

Kernel methods for structured data

Paolo Frasconi
Università degli Studi di Firenze, Italy

Summer school on Mining Big and Complex Data
Ohrid, September 4th, 2016

Outline

1. Learning with structured data

2. Kernels and convolution kernels

3. Graph kernels

4. Kernel methods for relational learning

5. Dealing with continuous/high dimensional attributes

Kernel methods for structured data Ohrid, 04/09/2016

Part 1

Learning with structured data

Structured data

Data in propositional supervised learning:
Design matrix (input) X : one example per row, one
attribute (or codebit) per column

Target vector (output) y: one scalar per example (binary,
regression, multitask)

Data in relational learning:
Relational database(s) or equivalent (restricted) first-order
logic representations — e.g. learning from interpretations
(De Raedt 2008)

Kernel methods for structured data Structured data Ohrid, 04/09/2016

Structured data

Data in propositional supervised learning:
Design matrix (input) X : one example per row, one
attribute (or codebit) per column

Target vector (output) y: one scalar per example (binary,
regression, multitask)

Data in relational learning:
Relational database(s) or equivalent (restricted) first-order
logic representations — e.g. learning from interpretations
(De Raedt 2008)

Kernel methods for structured data Structured data Ohrid, 04/09/2016

Example: Chemoinformatics

Each molecule represented as a
graph where:

Nodes correspond to atoms

Edges correspond to bonds

Attributes may include element,
charge, bond type

Task: many are possible — e.g.
active compound in drug design,
mutagenicity, biodegradability, etc.

Kernel methods for structured data Structured data Ohrid, 04/09/2016

Example: Protein function (Borgwardt et al. 2005b)

Each protein represented as a graph
where:

Nodes correspond to secondary
structure elements (SSE)

Structural edges (SSE are neighbors in
space) and sequential edges (SSE are
adjacent in sequence)

Attributes include physical and chemical
information

Task: discriminate between enzymes and
non-enzymes, or categorize according to
enzyme type

Kernel methods for structured data Structured data Ohrid, 04/09/2016

Example: Sentence classification

Each sentence represented as a graph where:
Nodes correspond to words (possibly represented by word
vectors)

Edges correspond to the (typed) dependency relation between
governors and dependents

Tasks: many are possible — e.g. classify sentences according to
the expected answer, such as food (Li et al. 2006); detect weasel
sentences (Verbeke et al. 2011), segment scientific abstracts
(Verbeke et al. 2012) etc.

Kernel methods for structured data Structured data Ohrid, 04/09/2016

Example: sub-community identification (Yanardag et al. 2015)

Each discussion on reddit represented as
a graph where:

Nodes correspond to users

Edges represent user interactions (e.g.
responding to each other’s comments)

Task: Categorize discussions into
communities, e.g. question/answer-based
community or a discussion-based
community

Kernel methods for structured data Structured data Ohrid, 04/09/2016

Structured output learning

You have a structured output learning problem when the
output (target) is a data structure

In general you can expect interdependencies among output
variables

Thus better accuracy can be achieved by forming features
that include these output variables

Kernel methods for structured data Structured data Ohrid, 04/09/2016

Structured output learning

You have a structured output learning problem when the
output (target) is a data structure

In general you can expect interdependencies among output
variables

Thus better accuracy can be achieved by forming features
that include these output variables

Kernel methods for structured data Structured data Ohrid, 04/09/2016

Structured output learning

You have a structured output learning problem when the
output (target) is a data structure

In general you can expect interdependencies among output
variables

Thus better accuracy can be achieved by forming features
that include these output variables

Kernel methods for structured data Structured data Ohrid, 04/09/2016

Example: Supervised sequence learning

Example: protein secondary structure prediction
Input is a sequence of amino-acids

Target is a corresponding sequence of α-β-γ labels

Example: Part-of-speech tagging
Input is a sentence (sequence of words)

Output is a corresponding sequence of syntactic categories

Kernel methods for structured data Structured data Ohrid, 04/09/2016

Example: Supervised sequence learning

Example: protein secondary structure prediction
Input is a sequence of amino-acids

Target is a corresponding sequence of α-β-γ labels

Example: Part-of-speech tagging
Input is a sentence (sequence of words)

Output is a corresponding sequence of syntactic categories

Kernel methods for structured data Structured data Ohrid, 04/09/2016

Example: Natural language parsing

Each example corresponds to a sentence

The input is a sequence of words

The target is a parse tree for the sentence

Kernel methods for structured data Structured data Ohrid, 04/09/2016

Part 2

Kernels and convolution kernels

Basic material only, for details see e.g. (Haussler
1999; Schölkopf et al. 2002; Shawe-Taylor et al.

2004)

Kernels

Let X denote the instance space

Let F denote the feature space (a Hilbert space)

A function k : X × X 7→ R is a valid kernel if there exists a
feature map ϕ : X 7→ F such that

k(x, z) = ⟨ϕ(x), ϕ(z)⟩ ∀x, z ∈ X

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Kernels

Let X denote the instance space

Let F denote the feature space (a Hilbert space)

A function k : X × X 7→ R is a valid kernel if there exists a
feature map ϕ : X 7→ F such that

k(x, z) = ⟨ϕ(x), ϕ(z)⟩ ∀x, z ∈ X

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Kernels

Let X denote the instance space

Let F denote the feature space (a Hilbert space)

A function k : X × X 7→ R is a valid kernel if there exists a
feature map ϕ : X 7→ F such that

k(x, z) = ⟨ϕ(x), ϕ(z)⟩ ∀x, z ∈ X

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Kernels

Let X denote the instance space

Let F denote the feature space (a Hilbert space)

A function k : X × X 7→ R is a valid kernel if there exists a
feature map ϕ : X 7→ F such that

k(x, z) = ⟨ϕ(x), ϕ(z)⟩ ∀x, z ∈ X

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Kernels

Let X denote the instance space

Let F denote the feature space (a Hilbert space)

A function k : X × X 7→ R is a valid kernel if there exists a
feature map ϕ : X 7→ F such that

k(x, z) = ⟨ϕ(x), ϕ(z)⟩ ∀x, z ∈ X

Equivalently (Mercer’s theorem): k is a valid kernel iff
Symmetric: k(x, z) = k(z, x)

Positive semidefinite: for every finite set of points, the matrix
with entries

kij = k
(
x(i), x(j)

)
has no negative eigenvalue

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Example: support vector classification (SVC)
Given the dataset D =

{(
x(i), y(i)

)
; i = 1, . . . , n

}

The prediction function f : X 7→ R can be written as

f(x) =
n∑

i=1
α(i)y(i)k

(
x(i), x

)
+ b

The purpose of the kernel is to measure the similarity between the
test point x and every training example x(i)

The coefficients are the solution of the QP

min
α

∥α∥1 + 1
2

α⊺Qα

subject to: 0 ≤ α(i) ≤ C i = 1, . . . , n
n∑

i=1
α(i)y(i) = 0

where Q = (Y Y ⊺) ◦ K and K is the kernel matrix of D

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Example: support vector classification (SVC)
Given the dataset D =

{(
x(i), y(i)

)
; i = 1, . . . , n

}
The prediction function f : X 7→ R can be written as

f(x) =
n∑

i=1
α(i)y(i)k

(
x(i), x

)
+ b

The purpose of the kernel is to measure the similarity between the
test point x and every training example x(i)

The coefficients are the solution of the QP

min
α

∥α∥1 + 1
2

α⊺Qα

subject to: 0 ≤ α(i) ≤ C i = 1, . . . , n
n∑

i=1
α(i)y(i) = 0

where Q = (Y Y ⊺) ◦ K and K is the kernel matrix of D

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Example: support vector classification (SVC)
Given the dataset D =

{(
x(i), y(i)

)
; i = 1, . . . , n

}
The prediction function f : X 7→ R can be written as

f(x) =
n∑

i=1
α(i)y(i)k

(
x(i), x

)
+ b

The purpose of the kernel is to measure the similarity between the
test point x and every training example x(i)

The coefficients are the solution of the QP

min
α

∥α∥1 + 1
2

α⊺Qα

subject to: 0 ≤ α(i) ≤ C i = 1, . . . , n
n∑

i=1
α(i)y(i) = 0

where Q = (Y Y ⊺) ◦ K and K is the kernel matrix of D
Kernel methods for structured data Kernels Ohrid, 04/09/2016

Check that your kernel looks reasonable

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Advantages of the kernel trick

Performance: Using appropriate kernel functions we may be
able to perform nonlinear classification and attain better
accuracy (because of lower approximation error)

Efficiency (for small-medium size datasets): we may be able
to compute k(x, z) without computing the transformed
ϕ(x) and ϕ(z) explicitly

Abstraction: The data type of x does not matter anymore
and we can apply many existing algorithms to arbitrary
objects (in particular, structured ones)

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Advantages of the kernel trick

Performance: Using appropriate kernel functions we may be
able to perform nonlinear classification and attain better
accuracy (because of lower approximation error)

Efficiency (for small-medium size datasets): we may be able
to compute k(x, z) without computing the transformed
ϕ(x) and ϕ(z) explicitly

Abstraction: The data type of x does not matter anymore
and we can apply many existing algorithms to arbitrary
objects (in particular, structured ones)

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Advantages of the kernel trick

Performance: Using appropriate kernel functions we may be
able to perform nonlinear classification and attain better
accuracy (because of lower approximation error)

Efficiency (for small-medium size datasets): we may be able
to compute k(x, z) without computing the transformed
ϕ(x) and ϕ(z) explicitly

Abstraction: The data type of x does not matter anymore
and we can apply many existing algorithms to arbitrary
objects (in particular, structured ones)

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Disadvantages of kernels

Knowledge: Many different kernels are possible and choosing
the correct one may require background knowledge that we
don’t have

Efficiency: Solving a quadratic problem is prohibitive for large
datasets

The quadratic problem may be avoided in some cases
Approximate the kernel matrix, e.g. using the Nyström
method, or restrict to homogeneous kernels (Vedaldi et al.
2012)

Use kernels that correspond to very sparse feature vectors
that may be obtained explicitly

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Disadvantages of kernels

Knowledge: Many different kernels are possible and choosing
the correct one may require background knowledge that we
don’t have

Efficiency: Solving a quadratic problem is prohibitive for large
datasets

The quadratic problem may be avoided in some cases
Approximate the kernel matrix, e.g. using the Nyström
method, or restrict to homogeneous kernels (Vedaldi et al.
2012)

Use kernels that correspond to very sparse feature vectors
that may be obtained explicitly

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Disadvantages of kernels

Knowledge: Many different kernels are possible and choosing
the correct one may require background knowledge that we
don’t have

Efficiency: Solving a quadratic problem is prohibitive for large
datasets

The quadratic problem may be avoided in some cases
Approximate the kernel matrix, e.g. using the Nyström
method, or restrict to homogeneous kernels (Vedaldi et al.
2012)

Use kernels that correspond to very sparse feature vectors
that may be obtained explicitly

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Closure properties

Suppose k1 and k2 are two valid (positive semi-definite)
kernels with kj(x, z) = ⟨ϕj(x), ϕj(z)⟩

Then the following kernels are also valid:

k3(x, z) = k1(x, z) + k2(x, z) (sum)
k4(x, z) = k1(x, z)k2(x, z) (product)

k5(x, z) = k1(x, z)√
k1(x, x)k1(z, z)

