an efficiently computable metric on graphs representing molecules
- Bunke & Shearer (1998) proposed a distance function on graphs based on the maximum common subgraph (MCS):

$$d_{bs}(G,H) = 1 - \frac{|MCS(G,H)|}{\max(|G|,|H|)},$$

with |G| equal to the number of vertices in G.

- *d_{bs}* is a metric
- Other size functions can be used too

Graphs Related work **Problem description** Complexity Special classes of graphs

Maximum Common Subgraph (MCS)

- ▶ Given two graphs G and H
- The MCS is the graph I
 - which is subgraph isomorphic to G and H
 - ► there exists no other graph J which is also subgraph isomorphic to G and H and |J| > |I|

Leander Schietgat Jan Ramon Maurice Bruynooghe

A Polynomial-time Metric for Outerplanar Graphs

Graphs Related work Problem description Complexity Special classes of graphs

However...

- Problem: the computation of the MCS is not easy
 - the subgraph isomorphism problem is NP-hard for general graphs (unless P = NP)
- Previous work on graphs has shown that the complexity of some problems can be reduced by imposing some constraints on the graph structure
 - sequences
 - trees
 - planar graphs
 - graphs of bounded degree
 - graph of with treewidth at most k
 - k-connected graphs
- ► Task: find an "easier" class of graphs to represent molecules?

Graphs Related work Problem description Complexity Special classes of graphs

Planar and outerplanar graphs

- Planar graph
 - can be drawn in the plane in such a way that no two edges intersect except at a vertex in common
- Outerplanar graph
 - planar graph with all the vertices adjacent to the outer face

Graphs Related work Problem description Complexity Special classes of graphs

A molecule

- ▶ 95% of the molecules in the NCI database can be represented by outerplanar graphs [Horváth et al. 2006]
- Problem: the subgraph isomorphism problem for outerplanar graphs is still NP-hard [Syslo 1982]

Graphs Related work Problem description Complexity Special classes of graphs

The subgraph isomorphism revisited

- New terminology
 - block: maximal subgraph for which every pair of vertices is involved in a cycle
 - bridge: edge that does not belong to a block
- Block-and-bridge preserving (BBP) subgraph isomorphism
 - variant of the general subgraph isomorphism
 - blocks are mapped onto blocks
 - bridges are mapped onto bridges
- Motivation
 - the BBP subgraph isomorphism for outerplanar graphs is computable in polynomial time [Horváth et al. 2006]
 - chemist viewpoint: ring structures and linear fragments usually behave differently

Graphs Related work Problem description Complexity Special classes of graphs

The maximum common subgraph revisited

Preliminaries The algorithm

Sketch of the algorithm

- Dynamic programming approach
 - Generate subgraphs
 - non-block-splitting subgraphs
 - half-graphs
 - Order the subgraphs by ascending "size"
 - Solve them (bottom-up)
 - simple subgraphs (1 node): trivial solution
 - difficult subgraphs (multiple nodes): combine the earlier computed solutions of parts of the subgraphs
- Results in polynomial time complexity

Preliminaries The algorithm

Non-block-splitting subgraphs

Preliminaries The algorithm

Half-graphs

► Half-graph G|_{o[u,v]}: maximal connected subgraph of G containing all vertices of o[u, v] but none of the vertices V(B) \ o[u, v] and none of the edges adjacent to v, which do not belong to the block B

A Polynomial-time Metric for Outerplanar Graphs

Preliminaries The algorithm

Finding the size of the MCS of two outerplanar graphs

	Ĥ	Ĥ	 C H	O H	 н с с н н с с н	
Ĥ	1	1	0	0	0	0
Ĥ	1	1	0	0	0	0
C H H	0	0	2	0	1	1
о Н	0	0	0	2	0	0
	0	0	1	0	11	11
	0	0	2	0	11	15

Datasets Method Results

- NCI cancer dataset
 - publicly available (National Cancer Institute)
 - screening results for the ability of more than 70,000 compounds to suppress or inhibit the growth of a panel of 60 human tumour cell lines
- ▶ 60 datasets from Swamidass et al. (2006)
 - for each cell line: two-class classification problem
 - more or less balanced datasets
 - ► ~3500 examples, ~90% outerplanar

Datasets Method Results

kNN-classification

- find the nearest neighbour(s) according to the defined distance measure
- parameters
 - ▶ *k* = 5
 - distance measure:

$$d_{bs}(G,H) = 1 - \frac{|MCS(G,H)|}{\max(|G|,|H|)}$$

- |G|: number of nodes in G
- prediction for molecule m:
 - majority voting
 - ▶ weighted voting: e.g., |MCS(G, H)| * class(H)

Datasets Method Results

Preliminary results

Evaluation method:

leave-one-out crossvalidation

Dataset	#examples	#positives	#negatives	Acc	AUROC
1	3085	1572	1513	69	0.75
2	3047	1520	1527	70	0.76
3	3278	1624	1654	70	0.76
4	3105	1545	1560	70	0.76
5	2426	1190	1236	70	0.76
6	3136	1607	1529	70	0.76
7	3049	1903	1146	69	0.73
8	3191	1648	1543	68	0.75
9	1053	701	352	70	0.72
10	1072	768	304	74	0.72

Datasets Method Results

Time complexity

molecule NCI 76026, #nodes = 30

Leander Schietgat Jan Ramon Maurice Bruynooghe

A Polynomial-time Metric for Outerplanar Graphs

Datasets Method Results

Time complexity

• molecule NCI 76026, #nodes = 30, #halfgraphs = 1104

Leander Schietgat Jan Ramon Maurice Bruynooghe

A Polynomial-time Metric for Outerplanar Graphs

Datasets Method Results

Time complexity

Conclusions Further work

Conclusions

- We introduced
 - a polynomial algorithm to find the size of the maximum connected common subgraph between two outerplanar graphs under the block and bridge preserving subgraph isomorphism
 - which can be used to construct a metric on outerplanar graphs and have a similarity measure between molecules
- Preliminary results
 - predictive performance
 - running time

Conclusions Further work

Further work

- Full-scale experiments
 - investigating other distance measures, size functions, ...
 - comparison with similar algorithms and metrics
 - Swamidass et al. (2006)
 - Ceroni et al. (2007)
 - •
- Investigation of other subclasses of graphs
 - ▶ 10% of molecules in this dataset are not outerplanar
 - look for other graph properties for which we can develop polynomial algorithms
 - e.g., graphs with bounded treewidth

Conclusions Further work

Questions?

Leander Schietgat Jan Ramon Maurice Bruynooghe A Polynomial-time Metric for Outerplanar Graphs