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Part 1

Learning with structured data



         

Structured data

Data in propositional supervised learning:
Design matrix (input) X : one example per row, one
attribute (or codebit) per column

Target vector (output) y: one scalar per example (binary,
regression, multitask)

Data in relational learning:
Relational database(s) or equivalent (restricted) first-order
logic representations — e.g. learning from interpretations
(De Raedt 2008)
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Example: Chemoinformatics

Each molecule represented as a
graph where:

Nodes correspond to atoms

Edges correspond to bonds

Attributes may include element,
charge, bond type

Task: many are possible — e.g.
active compound in drug design,
mutagenicity, biodegradability, etc.
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Example: Protein function (Borgwardt et al. 2005b)

Each protein represented as a graph
where:

Nodes correspond to secondary
structure elements (SSE)

Structural edges (SSE are neighbors in
space) and sequential edges (SSE are
adjacent in sequence)

Attributes include physical and chemical
information

Task: discriminate between enzymes and
non-enzymes, or categorize according to
enzyme type
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Example: Sentence classification

Each sentence represented as a graph where:
Nodes correspond to words (possibly represented by word
vectors)

Edges correspond to the (typed) dependency relation between
governors and dependents

Tasks: many are possible — e.g. classify sentences according to
the expected answer, such as food (Li et al. 2006); detect weasel
sentences (Verbeke et al. 2011), segment scientific abstracts
(Verbeke et al. 2012) etc.
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Example: sub-community identification (Yanardag et al. 2015)

Each discussion on reddit represented as
a graph where:

Nodes correspond to users

Edges represent user interactions (e.g.
responding to each other’s comments)

Task: Categorize discussions into
communities, e.g. question/answer-based
community or a discussion-based
community

Kernel methods for structured data Structured data Ohrid, 04/09/2016



         

Structured output learning

You have a structured output learning problem when the
output (target) is a data structure

In general you can expect interdependencies among output
variables

Thus better accuracy can be achieved by forming features
that include these output variables
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Example: Supervised sequence learning

Example: protein secondary structure prediction
Input is a sequence of amino-acids

Target is a corresponding sequence of α-β-γ labels

Example: Part-of-speech tagging
Input is a sentence (sequence of words)

Output is a corresponding sequence of syntactic categories
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Example: Natural language parsing

Each example corresponds to a sentence

The input is a sequence of words

The target is a parse tree for the sentence
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Part 2

Kernels and convolution kernels

Basic material only, for details see e.g. (Haussler
1999; Schölkopf et al. 2002; Shawe-Taylor et al.

2004)



         

Kernels

Let X denote the instance space

Let F denote the feature space (a Hilbert space)

A function k : X × X 7→ R is a valid kernel if there exists a
feature map ϕ : X 7→ F such that

k(x, z) = ⟨ϕ(x), ϕ(z)⟩ ∀x, z ∈ X
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Kernels

Let X denote the instance space

Let F denote the feature space (a Hilbert space)

A function k : X × X 7→ R is a valid kernel if there exists a
feature map ϕ : X 7→ F such that

k(x, z) = ⟨ϕ(x), ϕ(z)⟩ ∀x, z ∈ X

Equivalently (Mercer’s theorem): k is a valid kernel iff
Symmetric: k(x, z) = k(z, x)

Positive semidefinite: for every finite set of points, the matrix
with entries

kij = k
(
x(i), x(j)

)
has no negative eigenvalue
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Example: support vector classification (SVC)
Given the dataset D =

{(
x(i), y(i)

)
; i = 1, . . . , n

}

The prediction function f : X 7→ R can be written as

f(x) =
n∑

i=1
α(i)y(i)k

(
x(i), x

)
+ b

The purpose of the kernel is to measure the similarity between the
test point x and every training example x(i)

The coefficients are the solution of the QP

min
α

∥α∥1 + 1
2

α⊺Qα

subject to: 0 ≤ α(i) ≤ C i = 1, . . . , n
n∑

i=1
α(i)y(i) = 0

where Q = (Y Y ⊺) ◦ K and K is the kernel matrix of D
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Check that your kernel looks reasonable
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Advantages of the kernel trick

Performance: Using appropriate kernel functions we may be
able to perform nonlinear classification and attain better
accuracy (because of lower approximation error)

Efficiency (for small-medium size datasets): we may be able
to compute k(x, z) without computing the transformed
ϕ(x) and ϕ(z) explicitly

Abstraction: The data type of x does not matter anymore
and we can apply many existing algorithms to arbitrary
objects (in particular, structured ones)
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Disadvantages of kernels