(normalization)

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Closure properties

Suppose k1 and k2 are two valid (positive semi-definite)
kernels with kj(x, z) = ⟨ϕj(x), ϕj(z)⟩

Then the following kernels are also valid:

k3(x, z) = k1(x, z) + k2(x, z) (sum)
k4(x, z) = k1(x, z)k2(x, z) (product)

k5(x, z) = k1(x, z)√
k1(x, x)k1(z, z)

(normalization)

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Sum and product of kernels

If k1 and k2 are valid kernels then there exists ϕ1 and ϕ2
such that

k1(x, z) = ⟨ϕ1(x), ϕ1(z)⟩
k2(x, z) = ⟨ϕ2(x), ϕ2(z)⟩

k1(x, z) + k2(x, z) = ⟨ϕ1(x) ⊕ ϕ2(x), ϕ1(z) ⊕ ϕ2(z)⟩
where ⊕ denotes the concatenation operator

k1(x, z)k2(x, z) = ⟨ϕ1(x) ⊗ ϕ2(x), ϕ1(z) ⊗ ϕ2(z)⟩ where
⊗ denotes the Kronecker product

a ⊗ b = [a1b, a2b, · · · , apb]

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Sum and product of kernels

If k1 and k2 are valid kernels then there exists ϕ1 and ϕ2
such that

k1(x, z) = ⟨ϕ1(x), ϕ1(z)⟩
k2(x, z) = ⟨ϕ2(x), ϕ2(z)⟩

k1(x, z) + k2(x, z) = ⟨ϕ1(x) ⊕ ϕ2(x), ϕ1(z) ⊕ ϕ2(z)⟩
where ⊕ denotes the concatenation operator

k1(x, z)k2(x, z) = ⟨ϕ1(x) ⊗ ϕ2(x), ϕ1(z) ⊗ ϕ2(z)⟩ where
⊗ denotes the Kronecker product

a ⊗ b = [a1b, a2b, · · · , apb]

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Sum and product of kernels

If k1 and k2 are valid kernels then there exists ϕ1 and ϕ2
such that

k1(x, z) = ⟨ϕ1(x), ϕ1(z)⟩
k2(x, z) = ⟨ϕ2(x), ϕ2(z)⟩

k1(x, z) + k2(x, z) = ⟨ϕ1(x) ⊕ ϕ2(x), ϕ1(z) ⊕ ϕ2(z)⟩
where ⊕ denotes the concatenation operator

k1(x, z)k2(x, z) = ⟨ϕ1(x) ⊗ ϕ2(x), ϕ1(z) ⊗ ϕ2(z)⟩ where
⊗ denotes the Kronecker product

a ⊗ b = [a1b, a2b, · · · , apb]

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Normalization

Suppose k is a valid kernel; then

k̃(x, z) .= k(x, z)√
k(x, x)k(z, z)

is also a valid kernel

Easy to prove: if k(x, z) = ⟨ϕ(x), ϕ(z)⟩ define

ϕ̃(x) = ϕ(x)
∥ϕ(x)∥

and check that

k̃(x, z) = ⟨ϕ̃(x), ϕ̃(z)⟩

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Normalization

Suppose k is a valid kernel; then

k̃(x, z) .= k(x, z)√
k(x, x)k(z, z)

is also a valid kernel

Easy to prove: if k(x, z) = ⟨ϕ(x), ϕ(z)⟩ define

ϕ̃(x) = ϕ(x)
∥ϕ(x)∥

and check that

k̃(x, z) = ⟨ϕ̃(x), ϕ̃(z)⟩

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Tensor product and direct sum kernels

Suppose X = X1 × X2

If κd, for d = 1, . . . , 2 are valid kernels on Xd × Xd, it is easy
to construct valid kernels on tuples, e.g.,

Tensor product kernel

(κ1 ⊗ κ2)((x1, x2), (x2, x2))
.= κ1(x1, z1)κ2(x2, z2)

Direct sum kernel

(κ1 ⊕ κ2)((x1, x2), (x2, x2))
.= κ1(x1, z1) + κ2(x2, z2)

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Tensor product and direct sum kernels

Suppose X = X1 × X2

If κd, for d = 1, . . . , 2 are valid kernels on Xd × Xd, it is easy
to construct valid kernels on tuples, e.g.,

Tensor product kernel

(κ1 ⊗ κ2)((x1, x2), (x2, x2))
.= κ1(x1, z1)κ2(x2, z2)

Direct sum kernel

(κ1 ⊕ κ2)((x1, x2), (x2, x2))
.= κ1(x1, z1) + κ2(x2, z2)

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Convolution (or decomposition) kernels (Haussler 1999)

Basic idea: decompose a composite instance space X into
spaces representing “parts” X1, . . . , XD

Introduce a decomposition relation

R ⊂ X1 × . . . × XD × X

For all xd ∈ Xd, d = 1, . . . , D and x ∈ X ,
(x1, . . . , xD, x) ∈ R iff x1, . . . , xD are the parts of x

Notation:

R−1(x) .= {(x1, . . . , xD) : (x1, . . . , xD, x) ∈ R}

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Convolution (or decomposition) kernels (Haussler 1999)

Basic idea: decompose a composite instance space X into
spaces representing “parts” X1, . . . , XD

Introduce a decomposition relation

R ⊂ X1 × . . . × XD × X

For all xd ∈ Xd, d = 1, . . . , D and x ∈ X ,
(x1, . . . , xD, x) ∈ R iff x1, . . . , xD are the parts of x

Notation:

R−1(x) .= {(x1, . . . , xD) : (x1, . . . , xD, x) ∈ R}

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Convolution (or decomposition) kernels (Haussler 1999)

Basic idea: decompose a composite instance space X into
spaces representing “parts” X1, . . . , XD

Introduce a decomposition relation

R ⊂ X1 × . . . × XD × X

For all xd ∈ Xd, d = 1, . . . , D and x ∈ X ,
(x1, . . . , xD, x) ∈ R iff x1, . . . , xD are the parts of x

Notation:

R−1(x) .= {(x1, . . . , xD) : (x1, . . . , xD, x) ∈ R}

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Convolution (or decomposition) kernels (Haussler 1999)

Basic idea: decompose a composite instance space X into
spaces representing “parts” X1, . . . , XD

Introduce a decomposition relation

R ⊂ X1 × . . . × XD × X

For all xd ∈ Xd, d = 1, . . . , D and x ∈ X ,
(x1, . . . , xD, x) ∈ R iff x1, . . . , xD are the parts of x

Notation:

R−1(x) .= {(x1, . . . , xD) : (x1, . . . , xD, x) ∈ R}

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Example on strings

Let X = Σ∗ (the set of all strings over a finite alphabet Σ)

Let D = 2 and X1 = X2 = X

Define R so that (x1, x2, x) ∈ R iff x1 is a prefix of x and
x2 the complementary suffix

(TATAG, ACGA, TATAGACGA) ∈ R

(TAT, ACGA, TATAGACGA) /∈ R

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Example on strings

Let X = Σ∗ (the set of all strings over a finite alphabet Σ)

Let D = 2 and X1 = X2 = X

Define R so that (x1, x2, x) ∈ R iff x1 is a prefix of x and
x2 the complementary suffix

(TATAG, ACGA, TATAGACGA) ∈ R

(TAT, ACGA, TATAGACGA) /∈ R

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Example on strings

Let X = Σ∗ (the set of all strings over a finite alphabet Σ)

Let D = 2 and X1 = X2 = X

Define R so that (x1, x2, x) ∈ R iff x1 is a prefix of x and
x2 the complementary suffix

(TATAG, ACGA, TATAGACGA) ∈ R

(TAT, ACGA, TATAGACGA) /∈ R

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Example on trees

Let X be the set of all parse tree over nonterminals N
(terminal symbols omitted)

A co-rooted subtree of x is a tree obtained as follow:
Take a complete subtree x′ of x

Remove some complete subtrees from x′

Replace the roots of the removed subtrees

A co-rooted substree never splits across a production rule

(t, x) ∈ R iff t is a co-rooted subtree of x

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Example on trees

Let X be the set of all parse tree over nonterminals N
(terminal symbols omitted)

A co-rooted subtree of x is a tree obtained as follow:
Take a complete subtree x′ of x

Remove some complete subtrees from x′

Replace the roots of the removed subtrees

A co-rooted substree never splits across a production rule

(t, x) ∈ R iff t is a co-rooted subtree of x

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Example on trees

Let X be the set of all parse tree over nonterminals N
(terminal symbols omitted)

A co-rooted subtree of x is a tree obtained as follow:
Take a complete subtree x′ of x

Remove some complete subtrees from x′

Replace the roots of the removed subtrees

A co-rooted substree never splits across a production rule

(t, x) ∈ R iff t is a co-rooted subtree of x

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Co-rooted subtrees (Collins et al. 2001)

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Example on graphs

Graph: G = (V, E)

Let X be the set of all labeled undirected graphs

A path (or walk) π is a sequence of vertices π1, . . . , π|π|
such that πj ∈ V and (πj, πj+1) ∈ E

If ℓ : V 7→ L is the vertex labeling function, the sequence
ℓ(π1), . . . , ℓ(π|π|) is a labeled path of x

(π, x) ∈ R iff π is a labeled path of x

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Example on graphs

Graph: G = (V, E)

Let X be the set of all labeled undirected graphs

A path (or walk) π is a sequence of vertices π1, . . . , π|π|
such that πj ∈ V and (πj, πj+1) ∈ E

If ℓ : V 7→ L is the vertex labeling function, the sequence
ℓ(π1), . . . , ℓ(π|π|) is a labeled path of x

(π, x) ∈ R iff π is a labeled path of x

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Example on graphs

Graph: G = (V, E)

Let X be the set of all labeled undirected graphs

A path (or walk) π is a sequence of vertices π1, . . . , π|π|
such that πj ∈ V and (πj, πj+1) ∈ E

If ℓ : V 7→ L is the vertex labeling function, the sequence
ℓ(π1), . . . , ℓ(π|π|) is a labeled path of x

(π, x) ∈ R iff π is a labeled path of x

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Graphlets, subgraphs

Simply: (g, x) ∈ R iff g is a subgraph of x

All graphlets of 4 nodes (Shervashidze et al. 2009; Yanardag et al. 2015)

Frequent subgraph mining (Deshpande et al. 2005; Wale et al. 2008)
Kernel methods for structured data Kernels Ohrid, 04/09/2016

Convolution kernels

Assume the instance space X can be decomposed into
subspaces via a decomposition relation
R ⊂ X1 × . . . × XD × X

Suppose we have a valid kernel κd over all subspaces Xd for
d = 1, . . . , D

Then the following kernel is valid over X (Haussler 1999):

K(x, z) =
∑

(x1, . . . , xd) ∈ R−1(x)
(z1, . . . , zd) ∈ R−1(z)

D∏
d=1

κd(xd, zd)

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Convolution kernels

Assume the instance space X can be decomposed into
subspaces via a decomposition relation
R ⊂ X1 × . . . × XD × X

Suppose we have a valid kernel κd over all subspaces Xd for
d = 1, . . . , D

Then the following kernel is valid over X (Haussler 1999):

K(x, z) =
∑

(x1, . . . , xd) ∈ R−1(x)
(z1, . . . , zd) ∈ R−1(z)

