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What is a decomposition of the 
output space? 

• The output space in multi-label learning 
 
 

• A global model predict all label at once 
• A decomposition of the above multi-label problem 

 
 

• A set of local models predict one label each 
• multi-label problem decomposed into several single-

label problems 
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Binary relevance methods 

• Binary relevance (BR) 
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Pairwise methods 

• Calibrated label ranking (CLR) 
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Two stage classifier chains 
architecture 
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Two stage classifier chains 
architecture 
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What is the structuring of the 
output space? 

 
 
 
 
 
 
 

• Hierarchical multi-label classification 
• A hierarchical structure imposed on the label space 



The importance of the label 
hierarchy in HMC 

• The task of learning predictive models for 
hierarchical multi-label classification is addressed 

• Investigation is made on 
• the differences in performance and interpretability of 

the local and global models 
• whether including information in the form of hierarchical 

relationships among the labels helps to improve the 
performance of the predictive models 

• inclusion of the information on the output structure also 
improves the performance of ensemble models.  
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The importance of the label 
hierarchy in HMC 

• Two local and two global modeling tasks that exploit different 
amounts of the information provided by the label hierarchy 
were considered 

29 

Single-label classification Hierarchical single-label classification (HSC) 

Multi-label classification Hierarchical multi label classification (HMC) 

Local 
approaches 

Global 
approaches 



The importance of the label 
hierarchy in HMC - conclusions 

• Label hierarchy improves the predictive performance of single trees 
• HMC trees should be used on domains with well populated label 

hierarchy 
• HSC tree architecture should be used if the number of labels per 

example is closer to one 

Random 
Forests 

Bagging 

Single 
tree 

• Label hierarchy brings less (or no) advantage in terms of predictive 
performance to ensembles 

• However, there are considerable differences in the learning time 
between global and local ensemble methods 

• HMC ensembles are much more efficient in terms of learning time 
than the single-label ensembles and should be used if time is an issue 
(especially random forests) 
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But what if we don’t have a 
structure? 

• Derive a structure from the data 
• Input space  
• Output space 
• Combination of the input and output space (no 

experimental results) 
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An example of a ML dataset and its 
transformed HMC dataset. 
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Structuring of the output space 
– output data 

• Label hierarchy based on the clustering of 
occurrence profiles of labels across instances 

• Identifying the relationships between labels by using 
expert provided information (maybe some features are 
not relevant for particular problem) 

• Not very relevant if the output space is sparse 
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Structuring of the output space 
– output data conclusions 

• We have compared four different approaches to 
deriving label hierarchies 

• balanced k-means 
• hierarchical agglomerative clustering (single and 

complete linkage)  
• PCTs 

• The hierarchies derived by using balanced k-means 
are clearly better to the ones derived by using the 
other approaches, yielding the highest 
improvements in predictive performance 
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Structuring of the output space 
– output space conclusions 

• We have also compared data-derived hierarchies to 
expert-provided ones (where such hierarchies are 
available)  
 

• The results reveal that they have approximately the 
same utility, i.e., both yield similar improvements in 
predictive performance 
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Structuring of the output space 
– input data 

• We construct label hierarchies from the 
relevance scores of the features for every 
label 

• Each label from the output space is described 
(represented) by the relevance scores of the descriptive 
features for that particular label computed by using 
Relief 

• Balanced K-means (k=2,3,4,5) 
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Structuring of the output space 
– input data conclusions 

• Great improvements as compared to the approach 
that does not use the structured output 

• More general approach for structuring the output 
space (applicable even for multi-class classification 
problems) 

• One extra step  
• Compute the relevance scores of the features for each 

label in the classification problem 
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Further work 

• Combining the descriptions of the labels that come 
from (both) the input (relevance score) and the 
output (co-occurrence relationships) space 
 

• Decomposing the data-derived output space  
 

• Structuring with constraints 
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