Knowledge: Many different kernels are possible and choosing
the correct one may require background knowledge that we
don’t have

Efficiency: Solving a quadratic problem is prohibitive for large
datasets

The quadratic problem may be avoided in some cases
Approximate the kernel matrix, e.g. using the Nyström
method, or restrict to homogeneous kernels (Vedaldi et al.
2012)

Use kernels that correspond to very sparse feature vectors
that may be obtained explicitly
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Closure properties

Suppose k1 and k2 are two valid (positive semi-definite)
kernels with kj(x, z) = ⟨ϕj(x), ϕj(z)⟩

Then the following kernels are also valid:

k3(x, z) = k1(x, z) + k2(x, z) (sum)
k4(x, z) = k1(x, z)k2(x, z) (product)

k5(x, z) = k1(x, z)√
k1(x, x)k1(z, z)

(normalization)
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Sum and product of kernels

If k1 and k2 are valid kernels then there exists ϕ1 and ϕ2
such that

k1(x, z) = ⟨ϕ1(x), ϕ1(z)⟩
k2(x, z) = ⟨ϕ2(x), ϕ2(z)⟩

k1(x, z) + k2(x, z) = ⟨ϕ1(x) ⊕ ϕ2(x), ϕ1(z) ⊕ ϕ2(z)⟩
where ⊕ denotes the concatenation operator

k1(x, z)k2(x, z) = ⟨ϕ1(x) ⊗ ϕ2(x), ϕ1(z) ⊗ ϕ2(z)⟩ where
⊗ denotes the Kronecker product

a ⊗ b = [a1b, a2b, · · · , apb]
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Normalization

Suppose k is a valid kernel; then

k̃(x, z) .= k(x, z)√
k(x, x)k(z, z)

is also a valid kernel

Easy to prove: if k(x, z) = ⟨ϕ(x), ϕ(z)⟩ define

ϕ̃(x) = ϕ(x)
∥ϕ(x)∥

and check that

k̃(x, z) = ⟨ϕ̃(x), ϕ̃(z)⟩

Kernel methods for structured data Kernels Ohrid, 04/09/2016



         

Normalization

Suppose k is a valid kernel; then

k̃(x, z) .= k(x, z)√
k(x, x)k(z, z)

is also a valid kernel

Easy to prove: if k(x, z) = ⟨ϕ(x), ϕ(z)⟩ define

ϕ̃(x) = ϕ(x)
∥ϕ(x)∥

and check that

k̃(x, z) = ⟨ϕ̃(x), ϕ̃(z)⟩

Kernel methods for structured data Kernels Ohrid, 04/09/2016



         

Tensor product and direct sum kernels

Suppose X = X1 × X2

If κd, for d = 1, . . . , 2 are valid kernels on Xd × Xd, it is easy
to construct valid kernels on tuples, e.g.,

Tensor product kernel

(κ1 ⊗ κ2)((x1, x2), (x2, x2))
.= κ1(x1, z1)κ2(x2, z2)

Direct sum kernel

(κ1 ⊕ κ2)((x1, x2), (x2, x2))
.= κ1(x1, z1) + κ2(x2, z2)
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Convolution (or decomposition) kernels (Haussler 1999)

Basic idea: decompose a composite instance space X into
spaces representing “parts” X1, . . . , XD

Introduce a decomposition relation

R ⊂ X1 × . . . × XD × X

For all xd ∈ Xd, d = 1, . . . , D and x ∈ X ,
(x1, . . . , xD, x) ∈ R iff x1, . . . , xD are the parts of x

Notation:

R−1(x) .= {(x1, . . . , xD) : (x1, . . . , xD, x) ∈ R}
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Example on strings

Let X = Σ∗ (the set of all strings over a finite alphabet Σ)

Let D = 2 and X1 = X2 = X

Define R so that (x1, x2, x) ∈ R iff x1 is a prefix of x and
x2 the complementary suffix

(TATAG, ACGA, TATAGACGA) ∈ R

(TAT, ACGA, TATAGACGA) /∈ R
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Example on trees

Let X be the set of all parse tree over nonterminals N
(terminal symbols omitted)

A co-rooted subtree of x is a tree obtained as follow:
Take a complete subtree x′ of x

Remove some complete subtrees from x′

Replace the roots of the removed subtrees

A co-rooted substree never splits across a production rule

(t, x) ∈ R iff t is a co-rooted subtree of x
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Co-rooted subtrees (Collins et al. 2001)
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Example on graphs

Graph: G = (V, E)

Let X be the set of all labeled undirected graphs

A path (or walk) π is a sequence of vertices π1, . . . , π|π|
such that πj ∈ V and (πj, πj+1) ∈ E