D∏
d=1

κd(xd, zd)

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Convolution kernels

Assume the instance space X can be decomposed into
subspaces via a decomposition relation
R ⊂ X1 × . . . × XD × X

Suppose we have a valid kernel κd over all subspaces Xd for
d = 1, . . . , D

Then the following kernel is valid over X (Haussler 1999):

K(x, z) =
∑

(x1, . . . , xd) ∈ R−1(x)
(z1, . . . , zd) ∈ R−1(z)

D∏
d=1

κd(xd, zd)

Kernel methods for structured data Kernels Ohrid, 04/09/2016

Part 3

Graph kernels

Path kernels

Graph: G = (V, E)

Labels may be attached to vertices and/or edges

Let κnode and κedge be valid kernels on node labels and edge labels,
respectively

Define the path kernel as the tensor product kernel

κpath(π, π′) = 1{|π| = |π′|} ·
|π|∏

j=1
κnode

(
ℓ(πj), ℓ(π′

j)
)

·
|π|−1∏
j=1

κedge
(
ℓ((πj, πj+1)), ℓ((π′

j, π′
j+1))

)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Path kernels

Graph: G = (V, E)

Labels may be attached to vertices and/or edges

Let κnode and κedge be valid kernels on node labels and edge labels,
respectively

Define the path kernel as the tensor product kernel

κpath(π, π′) = 1{|π| = |π′|} ·
|π|∏

j=1
κnode

(
ℓ(πj), ℓ(π′

j)
)

·
|π|−1∏
j=1

κedge
(
ℓ((πj, πj+1)), ℓ((π′

j, π′
j+1))

)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Path kernels

Graph: G = (V, E)

Labels may be attached to vertices and/or edges

Let κnode and κedge be valid kernels on node labels and edge labels,
respectively

Define the path kernel as the tensor product kernel

κpath(π, π′) = 1{|π| = |π′|} ·
|π|∏

j=1
κnode

(
ℓ(πj), ℓ(π′

j)
)

·
|π|−1∏
j=1

κedge
(
ℓ((πj, πj+1)), ℓ((π′

j, π′
j+1))

)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Path kernels

Graph: G = (V, E)

Labels may be attached to vertices and/or edges

Let κnode and κedge be valid kernels on node labels and edge labels,
respectively

Define the path kernel as the tensor product kernel

κpath(π, π′) = 1{|π| = |π′|} ·
|π|∏

j=1
κnode

(
ℓ(πj), ℓ(π′

j)
)

·
|π|−1∏
j=1

κedge
(
ℓ((πj, πj+1)), ℓ((π′

j, π′
j+1))

)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

From path kernels to graph kernels

Random walk kernels count the number of matching walks:

K(G, G′) =
∑

π∈R−1(G)

∑
π′∈R−1(G′)

κpath(π, π′)

where (π, G) ∈ R iff π is a path in G

Computing ϕ(G) is NP-complete (Gärtner et al. 2003) —
proof by reduction to finding a Hamiltonian path

Many possible approaches, we will briefly review the
following ideas:

Use a marginalized kernel (Kashima et al. 2003)

Use product graphs (Gärtner et al. 2003)

Use shortest-paths (Borgwardt et al. 2005a)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

From path kernels to graph kernels

Random walk kernels count the number of matching walks:

K(G, G′) =
∑

π∈R−1(G)

∑
π′∈R−1(G′)

κpath(π, π′)

where (π, G) ∈ R iff π is a path in G

Computing ϕ(G) is NP-complete (Gärtner et al. 2003) —
proof by reduction to finding a Hamiltonian path

Many possible approaches, we will briefly review the
following ideas:

Use a marginalized kernel (Kashima et al. 2003)

Use product graphs (Gärtner et al. 2003)

Use shortest-paths (Borgwardt et al. 2005a)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

From path kernels to graph kernels

Random walk kernels count the number of matching walks:

K(G, G′) =
∑

π∈R−1(G)

∑
π′∈R−1(G′)

κpath(π, π′)

where (π, G) ∈ R iff π is a path in G

Computing ϕ(G) is NP-complete (Gärtner et al. 2003) —
proof by reduction to finding a Hamiltonian path

Many possible approaches, we will briefly review the
following ideas:

Use a marginalized kernel (Kashima et al. 2003)

Use product graphs (Gärtner et al. 2003)

Use shortest-paths (Borgwardt et al. 2005a)
Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Marginalized graph kernels

Let P(π|G) denote the probability of a random walk π in G

To compute it:
Sample the first node π1 from a start distribution ps

At the j-th step, sample the next node πj from a transition
distribution pt(πj|πj−1)

Allow termination using a stop distribution pq such that∑
v∈V

pt(v|w) + pq(w) = 1 ∀w ∈ V

Define the graph kernel as (Kashima et al. 2003)

k(G, G′) =
∑
π

∑
π′

kp(π, π′)P(π|G)P(π′|G′)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Marginalized graph kernels

Let P(π|G) denote the probability of a random walk π in G

To compute it:
Sample the first node π1 from a start distribution ps

At the j-th step, sample the next node πj from a transition
distribution pt(πj|πj−1)

Allow termination using a stop distribution pq such that∑
v∈V

pt(v|w) + pq(w) = 1 ∀w ∈ V

Define the graph kernel as (Kashima et al. 2003)

k(G, G′) =
∑
π

∑
π′

kp(π, π′)P(π|G)P(π′|G′)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Marginalized graph kernels

Let P(π|G) denote the probability of a random walk π in G

To compute it:
Sample the first node π1 from a start distribution ps

At the j-th step, sample the next node πj from a transition
distribution pt(πj|πj−1)

Allow termination using a stop distribution pq such that∑
v∈V

pt(v|w) + pq(w) = 1 ∀w ∈ V

Define the graph kernel as (Kashima et al. 2003)

k(G, G′) =
∑
π

∑
π′

kp(π, π′)P(π|G)P(π′|G′)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Product graphs
Given two graphs G and G′ they direct product is the graph G × G′

V× = {(v, v′) ∈ V × V ′ : ℓ(v) = ℓ(v′)}
E× =

{
((u, u′), (v, v′)) ∈ V 2

× : (u, v) ∈ E, (u′, v′) ∈ E ′, ℓ(u, v) = ℓ(u′, v′)
}

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Product graphs

Main result: There is a bijection between any walk in G× and a common walk
in G and G′ (Gärtner et al. 2003)

Hence the kernel can be computed as

K(G, G′) =
∑

i,j∈V×

[∞∑
n=0

λnEn
×

]
ij

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Product graphs

Main result: There is a bijection between any walk in G× and a common walk
in G and G′ (Gärtner et al. 2003)

Hence the kernel can be computed as

K(G, G′) =
∑

i,j∈V×

[∞∑
n=0

λnEn
×

]
ij

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Product graphs

Need to compute
∞∑

n=0
λnEn

×

The series converges when λn are properly choosen

One option is the geometric series: λn = γn for γ < 1:

lim
n→∞

n∑
i=0

γi = 1
1 − γ

Note that any element of Ei is bounded by di where d is the
maximum degree in G — hence choose γ < 1/d obtaining

lim
n→∞

n∑
i=0

γiEi
× = (I − γE×)−1

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Product graphs

Need to compute
∞∑

n=0
λnEn

×

The series converges when λn are properly choosen

One option is the geometric series: λn = γn for γ < 1:

lim
n→∞

n∑
i=0

γi = 1
1 − γ

Note that any element of Ei is bounded by di where d is the
maximum degree in G — hence choose γ < 1/d obtaining

lim
n→∞

n∑
i=0

γiEi
× = (I − γE×)−1

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Product graphs

Need to compute
∞∑

n=0
λnEn

×

The series converges when λn are properly choosen

One option is the geometric series: λn = γn for γ < 1:

lim
n→∞

n∑
i=0

γi = 1
1 − γ

Note that any element of Ei is bounded by di where d is the
maximum degree in G — hence choose γ < 1/d obtaining

lim
n→∞

n∑
i=0

γiEi
× = (I − γE×)−1

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Product graphs

Need to compute
∞∑

n=0
λnEn

×

The series converges when λn are properly choosen

One option is the geometric series: λn = γn for γ < 1:

lim
n→∞

n∑
i=0

γi = 1
1 − γ

Note that any element of Ei is bounded by di where d is the
maximum degree in G — hence choose γ < 1/d obtaining

lim
n→∞

n∑
i=0

γiEi
× = (I − γE×)−1

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Tottering

Main problem of random walk kernels

Walks allow repetitions of nodes, hence small identical subgraphs
can lead to artificially high values of the kernel

One alternative is to use cycles (Horváth et al. 2004)

Another alternative is to use shortest-paths (Borgwardt et al. 2005a)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Tottering

Main problem of random walk kernels

Walks allow repetitions of nodes, hence small identical subgraphs
can lead to artificially high values of the kernel

One alternative is to use cycles (Horváth et al. 2004)

Another alternative is to use shortest-paths (Borgwardt et al. 2005a)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Tottering

Main problem of random walk kernels

Walks allow repetitions of nodes, hence small identical subgraphs
can lead to artificially high values of the kernel

One alternative is to use cycles (Horváth et al. 2004)

Another alternative is to use shortest-paths (Borgwardt et al. 2005a)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Tottering

Main problem of random walk kernels

Walks allow repetitions of nodes, hence small identical subgraphs
can lead to artificially high values of the kernel

One alternative is to use cycles (Horváth et al. 2004)

Another alternative is to use shortest-paths (Borgwardt et al. 2005a)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Shortest-path graph kernel
Floyd-Warshall transformation: transform G = (V, E) into
S = (V, E) where

(u, v) ∈ E iff u and v are mutually reachable

σ(u, v) is the (labeled) shortest path between u and v in G

Define the shortest-path kernel as

Ksp(G, G′) =
∑
e∈E

∑
e′∈E ′

κpath(σ(e), σ(e′))

Positive definite since it is a special case of a convolution kernel

Running time is dominated by the pairwise comparisons, that take
O(V 4) — Floyd-Warshall runs in O(V 3)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Shortest-path graph kernel
Floyd-Warshall transformation: transform G = (V, E) into
S = (V, E) where

(u, v) ∈ E iff u and v are mutually reachable

σ(u, v) is the (labeled) shortest path between u and v in G

Define the shortest-path kernel as

Ksp(G, G′) =
∑
e∈E

∑
e′∈E ′

κpath(σ(e), σ(e′))

Positive definite since it is a special case of a convolution kernel

Running time is dominated by the pairwise comparisons, that take
O(V 4) — Floyd-Warshall runs in O(V 3)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Shortest-path graph kernel
Floyd-Warshall transformation: transform G = (V, E) into
S = (V, E) where

(u, v) ∈ E iff u and v are mutually reachable

σ(u, v) is the (labeled) shortest path between u and v in G

Define the shortest-path kernel as

Ksp(G, G′) =
∑
e∈E

∑
e′∈E ′

κpath(σ(e), σ(e′))

Positive definite since it is a special case of a convolution kernel

Running time is dominated by the pairwise comparisons, that take
O(V 4) — Floyd-Warshall runs in O(V 3)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Shortest-path graph kernel
Floyd-Warshall transformation: transform G = (V, E) into
S = (V, E) where

(u, v) ∈ E iff u and v are mutually reachable

σ(u, v) is the (labeled) shortest path between u and v in G

Define the shortest-path kernel as

Ksp(G, G′) =
∑
e∈E

∑
e′∈E ′

κpath(σ(e), σ(e′))

Positive definite since it is a special case of a convolution kernel

Running time is dominated by the pairwise comparisons, that take
O(V 4) — Floyd-Warshall runs in O(V 3)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Graph isomorphism

Two graphs G and G′ are isomorphic (written G ≈ G′) if
there exists a bijection f : V 7→ V ′ (called an isomorphism)
such that {u, v} ∈ E iff {f(u), f(v)} ∈ E′

Very recently found to have quasi-polynomial complexity
(Babai 2015)

Still, practical algorithms employ different strategies, e.g.
based on vertex recoloring via propagation mechanisms

The 1-dimensional Weisfeiler-Lehman test is suitable for
deriving a kernel (Shervashidze et al. 2011)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Graph isomorphism

Two graphs G and G′ are isomorphic (written G ≈ G′) if
there exists a bijection f : V 7→ V ′ (called an isomorphism)
such that {u, v} ∈ E iff {f(u), f(v)} ∈ E′

Very recently found to have quasi-polynomial complexity
(Babai 2015)

Still, practical algorithms employ different strategies, e.g.
based on vertex recoloring via propagation mechanisms

The 1-dimensional Weisfeiler-Lehman test is suitable for
deriving a kernel (Shervashidze et al. 2011)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Graph isomorphism

Two graphs G and G′ are isomorphic (written G ≈ G′) if
there exists a bijection f : V 7→ V ′ (called an isomorphism)
such that {u, v} ∈ E iff {f(u), f(v)} ∈ E′

Very recently found to have quasi-polynomial complexity
(Babai 2015)

Still, practical algorithms employ different strategies, e.g.
based on vertex recoloring via propagation mechanisms

The 1-dimensional Weisfeiler-Lehman test is suitable for
deriving a kernel (Shervashidze et al. 2011)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Graph isomorphism

Two graphs G and G′ are isomorphic (written G ≈ G′) if
there exists a bijection f : V 7→ V ′ (called an isomorphism)
such that {u, v} ∈ E iff {f(u), f(v)} ∈ E′

Very recently found to have quasi-polynomial complexity
(Babai 2015)

Still, practical algorithms employ different strategies, e.g.
based on vertex recoloring via propagation mechanisms

The 1-dimensional Weisfeiler-Lehman test is suitable for
deriving a kernel (Shervashidze et al. 2011)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Are these two graphs isomorphic?

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

W-L test: start with all ones

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

W-L test: propagate

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

W-L test: recolor

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

W-L test: propagate again

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

W-L test: recolor again: isomorphic!

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

W-L Graph kernel: propagation

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

W-L Graph kernel: feature vectors (Shervashidze et al. 2011)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

W-L Graph kernel: Remarks

Concatenating feature vectors is the same as summing
kernels so effectively we have mapped graphs into a
sequence of graphs G0 = G, G1, . . . , GT and computed

KWL(G, G′) =
T∑

t=0
k(Gt, G′

t)

The number of iterations T is a hyperparameter of the
kernel that you have to fix in advance or cross-validate

The “base kernel” k may be more complicated than just
counting the number of common colors, e.g. could use
shortest paths

KWL-sp(G, G′) =
T∑

t=0
ksp(Gt, G′

t)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

W-L Graph kernel: Remarks

Concatenating feature vectors is the same as summing
kernels so effectively we have mapped graphs into a
sequence of graphs G0 = G, G1, . . . , GT and computed

KWL(G, G′) =
T∑

t=0
k(Gt, G′

t)

The number of iterations T is a hyperparameter of the
kernel that you have to fix in advance or cross-validate

The “base kernel” k may be more complicated than just
counting the number of common colors, e.g. could use
shortest paths

KWL-sp(G, G′) =
T∑

t=0
ksp(Gt, G′

t)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

W-L Graph kernel: Remarks

Concatenating feature vectors is the same as summing
kernels so effectively we have mapped graphs into a
sequence of graphs G0 = G, G1, . . . , GT and computed

KWL(G, G′) =
T∑

t=0
k(Gt, G′

t)

The number of iterations T is a hyperparameter of the
kernel that you have to fix in advance or cross-validate

The “base kernel” k may be more complicated than just
counting the number of common colors, e.g. could use
shortest paths

KWL-sp(G, G′) =
T∑

t=0
ksp(Gt, G′

t)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

W-L Graph kernel: Results (CPU time)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

W-L Graph kernel: Results (accuracy)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Neighborhood Subgraph Pairwise Distance Kernel

Convolution kernel based on the relation (Costa et al. 2010)

Rr,d = {(N v
r (G), N u

r (G), G) : δu,v = d}

where
δu,v is the shortest-path distance between u and v

the neighborhood N v
r (G) is the subgraph of G induced by

all u ∈ V s.t. δu,v ≤ r

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Neighborhood Subgraph Pairwise Distance Kernel

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Neighborhood Subgraph Pairwise Distance Kernel

κr,d counts the # of common neighborhood subgraphs:

κr,d(G, G′) =
∑

(A, B) ∈ R−1
r,d

(G)
(A′, B′) ∈ R−1

r,d
(G′)

1{A ≈ A′}1{B ≈ B′}

Hashing used to map subgraphs into IDs — somewhat
related to (Weinberger et al. 2009)

Overall kernel:

K(G, G′) =
R∑

r=0

D∑
d=0

κr,d(G, G′)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Neighborhood Subgraph Pairwise Distance Kernel

κr,d counts the # of common neighborhood subgraphs:

κr,d(G, G′) =
∑

(A, B) ∈ R−1
r,d

(G)
(A′, B′) ∈ R−1

r,d
(G′)

1{A ≈ A′}1{B ≈ B′}

Hashing used to map subgraphs into IDs — somewhat
related to (Weinberger et al. 2009)

Overall kernel:

K(G, G′) =
R∑

r=0

D∑
d=0

κr,d(G, G′)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Neighborhood Subgraph Pairwise Distance Kernel

κr,d counts the # of common neighborhood subgraphs:

κr,d(G, G′) =
∑

(A, B) ∈ R−1
r,d

(G)
(A′, B′) ∈ R−1

r,d
(G′)

1{A ≈ A′}1{B ≈ B′}

Hashing used to map subgraphs into IDs — somewhat
related to (Weinberger et al. 2009)

Overall kernel:

K(G, G′) =
R∑

r=0

D∑
d=0

κr,d(G, G′)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

NSPKD Results (CPU time)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

NSPKD Results (accuracy)

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016

Part 4

Kernel methods for relational
learning

kFOIL (Landwehr et al. 2006, 2010)
kLog (Frasconi et al. 2014)

kFOIL

Kernel methods in the ILP setting

Very simple idea:
Define a kernel on relational data based on a relational
theory

Perform structure learning to induce the relational theory

This effectively learns the kernel

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

kFOIL

Kernel methods in the ILP setting

Very simple idea:
Define a kernel on relational data based on a relational
theory

Perform structure learning to induce the relational theory

This effectively learns the kernel

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Relational data example

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Relational data + theory = features

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Relational data + theory = features and kernel

Let H = {c1, . . . , cp} be the theory (set of clauses)

Let x be one example and let ϕ(x) be the feature vector
defined as

ϕj(x) =
{

1 if cj fires on x
0 otherwise

The kernel is of course

k(x, z) = ⟨ϕ(x), ϕ(z)⟩

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Relational data + theory = features and kernel

Let H = {c1, . . . , cp} be the theory (set of clauses)

Let x be one example and let ϕ(x) be the feature vector
defined as

ϕj(x) =
{

1 if cj fires on x
0 otherwise

The kernel is of course

k(x, z) = ⟨ϕ(x), ϕ(z)⟩

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Relational data + theory = features and kernel

Let H = {c1, . . . , cp} be the theory (set of clauses)

Let x be one example and let ϕ(x) be the feature vector
defined as

ϕj(x) =
{

1 if cj fires on x
0 otherwise

The kernel is of course

k(x, z) = ⟨ϕ(x), ϕ(z)⟩

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Example

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Searching

FOIL style greedy general-to-specific search for clauses

Refinement operator : Given a clause c, refine it into c′ by
finding a minimal specialization in the language of clauses

In traditional ILP the goal is to find a theory that covers all
positive examples and no negative example

In kFOIL the goal is to maximize the accuracy score of a
kernel machine based on the kernel defined earlier

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Searching

FOIL style greedy general-to-specific search for clauses

Refinement operator : Given a clause c, refine it into c′ by
finding a minimal specialization in the language of clauses

In traditional ILP the goal is to find a theory that covers all
positive examples and no negative example

In kFOIL the goal is to maximize the accuracy score of a
kernel machine based on the kernel defined earlier

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Searching

FOIL style greedy general-to-specific search for clauses

Refinement operator : Given a clause c, refine it into c′ by
finding a minimal specialization in the language of clauses

In traditional ILP the goal is to find a theory that covers all
positive examples and no negative example

In kFOIL the goal is to maximize the accuracy score of a
kernel machine based on the kernel defined earlier

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Searching

FOIL style greedy general-to-specific search for clauses

Refinement operator : Given a clause c, refine it into c′ by
finding a minimal specialization in the language of clauses

In traditional ILP the goal is to find a theory that covers all
positive examples and no negative example

In kFOIL the goal is to maximize the accuracy score of a
kernel machine based on the kernel defined earlier

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

kLog

A framework and domain specific language for kernel-based
relational learning

Embedded in Prolog

Three simple concepts:

1. Entity/relationship (E/R) data modeling combined with ideas
from deductive databases

2. Graphicalization: Examples (i.e. relational database instances)
mapped to (simple) undirected graphs

3. Graph kernels: construction of feature vectors from graphs

Available: http://klog.dinfo.unifi.it/

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

http://klog.dinfo.unifi.it/

kLog

A framework and domain specific language for kernel-based
relational learning

Embedded in Prolog

Three simple concepts:

1. Entity/relationship (E/R) data modeling combined with ideas
from deductive databases

2. Graphicalization: Examples (i.e. relational database instances)
mapped to (simple) undirected graphs

3. Graph kernels: construction of feature vectors from graphs

Available: http://klog.dinfo.unifi.it/

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

http://klog.dinfo.unifi.it/

kLog

A framework and domain specific language for kernel-based
relational learning

Embedded in Prolog

Three simple concepts:
1. Entity/relationship (E/R) data modeling combined with ideas

from deductive databases

2. Graphicalization: Examples (i.e. relational database instances)
mapped to (simple) undirected graphs

3. Graph kernels: construction of feature vectors from graphs

Available: http://klog.dinfo.unifi.it/

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

http://klog.dinfo.unifi.it/

kLog

A framework and domain specific language for kernel-based
relational learning

Embedded in Prolog

Three simple concepts:
1. Entity/relationship (E/R) data modeling combined with ideas

from deductive databases

2. Graphicalization: Examples (i.e. relational database instances)
mapped to (simple) undirected graphs

3. Graph kernels: construction of feature vectors from graphs

Available: http://klog.dinfo.unifi.it/

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

http://klog.dinfo.unifi.it/

Goals

Design and maintain complex features in a declarative fashion

Ability to specify several kinds of learning problems,
including:

classification/regression of structured data

entity classification

(hyper)link prediction

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Goals

Design and maintain complex features in a declarative fashion

Ability to specify several kinds of learning problems,
including:

classification/regression of structured data

entity classification

(hyper)link prediction

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Modeling the UW-CSE dataset in kLog

advised_by

position

phase

professor

student

advisee

advisor

student_id

prof_id

has_position

in_phase

Introduced in (Richardson &
Domingos, 2005) to illustrate
Markov logic

Entity/Relationship (E/R) diagram:
Boxes are entities

Diamonds are relationships

Ovals are attributes

Underlined attributes are entity
identifiers, the other ones are
properties

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Modeling the UW-CSE dataset in kLog

advised_by

position

phase

professor

student

advisee

advisor

student_id

prof_id

has_position

in_phase

signature student(
student_id::self

)::extensional.
signature in_phase(

student_id::student,
phase::property)::extensional.

signature professor(
prof_id::self

)::extensional.
signature has_position(

prof_id::professor,
position::property

)::extensional.

signature advised_by(
student_id::student,
prof_id::professor

)::extensional.