If ℓ : V 7→ L is the vertex labeling function, the sequence
ℓ(π1), . . . , ℓ(π|π|) is a labeled path of x

(π, x) ∈ R iff π is a labeled path of x
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Graphlets, subgraphs

Simply: (g, x) ∈ R iff g is a subgraph of x

All graphlets of 4 nodes (Shervashidze et al. 2009; Yanardag et al. 2015)

Frequent subgraph mining (Deshpande et al. 2005; Wale et al. 2008)
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Convolution kernels

Assume the instance space X can be decomposed into
subspaces via a decomposition relation
R ⊂ X1 × . . . × XD × X

Suppose we have a valid kernel κd over all subspaces Xd for
d = 1, . . . , D

Then the following kernel is valid over X (Haussler 1999):

K(x, z) =
∑

(x1, . . . , xd) ∈ R−1(x)
(z1, . . . , zd) ∈ R−1(z)

D∏
d=1

κd(xd, zd)

Kernel methods for structured data Kernels Ohrid, 04/09/2016



         

Convolution kernels

Assume the instance space X can be decomposed into
subspaces via a decomposition relation
R ⊂ X1 × . . . × XD × X

Suppose we have a valid kernel κd over all subspaces Xd for
d = 1, . . . , D

Then the following kernel is valid over X (Haussler 1999):

K(x, z) =
∑

(x1, . . . , xd) ∈ R−1(x)
(z1, . . . , zd) ∈ R−1(z)

D∏
d=1

κd(xd, zd)

Kernel methods for structured data Kernels Ohrid, 04/09/2016



         

Convolution kernels

Assume the instance space X can be decomposed into
subspaces via a decomposition relation
R ⊂ X1 × . . . × XD × X

Suppose we have a valid kernel κd over all subspaces Xd for
d = 1, . . . , D

Then the following kernel is valid over X (Haussler 1999):

K(x, z) =
∑

(x1, . . . , xd) ∈ R−1(x)
(z1, . . . , zd) ∈ R−1(z)

D∏
d=1

κd(xd, zd)

Kernel methods for structured data Kernels Ohrid, 04/09/2016



         

Part 3

Graph kernels



         

Path kernels

Graph: G = (V, E)

Labels may be attached to vertices and/or edges

Let κnode and κedge be valid kernels on node labels and edge labels,
respectively

Define the path kernel as the tensor product kernel

κpath(π, π′) = 1{|π| = |π′|} ·
|π|∏

j=1
κnode

(
ℓ(πj), ℓ(π′

j)
)

·
|π|−1∏
j=1

κedge
(
ℓ((πj, πj+1)), ℓ((π′

j, π′
j+1))

)
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From path kernels to graph kernels

Random walk kernels count the number of matching walks:

K(G, G′) =
∑

π∈R−1(G)

∑
π′∈R−1(G′)

κpath(π, π′)

where (π, G) ∈ R iff π is a path in G

Computing ϕ(G) is NP-complete (Gärtner et al. 2003) —
proof by reduction to finding a Hamiltonian path

Many possible approaches, we will briefly review the
following ideas:

Use a marginalized kernel (Kashima et al. 2003)

Use product graphs (Gärtner et al. 2003)

Use shortest-paths (Borgwardt et al. 2005a)
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Marginalized graph kernels

Let P(π|G) denote the probability of a random walk π in G

To compute it:
Sample the first node π1 from a start distribution ps

At the j-th step, sample the next node πj from a transition
distribution pt(πj|πj−1)

Allow termination using a stop distribution pq such that∑
v∈V

pt(v|w) + pq(w) = 1 ∀w ∈ V

Define the graph kernel as (Kashima et al. 2003)

k(G, G′) =
∑
π

∑
π′

kp(π, π′)P(π|G)P(π′|G′)
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Product graphs
Given two graphs G and G′ they direct product is the graph G × G′

V× = {(v, v′) ∈ V × V ′ : ℓ(v) = ℓ(v′)}
E× =

{
((u, u′), (v, v′)) ∈ V 2

× : (u, v) ∈ E, (u′, v′) ∈ E ′, ℓ(u, v) = ℓ(u′, v′)
}
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Product graphs

Main result: There is a bijection between any walk in G× and a common walk
in G and G′ (Gärtner et al. 2003)