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Modeling the UW-CSE dataset in kLog

advised_by

position

phase

professor

student

advisee

advisor

student_id

prof_id

has_position

in_phase

signature student(
student_id::self

)::extensional.
signature in_phase(

student_id::student,
phase::property)::extensional.

signature professor(
prof_id::self

)::extensional.
signature has_position(

prof_id::professor,
position::property

)::extensional.

signature advised_by(
student_id::student,
prof_id::professor

)::extensional.

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Learning from interpretations: predictors and responses

student(person311).
student(person14).
...
professor(person7).
professor(person185).
...
has_position(person292,faculty_affiliate).
has_position(person79,faculty).
...
in_phase(person139,post_quals).
in_phase(person333,pre_quals).
...
advised_by(person265,person168).
advised_by(person352,person415).
...
publication(title25,person284).
...
taught_by(course12,person211,autumn_0001).
...
ta(course44,person193,winter_0304).
...
publication(title25,person284).

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Adding background knowledge: Intensional signatures

advised_by

position

phase

professor

student

advisee

advisor

student_id

prof_id

has_position

in_phase

on_same_paper

author

author

signature on_same_paper(
student_id::student,
prof_id::professor

)::intensional.

on_same_paper(S,P) :-
student(S), professor(P),
publication(Pub, S),
publication(Pub,P).

signature on_same_course(
student_id::student,
prof_id::professor

)::intensional.

on_same_course(S,P) :-
professor(P), student(S),
ta(Course,S,Term),
taught_by(Course,P,Term).

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Adding background knowledge: Intensional signatures

advised_by

position

phase

professor

student

advisee

advisor

student_id

prof_id

has_position

in_phase

on_same_paper

author

author

signature on_same_paper(
student_id::student,
prof_id::professor

)::intensional.

on_same_paper(S,P) :-
student(S), professor(P),
publication(Pub, S),
publication(Pub,P).

signature on_same_course(
student_id::student,
prof_id::professor

)::intensional.

on_same_course(S,P) :-
professor(P), student(S),
ta(Course,S,Term),
taught_by(Course,P,Term).

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Adding background knowledge: Intensional signatures

advised_by

position

phase

professor

student

advisee

advisor

student_id

prof_id

has_position

in_phase

on_same_paper

author

author

signature on_same_paper(
student_id::student,
prof_id::professor

)::intensional.

on_same_paper(S,P) :-
student(S), professor(P),
publication(Pub, S),
publication(Pub,P).

signature on_same_course(
student_id::student,
prof_id::professor

)::intensional.

on_same_course(S,P) :-
professor(P), student(S),
ta(Course,S,Term),
taught_by(Course,P,Term).

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Graphicalization: from interpretations to bipartite graphs

student
p284

professor
p211

professor
p407

student
p21

One square vertex for every
entity

One diamond vertex for every
ground relationship

Add an undirected edge between
a square and a diamond if the
entity appears in the grounding

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Graphicalization: from interpretations to bipartite graphs

student
p284

professor
p211

professor
p407

student
p21

on_same_paper(p21,p407)

on_same_paper(p21,p211)

on_same_paper(p211,p284)

on_same_course(p21,p211)

One square vertex for every
entity

One diamond vertex for every
ground relationship

Add an undirected edge between
a square and a diamond if the
entity appears in the grounding

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Graphicalization: from interpretations to bipartite graphs

student
p284

professor
p211

professor
p407

student
p21

on_same_paper(p21,p407)

on_same_paper(p21,p211)

on_same_paper(p211,p284)

on_same_course(p21,p211)

One square vertex for every
entity

One diamond vertex for every
ground relationship

Add an undirected edge between
a square and a diamond if the
entity appears in the grounding

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Graphicalization in UW-CSE

advised_by

position

phase

professor

student

advisee

advisor

student_id

prof_id

has_position

in_phase

on_same_paper

author

author

*student
person284

>1<

student
person14

professor
person211

professor
person407

student
person45

student
person21

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_course

has_position(faculty)

has_position(faculty)

advised_by

advised_by

advised_by

advised_by

advised_by

advised_by

in_phase(post_generals)

in_phase(post_generals)

in_phase(post_quals)

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Using graph kernels to construct features

In principle, any graph kernel may be adapted and plugged in

In practice, kLog uses a generalization of NSPDK (Costa
et al. 2010) where:

Subgraphs are rooted at certain designated vertices called
kernel-points (KP)

Soft matches are allowed

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Using graph kernels to construct features

In principle, any graph kernel may be adapted and plugged in

In practice, kLog uses a generalization of NSPDK (Costa
et al. 2010) where:

Subgraphs are rooted at certain designated vertices called
kernel-points (KP)

Soft matches are allowed

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Soft matches

Substructures will never exactly match if there are “hubs” or
high-degree vertices

Example: the relation has_word between words and
webpages

Soft match kernel:

κr,d(G, G′) =
∑

(A, B) ∈ R−1
r,d

(G)
(A′, B′) ∈ R−1

r,d
(G′)

∑
v ∈ V (A) ∪ V (B)

v′ ∈ V (A′) ∪ V (B′)

1{ℓ(v) = ℓ(v′)}

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Soft matches

Substructures will never exactly match if there are “hubs” or
high-degree vertices

Example: the relation has_word between words and
webpages

Soft match kernel:

κr,d(G, G′) =
∑

(A, B) ∈ R−1
r,d

(G)
(A′, B′) ∈ R−1

r,d
(G′)

∑
v ∈ V (A) ∪ V (B)

v′ ∈ V (A′) ∪ V (B′)

1{ℓ(v) = ℓ(v′)}

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Soft matches

Substructures will never exactly match if there are “hubs” or
high-degree vertices

Example: the relation has_word between words and
webpages

Soft match kernel:

κr,d(G, G′) =
∑

(A, B) ∈ R−1
r,d

(G)
(A′, B′) ∈ R−1

r,d
(G′)

∑
v ∈ V (A) ∪ V (B)

v′ ∈ V (A′) ∪ V (B′)

1{ℓ(v) = ℓ(v′)}

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Kernel details

r

a b

s t

c

s

b d

r

1

0

4 5

2

3

5

2

3

6

7

Kernel points

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Kernel details

r

a b

s t

c

s

b d

r

1

0

4 5

2

3

5

2

3

6

7

Kernel points

r

a b

s t

c

s

b d

r

1

0

4 5

2

3

5

2

3

6

7

A neighborhood
pair

radius=1
distance=2

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Kernel details

001000000000000000

001010000010000100

000000000000000100 000010000000000000 000000000010000000

s t

c

s

4 5

5

r

a

s

1

0

r

a

s

1

0

r

b

t

2

3

r

b

t

2

3

s t

c

s

4 5

5

s t

c

s

4 5

5

s

b

r

2

3

BFS from each kernel point
(lexicographical order)

SHA1 to obtain the code

Feature vector of the graph

r

a b

s t

c

s

b d

r

1

0

4 5

2

3

5

2

3

6

7

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Supervised learning

Let x and y denote the sets of input ground atoms
(predictors) and output ground atoms (responses).

Graphicalization and feature generation yields a joint feature
vector ϕ(x, y)

Fit a linear potential function:

F (x, y) = w⊤ϕ(x, y)

Prediction: solve the “inference” problem

f(x) = argmax
y

F (x, y)

(an intractable step, in general)

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Supervised learning

Let x and y denote the sets of input ground atoms
(predictors) and output ground atoms (responses).

Graphicalization and feature generation yields a joint feature
vector ϕ(x, y)

Fit a linear potential function:

F (x, y) = w⊤ϕ(x, y)

Prediction: solve the “inference” problem

f(x) = argmax
y

F (x, y)

(an intractable step, in general)

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Supervised learning

Let x and y denote the sets of input ground atoms
(predictors) and output ground atoms (responses).

Graphicalization and feature generation yields a joint feature
vector ϕ(x, y)

Fit a linear potential function:

F (x, y) = w⊤ϕ(x, y)

Prediction: solve the “inference” problem

f(x) = argmax
y

F (x, y)

(an intractable step, in general)

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Supervised learning

Let x and y denote the sets of input ground atoms
(predictors) and output ground atoms (responses).

Graphicalization and feature generation yields a joint feature
vector ϕ(x, y)

Fit a linear potential function:

F (x, y) = w⊤ϕ(x, y)

Prediction: solve the “inference” problem

f(x) = argmax
y

F (x, y)

(an intractable step, in general)
Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Viewpoints example

student
person284

*student
person14
>3<

professor
person211

professor
person407

student
person45

student
person21

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_course

has_position(faculty)

has_position(faculty)

advised_by

advised_by

advised_by

advised_by

in_phase(post_generals)

in_phase(post_quals)

Viewpoint

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

A whole kLog script

:- use_module(’klog’).
begin_domain.
signature student(student_id::self)::extensional.
signature professor(professor_id::self)::extensional.
signature on_same_course(s::student,p::professor)::intensional.
on_same_course(S,P) :-

professor(P), student(S), ta(C,S,Term), taught_by(C,P,Term).
signature on_same_paper(s::student,p::professor)::intensional.
on_same_paper(S,P) :-

student(S), professor(P), publication(Pub, S), publication(Pub,P).
signature advised_by(s_id::student,p_id::professor)::extensional.
kernel_points([student,professor,on_same_course,on_same_paper]).

end_domain.

experiment :-
new_feature_generator(my_fg,nspdk),
set_klog_flag(my_fg,radius,2),
set_klog_flag(my_fg,distance,2),
attach(uwcse_ext),
new_model(my_model,svm_sgd),
set_klog_flag(my_model,lambda,0.0001),
set_klog_flag(my_model,epochs,5), %% ... etc
kfold(advised_by,5,my_model,my_fg).

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Example: UW-CSE (All information)

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Alternative setting: partial information

We only know about persons without knowing whether they
are professors or students

Stacking in kLog

First, learn to discriminate between professors and students

Assert induced groundings (predicted in cross-validation
mode)

Learn the binary relation taking saved groundings as
additional data

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Alternative setting: partial information

We only know about persons without knowing whether they
are professors or students

Stacking in kLog

First, learn to discriminate between professors and students

Assert induced groundings (predicted in cross-validation
mode)

Learn the binary relation taking saved groundings as
additional data

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Alternative setting: partial information

We only know about persons without knowing whether they
are professors or students

Stacking in kLog
First, learn to discriminate between professors and students

Assert induced groundings (predicted in cross-validation
mode)

Learn the binary relation taking saved groundings as
additional data

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Alternative setting: partial information

We only know about persons without knowing whether they
are professors or students

Stacking in kLog
First, learn to discriminate between professors and students

Assert induced groundings (predicted in cross-validation
mode)

Learn the binary relation taking saved groundings as
additional data

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Alternative setting: partial information

We only know about persons without knowing whether they
are professors or students

Stacking in kLog
First, learn to discriminate between professors and students

Assert induced groundings (predicted in cross-validation
mode)

Learn the binary relation taking saved groundings as
additional data

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Example: UW-CSE (Partial information)

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

WebKB: results

kLog Markov Logic Tilde
Acc F1 Acc F1 Acc F1

research 94% 0.68 95% 0.66 93% 0.54
faculty 91% 0.74 92% 0.71 91% 0.71
course 99% 0.98 98% 0.95 99% 0.98
student 90% 0.91 89% 0.90 88% 0.89
Average 88% 0.88 88% 0.81 86% 0.78
Time < 1m 450m 87m

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

IMDb: results

Year # Movies # Facts kLog MLN Tilde
1997 311 8031 0.86 0.79 0.80
1998 332 7822 0.93 0.85 0.88
1999 348 7842 0.89 0.85 0.85
2000 381 8531 0.96 0.86 0.93
2001 363 8443 0.95 0.86 0.91
2002 370 8691 0.93 0.87 0.89
2003 343 7626 0.95 0.88 0.87
2004 371 8850 0.95 0.87 0.87
2005 388 9093 0.92 0.84 0.83
All 0.93 ± 0.03 0.85 ± 0.03 0.87 ± 0.04

Time 1,394s 220s 12,812s

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Applications

Natural language processing:
Hedge cue detection (Verbeke et al. 2011)

Evidence-based medicine (Verbeke et al. 2012)

Vision:
Indoor scene classification (Antanas et al. 2013)

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

kLogNLP (Verbeke et al. 2014)

Natural language module for kLog

NLP-specific preprocessors, enabling the use of existing
libraries, currently:

The Python Natural Language Toolkit (NLTK)

The Stanford CoreNLP

http://people.cs.kuleuven.be/~mathias.verbeke/klognlp/

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

http://people.cs.kuleuven.be/~mathias.verbeke/klognlp/

Hedge cue detection

Hedge cues are linguistic devices that indicate whether
information is being presented as uncertain or unreliable
within a text

Indicate caution or uncertainty towards content

Task: discriminate between factual vs uncertain sentences,
e.g.

Factual “Among adolescents, the rate was found to be
between 8 to 12 percent”

Uncertain “Some technologies are known to perform better
than others in this regard”

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Hedge cue detection
kLog for Hedge Cue Detection 5

w

depHead

next

wordID
depRel

lemma

POS-tag

chunktag

inList

wordString

weasel
Sentence

Fig. 2: E/R diagram modeling the hedge cue detection task

w(often,rb,often,1)
w1

w(the,dt,the,0)
w2

w(response,nn,response,0)
w3

w(variable,nn,variable,0)
w4

w(may,md,may,1)
w5

next

dh(adv)

next

dh(nmod)

next

dh(nmod)

next

dh(sbj) dh(root)

weasel

Fig. 3: Graphicalization Gz of interpretation z (Table 1)

w1 and w2. These interpretations are then graphicalized, i.e. transformed into
graphs. This can be interpreted as unfolding the E/R diagram over the data, for
which an example is given in Figure 3. It represents the graphicalization of the
interpretation in Table 1. This forms the input to the next level, where graph
learning is applied to convert these graphicalized interpretations into extended,
high-dimensional feature vectors using a graph kernel. The result is a proposi-
tional learning setting, for which any statistical learner can be used. Currently,
kLog employs LibSVM [11] for parameter learning.

4 Results and Discussion

Dataset For our experiments, the dataset we used is the CoNLL 2010 Shared
Task dataset [10] on Wikipedia, one of the current benchmark datasets for hedge
cue resolution. The Wikipedia paragraphs were selected based on the hedge cue
(called weasels in Wikipedia) tags that were added by the Wikipedia editors,

Table 1: Example interpretation z

wwc(2). w(w2,’the’,dt,i-np,0,’the’).
next(w1,w2). dh(w2,w4,nmod).
w(w1,’often’,rb,i-advp,1,’often’). next(w3,w4).
dh(w1,w5,adv). w(w3,’response’,nn,i-np,0,’response’).
next(w2,w3). dh(w3,w4,nmod).

...

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Results on CoNNL 2010 shared task (Verbeke et al. 2011)

kLog for Hedge Cue Detection 9

Table 3: Evaluation performance in terms of precision, recall and F1 of the top
5 CoNLL 2010 systems and the kLog approach for the Wikipedia dataset

Official Rank System P R F

- kLog 67.04 56.77 61.48
1 Georgescul 72.0 51.7 60.2
2 Ji1 62.7 55.3 58.7
3 Chen 68.0 49.7 57.4
4 Morante 80.6 44.5 57.3
5 Zhang 76.6 44.4 56.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r
e
c
i
s
i
o
n

Recall

1
2

3
45

kLog

Fig. 5: Precision/recall curve for kLog and the individual points for the top 5
CoNLL systems in Table 3 (numbers correspond with ranking)

use graph kernels on a full relational representation. Since the linguistic rela-
tions between words in a sentence can be represented as a graph structure, kLog
seems to have the appropriate characteristics for CL problems. Furthermore, the
ability to construct features in a declarative fashion through the introduction of
additional background knowledge showed to have a positive influence on the
results.

In future work, we plan to test the generalizability of our approach on another
dataset for this task, i.e. scientific texts from the biomedical domain, which have
a different, more structured writing style and sentence structure. This opens the
way to applying a cross dataset training phase, which showed improved results
for one of the participants in the shared task. Also the addition of new (linguistic)
background knowledge requires further investigation, for which we will start from
an extensive error analysis of the obtained results. Due to the promising results,
the goal is to test this approach also on more challenging NLP problems and to
perform a detailed comparison with the state-of-the-art approaches.

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016

Part 5

Dealing with continuous/high
dimensional attributes

Continuous and/or high-dimensional attributes

Many kernels seen so far use hard-matching, which makes no
sense in this setting

We will briefly review the following possible approaches:
Propagation kernels (Neumann et al. 2015, 2012)

GraphHopper (Feragen et al. 2013)

Graph invariant kernels (Orsini et al. 2015)

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Continuous and/or high-dimensional attributes

Many kernels seen so far use hard-matching, which makes no
sense in this setting

We will briefly review the following possible approaches:
Propagation kernels (Neumann et al. 2015, 2012)

GraphHopper (Feragen et al. 2013)

Graph invariant kernels (Orsini et al. 2015)

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Propagation kernels

Like in Weisfeiler-Lehman, define a sequence of graphs
G0 = G, G1, . . . , GT being T the number of propagation
steps

As in W-L, the kernel between two graphs is

K(G, G′) =
T∑

t=0
k(Gt, G′

t)

where
k(Gt, G′

t) =
∑

v∈Vt

∑
v′∈V ′

t

κnode(v, v′)

for some κnode we will define later

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Propagation kernels

Like in Weisfeiler-Lehman, define a sequence of graphs
G0 = G, G1, . . . , GT being T the number of propagation
steps

As in W-L, the kernel between two graphs is

K(G, G′) =
T∑

t=0
k(Gt, G′

t)

where
k(Gt, G′

t) =
∑

v∈Vt

∑
v′∈V ′

t

κnode(v, v′)

for some κnode we will define later

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Propagation kernels

The propagation mechanism is based on the following
diffusion process (Neumann et al. 2015):

Pt+1 = TPt

where
T is the row-normalized adjacency matrix

Pt contains a node distribution in each row

Initialization:
p0(v) = δℓ(v) if v is labeled

Otherwise put a uniform distribution

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Propagation kernels

The propagation mechanism is based on the following
diffusion process (Neumann et al. 2015):

Pt+1 = TPt

where
T is the row-normalized adjacency matrix

Pt contains a node distribution in each row

Initialization:
p0(v) = δℓ(v) if v is labeled

Otherwise put a uniform distribution

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Propagation kernels

Distinguish between node labels ℓ(u) (categorical symbols)
and node attributes x(u) (may be real vectors)

Given kernels κlabel and κattr for comparing labels and
attributes, the node kernel is

κnode(v, v′) = κlabel(ℓ(v), ℓ(v′))κattr(x(v), x(v′))

κlabel and κattr are based on discretization (e.g. via
locality-sensitive hashing):

κlabel(ℓ(v), ℓ(v′)) = 1{h(p(v)) = h(p(v′))}

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Propagation kernels

Distinguish between node labels ℓ(u) (categorical symbols)
and node attributes x(u) (may be real vectors)

Given kernels κlabel and κattr for comparing labels and
attributes, the node kernel is

κnode(v, v′) = κlabel(ℓ(v), ℓ(v′))κattr(x(v), x(v′))

κlabel and κattr are based on discretization (e.g. via
locality-sensitive hashing):

κlabel(ℓ(v), ℓ(v′)) = 1{h(p(v)) = h(p(v′))}

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Propagation kernels

Distinguish between node labels ℓ(u) (categorical symbols)
and node attributes x(u) (may be real vectors)

Given kernels κlabel and κattr for comparing labels and
attributes, the node kernel is

κnode(v, v′) = κlabel(ℓ(v), ℓ(v′))κattr(x(v), x(v′))

κlabel and κattr are based on discretization (e.g. via
locality-sensitive hashing):

κlabel(ℓ(v), ℓ(v′)) = 1{h(p(v)) = h(p(v′))}

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Propagation kernels — Example

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

GraphHopper

Start from a given kernel κnode on node attributes (e.g. RBF)

Define a kernel on paths as follows:
Let πj and π′

j be the vertices at position j in two paths π and π′,
respectively

Let x(πj) and x(π′
j) be their (high-dimensional) labels

Path kernel:

κpath(π, π′) = 1{|π| = |π′|}
|π|∑

j=1
κnode

(
x(πj), x(π′

j)
)

Finally define the graph kernel as
K(G, G′) =

∑
π∈R−1(G)

∑
π′∈R−1(G′)

κpath(π, π′)

where (π, G) ∈ R if π is a shortest-path in G

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

GraphHopper

Start from a given kernel κnode on node attributes (e.g. RBF)

Define a kernel on paths as follows:
Let πj and π′

j be the vertices at position j in two paths π and π′,
respectively

Let x(πj) and x(π′
j) be their (high-dimensional) labels

Path kernel:

κpath(π, π′) = 1{|π| = |π′|}
|π|∑

j=1
κnode

(
x(πj), x(π′

j)
)

Finally define the graph kernel as
K(G, G′) =

∑
π∈R−1(G)

∑
π′∈R−1(G′)

κpath(π, π′)

where (π, G) ∈ R if π is a shortest-path in G

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

GraphHopper

Start from a given kernel κnode on node attributes (e.g. RBF)

Define a kernel on paths as follows:
Let πj and π′

j be the vertices at position j in two paths π and π′,
respectively

Let x(πj) and x(π′
j) be their (high-dimensional) labels

Path kernel:

κpath(π, π′) = 1{|π| = |π′|}
|π|∑

j=1
κnode

(
x(πj), x(π′

j)
)