Hence the kernel can be computed as

K(G, G′) =
∑

i,j∈V×

[ ∞∑
n=0

λnEn
×

]
ij
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Product graphs

Need to compute
∞∑

n=0
λnEn

×

The series converges when λn are properly choosen

One option is the geometric series: λn = γn for γ < 1:

lim
n→∞

n∑
i=0

γi = 1
1 − γ

Note that any element of Ei is bounded by di where d is the
maximum degree in G — hence choose γ < 1/d obtaining

lim
n→∞

n∑
i=0

γiEi
× = (I − γE×)−1
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Tottering

Main problem of random walk kernels

Walks allow repetitions of nodes, hence small identical subgraphs
can lead to artificially high values of the kernel

One alternative is to use cycles (Horváth et al. 2004)

Another alternative is to use shortest-paths (Borgwardt et al. 2005a)
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Shortest-path graph kernel
Floyd-Warshall transformation: transform G = (V, E) into
S = (V, E) where

(u, v) ∈ E iff u and v are mutually reachable

σ(u, v) is the (labeled) shortest path between u and v in G

Define the shortest-path kernel as

Ksp(G, G′) =
∑
e∈E

∑
e′∈E ′

κpath(σ(e), σ(e′))

Positive definite since it is a special case of a convolution kernel

Running time is dominated by the pairwise comparisons, that take
O(V 4) — Floyd-Warshall runs in O(V 3)
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Graph isomorphism

Two graphs G and G′ are isomorphic (written G ≈ G′) if
there exists a bijection f : V 7→ V ′ (called an isomorphism)
such that {u, v} ∈ E iff {f(u), f(v)} ∈ E′

Very recently found to have quasi-polynomial complexity
(Babai 2015)

Still, practical algorithms employ different strategies, e.g.
based on vertex recoloring via propagation mechanisms

The 1-dimensional Weisfeiler-Lehman test is suitable for
deriving a kernel (Shervashidze et al. 2011)
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Are these two graphs isomorphic?
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W-L test: start with all ones
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W-L test: propagate
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W-L test: recolor
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W-L test: propagate again

Kernel methods for structured data Graph kernels Ohrid, 04/09/2016



         

W-L test: recolor again: isomorphic!
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W-L Graph kernel: propagation
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W-L Graph kernel: feature vectors (Shervashidze et al. 2011)
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W-L Graph kernel: Remarks

Concatenating feature vectors is the same as summing
kernels so effectively we have mapped graphs into a
sequence of graphs G0 = G, G1, . . . , GT and computed

KWL(G, G′) =
T∑

t=0
k(Gt, G′

t)

The number of iterations T is a hyperparameter of the
kernel that you have to fix in advance or cross-validate

The “base kernel” k may be more complicated than just
counting the number of common colors, e.g. could use
shortest paths

KWL-sp(G, G′) =
T∑

t=0
ksp(Gt, G′

t)
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W-L Graph kernel: Results (CPU time)
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W-L Graph kernel: Results (accuracy)
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Neighborhood Subgraph Pairwise Distance Kernel

Convolution kernel based on the relation (Costa et al. 2010)

Rr,d = {(N v
r (G), N u

r (G), G) : δu,v = d}

where
δu,v is the shortest-path distance between u and v

the neighborhood N v
r (G) is the subgraph of G induced by

all u ∈ V s.t. δu,v ≤ r
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Neighborhood Subgraph Pairwise Distance Kernel
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Neighborhood Subgraph Pairwise Distance Kernel

κr,d counts the # of common neighborhood subgraphs:

κr,d(G, G′) =
∑

(A, B) ∈ R−1
r,d

(G)
(A′, B′) ∈ R−1

r,d
(G′)

1{A ≈ A′}1{B ≈ B′}

Hashing used to map subgraphs into IDs — somewhat
related to (Weinberger et al. 2009)

Overall kernel:

K(G, G′) =
R∑

r=0

D∑
d=0

κr,d(G, G′)
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NSPKD Results (CPU time)
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NSPKD Results (accuracy)
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Part 4

Kernel methods for relational
learning

kFOIL (Landwehr et al. 2006, 2010)
kLog (Frasconi et al. 2014)



         

kFOIL

Kernel methods in the ILP setting

Very simple idea:
Define a kernel on relational data based on a relational
theory

Perform structure learning to induce the relational theory

This effectively learns the kernel
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Relational data example
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Relational data + theory = features
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Relational data + theory = features and kernel

Let H = {c1, . . . , cp} be the theory (set of clauses)

Let x be one example and let ϕ(x) be the feature vector
defined as

ϕj(x) =
{

1 if cj fires on x
0 otherwise

The kernel is of course

k(x, z) = ⟨ϕ(x), ϕ(z)⟩
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Example
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Searching

FOIL style greedy general-to-specific search for clauses

Refinement operator : Given a clause c, refine it into c′ by
finding a minimal specialization in the language of clauses