Finally define the graph kernel as
K(G, G′) =

∑
π∈R−1(G)

∑
π′∈R−1(G′)

κpath(π, π′)

where (π, G) ∈ R if π is a shortest-path in G
Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

GraphHopper

To speed-up the computation, rewrite the kernel as

K(G, G′) =
∑
v∈V

∑
v′∈V ′

w(v, v′)κnode(v, v′)

where w(v, v′) counts the number of times v and v′ appear at the
same hop in a shortest-path

The kernel w(v, v′) can be computed as

w(v, v′) = ⟨M(v), M(v′)⟩

where M(v) is a δ × δ matrix with entries

mij(v) = # times v appears at hop i in a shortest-path of length j

and δ is the largest graph diameter

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

GraphHopper

To speed-up the computation, rewrite the kernel as

K(G, G′) =
∑
v∈V

∑
v′∈V ′

w(v, v′)κnode(v, v′)

where w(v, v′) counts the number of times v and v′ appear at the
same hop in a shortest-path

The kernel w(v, v′) can be computed as

w(v, v′) = ⟨M(v), M(v′)⟩

where M(v) is a δ × δ matrix with entries

mij(v) = # times v appears at hop i in a shortest-path of length j

and δ is the largest graph diameter

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

GraphHopper

All matrices M(v) can be computed in O(V 2(E + log V + δ2))
calling Dijkstra as a subroutine — see (Feragen et al. 2013) for
details

The overall running time is therefore O(V 2(d + E + log V + δ2))
where d is the dimension of the node attribute vector

Additionally, M(v) only need to computed once per graph on a
given dataset, yielding an amortized running time of O(dV 2)

Nice improvement compared to the running time O(dV 4) of the
naive implementation based on the shortest-path kernel

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

GraphHopper

All matrices M(v) can be computed in O(V 2(E + log V + δ2))
calling Dijkstra as a subroutine — see (Feragen et al. 2013) for
details

The overall running time is therefore O(V 2(d + E + log V + δ2))
where d is the dimension of the node attribute vector

Additionally, M(v) only need to computed once per graph on a
given dataset, yielding an amortized running time of O(dV 2)

Nice improvement compared to the running time O(dV 4) of the
naive implementation based on the shortest-path kernel

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

GraphHopper

All matrices M(v) can be computed in O(V 2(E + log V + δ2))
calling Dijkstra as a subroutine — see (Feragen et al. 2013) for
details

The overall running time is therefore O(V 2(d + E + log V + δ2))
where d is the dimension of the node attribute vector

Additionally, M(v) only need to computed once per graph on a
given dataset, yielding an amortized running time of O(dV 2)

Nice improvement compared to the running time O(dV 4) of the
naive implementation based on the shortest-path kernel

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Graph invariant kernels

An invariant is a function I such that

G ≈ G′ =⇒ I(G) = I(G′)

The invariant is complete if the reverse is also true

A vertex invariant is a function L : V 7→ C that
assigns each vertex v a color L(v)

is preserved under any isomorphism f , i.e.

L(v) = L(f(v))

Examples: degree(v), W-L color of v, etc.

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Graph invariant kernels

An invariant is a function I such that

G ≈ G′ =⇒ I(G) = I(G′)

The invariant is complete if the reverse is also true

A vertex invariant is a function L : V 7→ C that
assigns each vertex v a color L(v)

is preserved under any isomorphism f , i.e.

L(v) = L(f(v))

Examples: degree(v), W-L color of v, etc.

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Graph invariant kernels

An invariant is a function I such that

G ≈ G′ =⇒ I(G) = I(G′)

The invariant is complete if the reverse is also true

A vertex invariant is a function L : V 7→ C that
assigns each vertex v a color L(v)

is preserved under any isomorphism f , i.e.

L(v) = L(f(v))

Examples: degree(v), W-L color of v, etc.

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Graph invariant kernels

An invariant is a function I such that

G ≈ G′ =⇒ I(G) = I(G′)

The invariant is complete if the reverse is also true

A vertex invariant is a function L : V 7→ C that
assigns each vertex v a color L(v)

is preserved under any isomorphism f , i.e.

L(v) = L(f(v))

Examples: degree(v), W-L color of v, etc.
Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Graph invariant kernels (Orsini et al. 2015)

The key idea to define GIKs is to introduce a notion of
structural similarity w(v, v′) between two nodes v ∈ V and
v′ ∈ V ′, based on some invariant

Assume a kernel on node attributes κattr is available

Define the graph kernel as

K(G, G′) =
∑
v∈V

∑
v′∈V ′

w(v, v′)κattr(x(v), x(v′))

i.e. the more two nodes are structurally similar, the more
their attribute similarity will contribute to the kernel

Note that in this setting x(v) may have any type

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Graph invariant kernels (Orsini et al. 2015)

The key idea to define GIKs is to introduce a notion of
structural similarity w(v, v′) between two nodes v ∈ V and
v′ ∈ V ′, based on some invariant

Assume a kernel on node attributes κattr is available

Define the graph kernel as

K(G, G′) =
∑
v∈V

∑
v′∈V ′

w(v, v′)κattr(x(v), x(v′))

i.e. the more two nodes are structurally similar, the more
their attribute similarity will contribute to the kernel

Note that in this setting x(v) may have any type

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Graph invariant kernels (Orsini et al. 2015)

The key idea to define GIKs is to introduce a notion of
structural similarity w(v, v′) between two nodes v ∈ V and
v′ ∈ V ′, based on some invariant

Assume a kernel on node attributes κattr is available

Define the graph kernel as

K(G, G′) =
∑
v∈V

∑
v′∈V ′

w(v, v′)κattr(x(v), x(v′))

i.e. the more two nodes are structurally similar, the more
their attribute similarity will contribute to the kernel

Note that in this setting x(v) may have any type

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Graph invariant kernels (Orsini et al. 2015)

The key idea to define GIKs is to introduce a notion of
structural similarity w(v, v′) between two nodes v ∈ V and
v′ ∈ V ′, based on some invariant

Assume a kernel on node attributes κattr is available

Define the graph kernel as

K(G, G′) =
∑
v∈V

∑
v′∈V ′

w(v, v′)κattr(x(v), x(v′))

i.e. the more two nodes are structurally similar, the more
their attribute similarity will contribute to the kernel

Note that in this setting x(v) may have any type

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Graph invariant kernels

As in many other graph kernels, use a relation R between
graphs and their parts: (g, G) ∈ R iff g is a subgraph of G
(i.e. a pattern in G)

Furthermore, for a given node v, introduce the relation
Rv ⊂ R such that (g, G) ∈ Rv iff (g, G) ∈ R and v is a
node in g

Then define the structural similarity between nodes as

w(v, v′) .=
∑

g∈R−1
v (G)

∑
g′∈R−1

v′ (G′)
κinv(v, v′) δ(g, g′)

|Vg||Vg′|

where δ(g, g′) is used to compare patterns g and g′

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Graph invariant kernels

As in many other graph kernels, use a relation R between
graphs and their parts: (g, G) ∈ R iff g is a subgraph of G
(i.e. a pattern in G)

Furthermore, for a given node v, introduce the relation
Rv ⊂ R such that (g, G) ∈ Rv iff (g, G) ∈ R and v is a
node in g

Then define the structural similarity between nodes as

w(v, v′) .=
∑

g∈R−1
v (G)

∑
g′∈R−1

v′ (G′)
κinv(v, v′) δ(g, g′)

|Vg||Vg′|

where δ(g, g′) is used to compare patterns g and g′

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Graph invariant kernels

As in many other graph kernels, use a relation R between
graphs and their parts: (g, G) ∈ R iff g is a subgraph of G
(i.e. a pattern in G)

Furthermore, for a given node v, introduce the relation
Rv ⊂ R such that (g, G) ∈ Rv iff (g, G) ∈ R and v is a
node in g

Then define the structural similarity between nodes as

w(v, v′) .=
∑

g∈R−1
v (G)

∑
g′∈R−1

v′ (G′)
κinv(v, v′) δ(g, g′)

|Vg||Vg′|

where δ(g, g′) is used to compare patterns g and g′

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

W-L coloring for GIKs

Weisfeiler-Lehman coloring:

κinv(v, v′) =
T∑

t=0
1{Lt(v) = Lt(v′)}

where Lt(v) is the W-L color of v at iteration t

Both a local version and a global version of the coloring are
possible

Local version: run W-L on ech pattern g

Global version: run W-L on the whole graph G

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

W-L coloring for GIKs

Weisfeiler-Lehman coloring:

κinv(v, v′) =
T∑

t=0
1{Lt(v) = Lt(v′)}

where Lt(v) is the W-L color of v at iteration t

Both a local version and a global version of the coloring are
possible

Local version: run W-L on ech pattern g

Global version: run W-L on the whole graph G

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Spectral coloring for GIKs

Solve the eigenproblem

Lxi = λixi

where L = (D − W) is the graph Laplacian for a properly
choosen weighted adjacency matrix (e.g. use heat kernel)

Define the color vector L(v) with components

Li(v) =
{

|xi(v)| if λi has multiplicity 1
0 if λi has multiplicity > 1

Let
κinv(v, v′) = exp

(
−γ∥L(v) − L(v′)∥2

)

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Spectral coloring for GIKs

Solve the eigenproblem

Lxi = λixi

where L = (D − W) is the graph Laplacian for a properly
choosen weighted adjacency matrix (e.g. use heat kernel)

Define the color vector L(v) with components

Li(v) =
{

|xi(v)| if λi has multiplicity 1
0 if λi has multiplicity > 1

Let
κinv(v, v′) = exp

(
−γ∥L(v) − L(v′)∥2

)

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Spectral coloring for GIKs

Solve the eigenproblem

Lxi = λixi

where L = (D − W) is the graph Laplacian for a properly
choosen weighted adjacency matrix (e.g. use heat kernel)

Define the color vector L(v) with components

Li(v) =
{

|xi(v)| if λi has multiplicity 1
0 if λi has multiplicity > 1

Let
κinv(v, v′) = exp

(
−γ∥L(v) − L(v′)∥2

)

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Artificial dataset

Start from mutagenicity data set of Bursi et al.

Atoms masquerading as MNIST digits

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

GIK vs GraphHopper

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

Final remarks

Kernel methods may be effective in relational domains

Large datasets require ϕ(G) but not all available graph
kernels allow to compute it explicitly

Limited by the “fixed-representation” approach: see e.g.
(Narayanan et al. 2016; Niepert et al. 2016; Yanardag et al.
2015) for alternatives

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016

References I

Antanas, Laura, McElory Hoffmann, Paolo Frasconi, Tinne Tuytelaars, and Luc De Raedt (2013). “A
relational kernel-based approach to scene classification”. In: Applications of Computer Vision (WACV),
2013 IEEE Workshop on. IEEE, pp. 133–139. url:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6475010.

Babai, László (2015). “Graph isomorphism in quasipolynomial time”. In: arXiv preprint
arXiv:1512.03547. url: http://arxiv.org/abs/1512.03547.

Borgwardt, Karsten M. and Hans-Peter Kriegel (2005a). “Shortest-path kernels on graphs”. In: Fifth
IEEE International Conference on Data Mining (ICDM’05). IEEE, 8–pp. url:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1565664.