In traditional ILP the goal is to find a theory that covers all
positive examples and no negative example

In kFOIL the goal is to maximize the accuracy score of a
kernel machine based on the kernel defined earlier
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kLog

A framework and domain specific language for kernel-based
relational learning

Embedded in Prolog

Three simple concepts:

1. Entity/relationship (E/R) data modeling combined with ideas
from deductive databases

2. Graphicalization: Examples (i.e. relational database instances)
mapped to (simple) undirected graphs

3. Graph kernels: construction of feature vectors from graphs

Available: http://klog.dinfo.unifi.it/
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2. Graphicalization: Examples (i.e. relational database instances)
mapped to (simple) undirected graphs

3. Graph kernels: construction of feature vectors from graphs
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Goals

Design and maintain complex features in a declarative fashion

Ability to specify several kinds of learning problems,
including:

classification/regression of structured data

entity classification

(hyper)link prediction
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Modeling the UW-CSE dataset in kLog

advised_by

position

phase

professor

student

advisee

advisor

student_id

prof_id

has_position

in_phase

Introduced in (Richardson &
Domingos, 2005) to illustrate
Markov logic

Entity/Relationship (E/R) diagram:
Boxes are entities

Diamonds are relationships

Ovals are attributes

Underlined attributes are entity
identifiers, the other ones are
properties
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Modeling the UW-CSE dataset in kLog

advised_by

position

phase

professor

student

advisee

advisor

student_id

prof_id

has_position

in_phase

signature student(
student_id::self

)::extensional.
signature in_phase(

student_id::student,
phase::property)::extensional.

signature professor(
prof_id::self

)::extensional.
signature has_position(

prof_id::professor,
position::property

)::extensional.

signature advised_by(
student_id::student,
prof_id::professor

)::extensional.
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Learning from interpretations: predictors and responses

student(person311).
student(person14).
...
professor(person7).
professor(person185).
...
has_position(person292,faculty_affiliate).
has_position(person79,faculty).
...
in_phase(person139,post_quals).
in_phase(person333,pre_quals).
...
advised_by(person265,person168).
advised_by(person352,person415).
...
publication(title25,person284).
...
taught_by(course12,person211,autumn_0001).
...
ta(course44,person193,winter_0304).
...
publication(title25,person284).
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Adding background knowledge: Intensional signatures

advised_by

position

phase

professor

student

advisee

advisor

student_id

prof_id

has_position

in_phase

on_same_paper

author

author

signature on_same_paper(
student_id::student,
prof_id::professor

)::intensional.

on_same_paper(S,P) :-
student(S), professor(P),
publication(Pub, S),
publication(Pub,P).

signature on_same_course(
student_id::student,
prof_id::professor

)::intensional.

on_same_course(S,P) :-
professor(P), student(S),
ta(Course,S,Term),
taught_by(Course,P,Term).
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Graphicalization: from interpretations to bipartite graphs

student
p284

professor
p211

professor
p407

student
p21

One square vertex for every
entity

One diamond vertex for every
ground relationship

Add an undirected edge between
a square and a diamond if the
entity appears in the grounding
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student
p284

professor
p211

professor
p407

student
p21

on_same_paper(p21,p407)

on_same_paper(p21,p211)

on_same_paper(p211,p284)

on_same_course(p21,p211)

One square vertex for every
entity

One diamond vertex for every
ground relationship

Add an undirected edge between
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entity appears in the grounding
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Graphicalization in UW-CSE

advised_by

position

phase

professor

student

advisee

advisor

student_id

prof_id

has_position

in_phase

on_same_paper

author

author

*student
person284

>1<

student
person14

professor
person211

professor
person407

student
person45

student
person21

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_course

has_position(faculty)

has_position(faculty)

advised_by

advised_by

advised_by

advised_by

advised_by

advised_by

in_phase(post_generals)

in_phase(post_generals)

in_phase(post_quals)
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Using graph kernels to construct features

In principle, any graph kernel may be adapted and plugged in

In practice, kLog uses a generalization of NSPDK (Costa
et al. 2010) where:

Subgraphs are rooted at certain designated vertices called
kernel-points (KP)

Soft matches are allowed
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Soft matches

Substructures will never exactly match if there are “hubs” or
high-degree vertices

Example: the relation has_word between words and
webpages

Soft match kernel:

κr,d(G, G′) =
∑

(A, B) ∈ R−1
r,d

(G)
(A′, B′) ∈ R−1

r,d
(G′)

∑
v ∈ V (A) ∪ V (B)

v′ ∈ V (A′) ∪ V (B′)

1{ℓ(v) = ℓ(v′)}
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Kernel details
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Kernel details
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Supervised learning

Let x and y denote the sets of input ground atoms
(predictors) and output ground atoms (responses).