Borgwardt, Karsten M. et al. (2005b). “Protein function prediction via graph kernels”. In: Bioinformatics
21.suppl 1, pp. i47–i56. url:
http://bioinformatics.oxfordjournals.org/content/21/suppl_1/i47.short.

Collins, Michael and Nigel Duffy (2001). “Convolution kernels for natural language”. In: Advances in
neural information processing systems, pp. 625–632. url:
http://machinelearning.wustl.edu/mlpapers/paper_files/nips02-AA58.pdf.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6475010
http://arxiv.org/abs/1512.03547
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1565664
http://bioinformatics.oxfordjournals.org/content/21/suppl_1/i47.short
http://machinelearning.wustl.edu/mlpapers/paper_files/nips02-AA58.pdf

References II

Costa, Fabrizio and Kurt De Grave (2010). “Fast neighborhood subgraph pairwise distance kernel”. In:
Proceedings of the 26th International Conference on Machine Learning. Omnipress, pp. 255–262. url:
https://lirias.kuleuven.be/handle/123456789/267297.

De Raedt, Luc (2008). Logical and relational learning. Springer Science & Business Media. url:
https://books.google.it/books?hl=it&lr=&id=FFYIOXvwq7MC&oi=fnd&pg=PA2&dq=Logical+
and+relational+learning&ots=nBmYK5moTr&sig=l9CIXBZ7W_SbpK42qRGAZtWUJj8.

Deshpande, Mukund, Michihiro Kuramochi, Nikil Wale, and George Karypis (2005). “Frequent
substructure-based approaches for classifying chemical compounds”. In: IEEE Transactions on
Knowledge and Data Engineering 17.8, pp. 1036–1050. url:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1458698.

Feragen, Aasa, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and Karsten Borgwardt (2013).
“Scalable kernels for graphs with continuous attributes”. In: Advances in Neural Information Processing
Systems, pp. 216–224. url: http://papers.nips.cc/paper/5155-scalable-kernels-for.

Frasconi, Paolo, Fabrizio Costa, Luc De Raedt, and Kurt De Grave (2014). “klog: A language for logical
and relational learning with kernels”. In: Artificial Intelligence 217, pp. 117–143. url:
http://www.sciencedirect.com/science/article/pii/S0004370214001064.

https://lirias.kuleuven.be/handle/123456789/267297
https://books.google.it/books?hl=it&lr=&id=FFYIOXvwq7MC&oi=fnd&pg=PA2&dq=Logical+and+relational+learning&ots=nBmYK5moTr&sig=l9CIXBZ7W_SbpK42qRGAZtWUJj8
https://books.google.it/books?hl=it&lr=&id=FFYIOXvwq7MC&oi=fnd&pg=PA2&dq=Logical+and+relational+learning&ots=nBmYK5moTr&sig=l9CIXBZ7W_SbpK42qRGAZtWUJj8
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1458698
http://papers.nips.cc/paper/5155-scalable-kernels-for
http://www.sciencedirect.com/science/article/pii/S0004370214001064

References III

Gärtner, Thomas, Peter Flach, and Stefan Wrobel (2003). “On graph kernels: Hardness results and
efficient alternatives”. In: Learning Theory and Kernel Machines. Springer, pp. 129–143. url:
http://link.springer.com/chapter/10.1007/978-3-540-45167-9_11.

Haussler, David (1999). Convolution kernels on discrete structures. Tech. rep. 646. Department of
Computer Science, University of California at Santa Cruz. url:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.9684&rep=rep1&type=pdf.

Horváth, Tamás, Thomas Gärtner, and Stefan Wrobel (2004). “Cyclic pattern kernels for predictive
graph mining”. In: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, pp. 158–167. url: http://dl.acm.org/citation.cfm?id=1014072.

Kashima, Hisashi, Koji Tsuda, and Akihiro Inokuchi (2003). “Marginalized kernels between labeled
graphs”. In: ICML. Vol. 3, pp. 321–328. url:
http://www.aaai.org/Papers/ICML/2003/ICML03-044.pdf.

Landwehr, Niels, Andrea Passerini, Luc De Raedt, and Paolo Frasconi (2006). “kFOIL: Learning simple
relational kernels”. In: Aaai. Vol. 6, pp. 389–394. url:
http://www.aaai.org/Papers/AAAI/2006/AAAI06-062.pdf.

http://link.springer.com/chapter/10.1007/978-3-540-45167-9_11
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.9684&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=1014072
http://www.aaai.org/Papers/ICML/2003/ICML03-044.pdf
http://www.aaai.org/Papers/AAAI/2006/AAAI06-062.pdf

References IV

Landwehr, Niels, Andrea Passerini, Luc De Raedt, and Paolo Frasconi (2010). “Fast learning of relational
kernels”. en. In: Machine Learning 78.3, pp. 305–342. issn: 0885-6125, 1573-0565. doi:
10.1007/s10994-009-5163-1. url: http://link.springer.com/10.1007/s10994-009-5163-1.

Li, Xin and Dan Roth (2006). “Learning question classifiers: the role of semantic information”. In:
Natural Language Engineering 12.03, pp. 229–249. url:
http://journals.cambridge.org/abstract_S1351324905003955.

Menchetti, Sauro, Fabrizio Costa, and Paolo Frasconi (2005). “Weighted decomposition kernels”. In:
Proceedings of the 22nd international conference on Machine learning. ACM, pp. 585–592. url:
http://dl.acm.org/citation.cfm?id=1102425.

Narayanan, Annamalai, Mahinthan Chandramohan, Lihui Chen, Yang Liu, and
Santhoshkumar Saminathan (2016). “subgraph2vec: Learning Distributed Representations of Rooted
Sub-graphs from Large Graphs”. In: San Francisco, CA. url: http://arxiv.org/abs/1606.08928.

Neumann, Marion, Roman Garnett, Christian Bauckhage, and Kristian Kersting (2015). “Propagation
kernels: efficient graph kernels from propagated information”. en. In: Machine Learning, pp. 1–37. issn:
0885-6125, 1573-0565. doi: 10.1007/s10994-015-5517-9. url:
http://link.springer.com/article/10.1007/s10994-015-5517-9.

http://dx.doi.org/10.1007/s10994-009-5163-1
http://link.springer.com/10.1007/s10994-009-5163-1
http://journals.cambridge.org/abstract_S1351324905003955
http://dl.acm.org/citation.cfm?id=1102425
http://arxiv.org/abs/1606.08928
http://dx.doi.org/10.1007/s10994-015-5517-9
http://link.springer.com/article/10.1007/s10994-015-5517-9

References V

Neumann, Marion, Novi Patricia, Roman Garnett, and Kristian Kersting (2012). “Efficient graph kernels
by randomization”. In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, pp. 378–393. url:
http://link.springer.com/chapter/10.1007/978-3-642-33460-3_30.

Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov (2016). “Learning Convolutional Neural
Networks for Graphs”. In: New York, NY, USA. url: http://arxiv.org/abs/1605.05273.

Orsini, Francesco, Paolo Frasconi, and Luc De Raedt (2015). “Graph invariant kernels”. In: IJCAI
Proceedings-International Joint Conference on Artificial Intelligence. IJCAI. url:
http://ijcai.org/papers15/Papers/IJCAI15-528.pdf.

Schietgat, Leander, Fabrizio Costa, Jan Ramon, and Luc De Raedt (2011). “Effective feature
construction by maximum common subgraph sampling”. In: Machine Learning 83.2, pp. 137–161. url:
http://link.springer.com/article/10.1007/s10994-010-5193-8.

Schölkopf, Bernhard and Alexander J. Smola (2002). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press. isbn: 978-0-262-19475-4.
url: http://agbs.kyb.tuebingen.mpg.de/lwk/.

Shawe-Taylor, John and Nello Cristianini (2004). Kernel methods for pattern analysis. Cambridge
university press.

http://link.springer.com/chapter/10.1007/978-3-642-33460-3_30
http://arxiv.org/abs/1605.05273
http://ijcai.org/papers15/Papers/IJCAI15-528.pdf
http://link.springer.com/article/10.1007/s10994-010-5193-8
http://agbs.kyb.tuebingen.mpg.de/lwk/

References VI

Shervashidze, Nino, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and
Karsten M. Borgwardt (2011). “Weisfeiler-lehman graph kernels”. In: The Journal of Machine Learning
Research 12, pp. 2539–2561. url: http://dl.acm.org/citation.cfm?id=2078187.

Shervashidze, Nino, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten M. Borgwardt
(2009). “Efficient graphlet kernels for large graph comparison.” In: AISTATS. Vol. 5, pp. 488–495. url:
http://www.jmlr.org/proceedings/papers/v5/shervashidze09a/shervashidze09a.pdf.

Vedaldi, Andrea and Andrew Zisserman (2012). “Efficient additive kernels via explicit feature maps”.
In: IEEE transactions on pattern analysis and machine intelligence 34.3, pp. 480–492. url:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6136519.

Verbeke, Mathias, Paolo Frasconi, Kurt De Grave, Fabrizio Costa, and Luc De Raedt (2014). “klognlp:
Graph kernel–based relational learning of natural language”. In: Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics: System Demonstrations. Association for Computational
Linguistics, pp. 85–90. url: https://lirias.kuleuven.be/handle/123456789/451228.

Verbeke, Mathias et al. (2011). “Kernel-based logical and relational learning with kLog for hedge cue
detection”. In: International Conference on Inductive Logic Programming. Springer, pp. 347–357. url:
http://link.springer.com/chapter/10.1007/978-3-642-31951-8_29.

http://dl.acm.org/citation.cfm?id=2078187
http://www.jmlr.org/proceedings/papers/v5/shervashidze09a/shervashidze09a.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6136519
https://lirias.kuleuven.be/handle/123456789/451228
http://link.springer.com/chapter/10.1007/978-3-642-31951-8_29

References VII

Verbeke, Mathias et al. (2012). “A statistical relational learning approach to identifying evidence based
medicine categories”. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning. Association for Computational
Linguistics, pp. 579–589. url: http://dl.acm.org/citation.cfm?id=2391014.

Wale, Nikil, Ian A. Watson, and George Karypis (2008). “Comparison of descriptor spaces for chemical
compound retrieval and classification”. In: Knowledge and Information Systems 14.3, pp. 347–375. url:
http://link.springer.com/article/10.1007/s10115-007-0103-5.

Weinberger, Kilian, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg (2009). “Feature
Hashing for Large Scale Multitask Learning”. In: Proceedings of the 26th Annual International Conference
on Machine Learning. ICML ’09. New York, NY, USA: ACM, pp. 1113–1120. isbn: 978-1-60558-516-1.
doi: 10.1145/1553374.1553516. url: http://doi.acm.org/10.1145/1553374.1553516.

Yanardag, Pinar and S. V. N. Vishwanathan (2015). “Deep graph kernels”. In: Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp. 1365–1374.
url: http://dl.acm.org/citation.cfm?id=2783417.

http://dl.acm.org/citation.cfm?id=2391014
http://link.springer.com/article/10.1007/s10115-007-0103-5
http://dx.doi.org/10.1145/1553374.1553516
http://doi.acm.org/10.1145/1553374.1553516
http://dl.acm.org/citation.cfm?id=2783417

	Learning with structured data
	Kernels and convolution kernels
	Graph kernels
	Kernel methods for relational learning
	Dealing with continuous/high dimensional attributes