Graphicalization and feature generation yields a joint feature
vector ϕ(x, y)

Fit a linear potential function:

F (x, y) = w⊤ϕ(x, y)

Prediction: solve the “inference” problem

f(x) = argmax
y

F (x, y)

(an intractable step, in general)
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Viewpoints example

student
person284

*student
person14
>3<

professor
person211

professor
person407

student
person45

student
person21

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_paper

on_same_course

has_position(faculty)

has_position(faculty)

advised_by

advised_by

advised_by

advised_by

in_phase(post_generals)

in_phase(post_quals)

Viewpoint
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A whole kLog script

:- use_module(’klog’).
begin_domain.
signature student(student_id::self)::extensional.
signature professor(professor_id::self)::extensional.
signature on_same_course(s::student,p::professor)::intensional.
on_same_course(S,P) :-

professor(P), student(S), ta(C,S,Term), taught_by(C,P,Term).
signature on_same_paper(s::student,p::professor)::intensional.
on_same_paper(S,P) :-

student(S), professor(P), publication(Pub, S), publication(Pub,P).
signature advised_by(s_id::student,p_id::professor)::extensional.
kernel_points([student,professor,on_same_course,on_same_paper]).

end_domain.

experiment :-
new_feature_generator(my_fg,nspdk),
set_klog_flag(my_fg,radius,2),
set_klog_flag(my_fg,distance,2),
attach(uwcse_ext),
new_model(my_model,svm_sgd),
set_klog_flag(my_model,lambda,0.0001),
set_klog_flag(my_model,epochs,5), %% ... etc
kfold(advised_by,5,my_model,my_fg).
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Example: UW-CSE (All information)
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Alternative setting: partial information

We only know about persons without knowing whether they
are professors or students

Stacking in kLog

First, learn to discriminate between professors and students

Assert induced groundings (predicted in cross-validation
mode)

Learn the binary relation taking saved groundings as
additional data
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Example: UW-CSE (Partial information)
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WebKB: results

kLog Markov Logic Tilde
Acc F1 Acc F1 Acc F1

research 94% 0.68 95% 0.66 93% 0.54
faculty 91% 0.74 92% 0.71 91% 0.71
course 99% 0.98 98% 0.95 99% 0.98
student 90% 0.91 89% 0.90 88% 0.89
Average 88% 0.88 88% 0.81 86% 0.78
Time < 1m 450m 87m
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IMDb: results

Year # Movies # Facts kLog MLN Tilde
1997 311 8031 0.86 0.79 0.80
1998 332 7822 0.93 0.85 0.88
1999 348 7842 0.89 0.85 0.85
2000 381 8531 0.96 0.86 0.93
2001 363 8443 0.95 0.86 0.91
2002 370 8691 0.93 0.87 0.89
2003 343 7626 0.95 0.88 0.87
2004 371 8850 0.95 0.87 0.87
2005 388 9093 0.92 0.84 0.83
All 0.93 ± 0.03 0.85 ± 0.03 0.87 ± 0.04

Time 1,394s 220s 12,812s
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Applications

Natural language processing:
Hedge cue detection (Verbeke et al. 2011)

Evidence-based medicine (Verbeke et al. 2012)

Vision:
Indoor scene classification (Antanas et al. 2013)

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016



         

kLogNLP (Verbeke et al. 2014)

Natural language module for kLog

NLP-specific preprocessors, enabling the use of existing
libraries, currently:

The Python Natural Language Toolkit (NLTK)

The Stanford CoreNLP

http://people.cs.kuleuven.be/~mathias.verbeke/klognlp/
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Hedge cue detection

Hedge cues are linguistic devices that indicate whether
information is being presented as uncertain or unreliable
within a text

Indicate caution or uncertainty towards content

Task: discriminate between factual vs uncertain sentences,
e.g.

Factual “Among adolescents, the rate was found to be
between 8 to 12 percent”

Uncertain “Some technologies are known to perform better
than others in this regard”

Kernel methods for structured data Kernels for relational learning Ohrid, 04/09/2016



         

Hedge cue detection
kLog for Hedge Cue Detection 5

w

depHead

next

wordID
depRel

lemma

POS-tag

chunktag

inList

wordString

weasel
Sentence

Fig. 2: E/R diagram modeling the hedge cue detection task

w(often,rb,often,1)
w1

w(the,dt,the,0)
w2

w(response,nn,response,0)
w3

w(variable,nn,variable,0)
w4

w(may,md,may,1)
w5

next

dh(adv)

next

dh(nmod)

next

dh(nmod)

next

dh(sbj) dh(root)

weasel

Fig. 3: Graphicalization Gz of interpretation z (Table 1)

w1 and w2. These interpretations are then graphicalized, i.e. transformed into
graphs. This can be interpreted as unfolding the E/R diagram over the data, for
which an example is given in Figure 3. It represents the graphicalization of the
interpretation in Table 1. This forms the input to the next level, where graph
learning is applied to convert these graphicalized interpretations into extended,
high-dimensional feature vectors using a graph kernel. The result is a proposi-
tional learning setting, for which any statistical learner can be used. Currently,
kLog employs LibSVM [11] for parameter learning.

4 Results and Discussion

Dataset For our experiments, the dataset we used is the CoNLL 2010 Shared
Task dataset [10] on Wikipedia, one of the current benchmark datasets for hedge
cue resolution. The Wikipedia paragraphs were selected based on the hedge cue
(called weasels in Wikipedia) tags that were added by the Wikipedia editors,

Table 1: Example interpretation z

wwc(2). w(w2,’the’,dt,i-np,0,’the’).
next(w1,w2). dh(w2,w4,nmod).
w(w1,’often’,rb,i-advp,1,’often’). next(w3,w4).
dh(w1,w5,adv). w(w3,’response’,nn,i-np,0,’response’).
next(w2,w3). dh(w3,w4,nmod).

...
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Results on CoNNL 2010 shared task (Verbeke et al. 2011)

kLog for Hedge Cue Detection 9

Table 3: Evaluation performance in terms of precision, recall and F1 of the top
5 CoNLL 2010 systems and the kLog approach for the Wikipedia dataset

Official Rank System P R F

- kLog 67.04 56.77 61.48
1 Georgescul 72.0 51.7 60.2
2 Ji1 62.7 55.3 58.7
3 Chen 68.0 49.7 57.4
4 Morante 80.6 44.5 57.3
5 Zhang 76.6 44.4 56.2
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Fig. 5: Precision/recall curve for kLog and the individual points for the top 5
CoNLL systems in Table 3 (numbers correspond with ranking)

use graph kernels on a full relational representation. Since the linguistic rela-
tions between words in a sentence can be represented as a graph structure, kLog
seems to have the appropriate characteristics for CL problems. Furthermore, the
ability to construct features in a declarative fashion through the introduction of
additional background knowledge showed to have a positive influence on the
results.

In future work, we plan to test the generalizability of our approach on another
dataset for this task, i.e. scientific texts from the biomedical domain, which have
a different, more structured writing style and sentence structure. This opens the
way to applying a cross dataset training phase, which showed improved results
for one of the participants in the shared task. Also the addition of new (linguistic)
background knowledge requires further investigation, for which we will start from
an extensive error analysis of the obtained results. Due to the promising results,
the goal is to test this approach also on more challenging NLP problems and to
perform a detailed comparison with the state-of-the-art approaches.
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Part 5

Dealing with continuous/high
dimensional attributes



         

Continuous and/or high-dimensional attributes

Many kernels seen so far use hard-matching, which makes no
sense in this setting

We will briefly review the following possible approaches:
Propagation kernels (Neumann et al. 2015, 2012)

GraphHopper (Feragen et al. 2013)

Graph invariant kernels (Orsini et al. 2015)
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Propagation kernels

Like in Weisfeiler-Lehman, define a sequence of graphs
G0 = G, G1, . . . , GT being T the number of propagation
steps

As in W-L, the kernel between two graphs is

K(G, G′) =
T∑

t=0
k(Gt, G′

t)

where
k(Gt, G′

t) =
∑

v∈Vt

∑
v′∈V ′

t

κnode(v, v′)

for some κnode we will define later
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Propagation kernels

The propagation mechanism is based on the following
diffusion process (Neumann et al. 2015):

Pt+1 = TPt

where
T is the row-normalized adjacency matrix

Pt contains a node distribution in each row

Initialization:
p0(v) = δℓ(v) if v is labeled

Otherwise put a uniform distribution
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Propagation kernels

Distinguish between node labels ℓ(u) (categorical symbols)
and node attributes x(u) (may be real vectors)

Given kernels κlabel and κattr for comparing labels and
attributes, the node kernel is

κnode(v, v′) = κlabel(ℓ(v), ℓ(v′))κattr(x(v), x(v′))

κlabel and κattr are based on discretization (e.g. via
locality-sensitive hashing):

κlabel(ℓ(v), ℓ(v′)) = 1{h(p(v)) = h(p(v′))}
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Propagation kernels — Example

Kernel methods for structured data Continuous attributes Ohrid, 04/09/2016



         

GraphHopper

Start from a given kernel κnode on node attributes (e.g. RBF)

Define a kernel on paths as follows:
Let πj and π′

j be the vertices at position j in two paths π and π′,
respectively

Let x(πj) and x(π′
j) be their (high-dimensional) labels

Path kernel:

κpath(π, π′) = 1{|π| = |π′|}
|π|∑

j=1
κnode

(
x(πj), x(π′

j)
)

Finally define the graph kernel as
K(G, G′) =

∑
π∈R−1(G)

∑
π′∈R−1(G′)

κpath(π, π′)

where (π, G) ∈ R if π is a shortest-path in G
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GraphHopper

To speed-up the computation, rewrite the kernel as

K(G, G′) =
∑
v∈V

∑
v′∈V ′

w(v, v′)κnode(v, v′)

where w(v, v′) counts the number of times v and v′ appear at the
same hop in a shortest-path

The kernel w(v, v′) can be computed as

w(v, v′) = ⟨M(v), M(v′)⟩

where M(v) is a δ × δ matrix with entries

mij(v) = # times v appears at hop i in a shortest-path of length j

and δ is the largest graph diameter
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GraphHopper

All matrices M(v) can be computed in O(V 2(E + log V + δ2))
calling Dijkstra as a subroutine — see (Feragen et al. 2013) for
details

The overall running time is therefore O(V 2(d + E + log V + δ2))
where d is the dimension of the node attribute vector

Additionally, M(v) only need to computed once per graph on a
given dataset, yielding an amortized running time of O(dV 2)

Nice improvement compared to the running time O(dV 4) of the
naive implementation based on the shortest-path kernel
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Graph invariant kernels

An invariant is a function I such that

G ≈ G′ =⇒ I(G) = I(G′)

The invariant is complete if the reverse is also true

A vertex invariant is a function L : V 7→ C that
assigns each vertex v a color L(v)

is preserved under any isomorphism f , i.e.

L(v) = L(f(v))

Examples: degree(v), W-L color of v, etc.
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Graph invariant kernels (Orsini et al. 2015)

The key idea to define GIKs is to introduce a notion of
structural similarity w(v, v′) between two nodes v ∈ V and
v′ ∈ V ′, based on some invariant

Assume a kernel on node attributes κattr is available

Define the graph kernel as

K(G, G′) =
∑
v∈V

∑
v′∈V ′

w(v, v′)κattr(x(v), x(v′))

i.e. the more two nodes are structurally similar, the more
their attribute similarity will contribute to the kernel

Note that in this setting x(v) may have any type
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Graph invariant kernels

As in many other graph kernels, use a relation R between
graphs and their parts: (g, G) ∈ R iff g is a subgraph of G
(i.e. a pattern in G)

Furthermore, for a given node v, introduce the relation
Rv ⊂ R such that (g, G) ∈ Rv iff (g, G) ∈ R and v is a
node in g

Then define the structural similarity between nodes as

w(v, v′) .=
∑

g∈R−1
v (G)

∑
g′∈R−1

v′ (G′)
κinv(v, v′) δ(g, g′)

|Vg||Vg′|

where δ(g, g′) is used to compare patterns g and g′
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W-L coloring for GIKs

Weisfeiler-Lehman coloring:

κinv(v, v′) =
T∑

t=0
1{Lt(v) = Lt(v′)}

where Lt(v) is the W-L color of v at iteration t

Both a local version and a global version of the coloring are
possible

Local version: run W-L on ech pattern g

Global version: run W-L on the whole graph G
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Spectral coloring for GIKs

Solve the eigenproblem

Lxi = λixi

where L = (D − W ) is the graph Laplacian for a properly
choosen weighted adjacency matrix (e.g. use heat kernel)

Define the color vector L(v) with components

Li(v) =
{

|xi(v)| if λi has multiplicity 1
0 if λi has multiplicity > 1

Let
κinv(v, v′) = exp

(
−γ∥L(v) − L(v′)∥2

)
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Artificial dataset

Start from mutagenicity data set of Bursi et al.

Atoms masquerading as MNIST digits
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GIK vs GraphHopper
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Final remarks

Kernel methods may be effective in relational domains

Large datasets require ϕ(G) but not all available graph
kernels allow to compute it explicitly

Limited by the “fixed-representation” approach: see e.g.
(Narayanan et al. 2016; Niepert et al. 2016; Yanardag et al.
2015) for alternatives
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