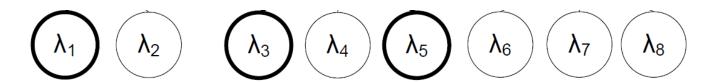
Decomposition and structuring of the output space in multi-label classification

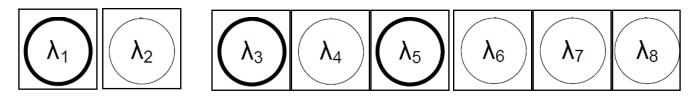
Gjorgji Madjarov

What is a decomposition of the output space?

The output space in multi-label learning

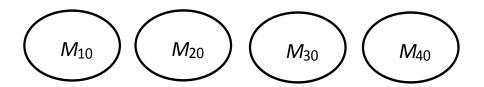


- A global model predict all label at once
- A decomposition of the above multi-label problem

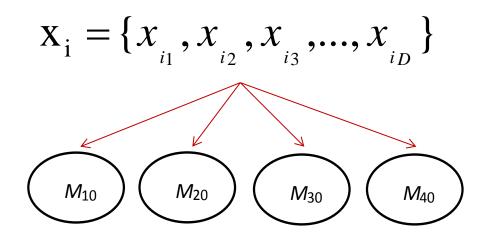


- A set of local models predict one label each
 - multi-label problem decomposed into several singlelabel problems

Binary relevance (BR)

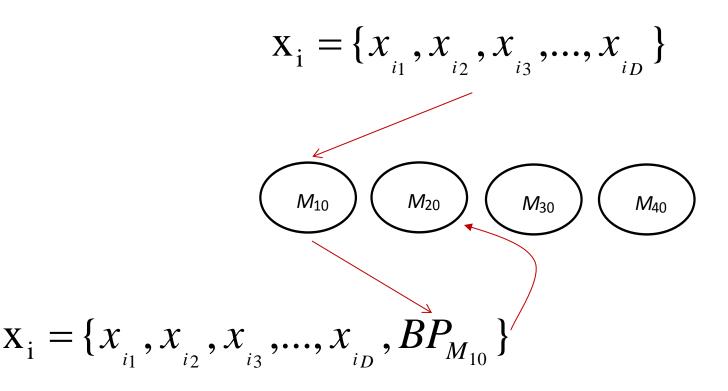


Binary relevance (BR)



$$\mathbf{x_{i}} = \{x_{i1}, x_{i2}, x_{i3}, ..., x_{iD}\}$$

$$\mathbf{x_{i}} = \{x_{i1}, x_{i2}, x_{i3}, ..., x_{iD}, BP_{M_{10}}\}$$



$$\mathbf{X_{i}} = \{x_{i1}, x_{i2}, x_{i3}, ..., x_{iD}\}$$

$$M_{10} \qquad M_{20} \qquad M_{30} \qquad M_{40}$$

$$\mathbf{X_{i}} = \{x_{i1}, x_{i2}, x_{i3}, ..., x_{iD}, BP_{M_{10}}, BP_{M_{20}}\}$$

$$\mathbf{x_{i}} = \{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, \dots, x_{i_{D}}\}$$

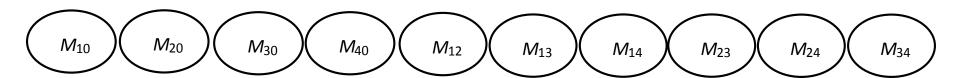
$$\mathbf{x_{i}} = \{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, \dots, x_{i_{D}}, BP_{M_{10}}, BP_{M_{20}}\}$$

$$X_{i} = \{X_{i1}, X_{i2}, X_{i3}, ..., X_{iD}\}$$

$$M_{10}$$
 M_{20} M_{30} M_{40}

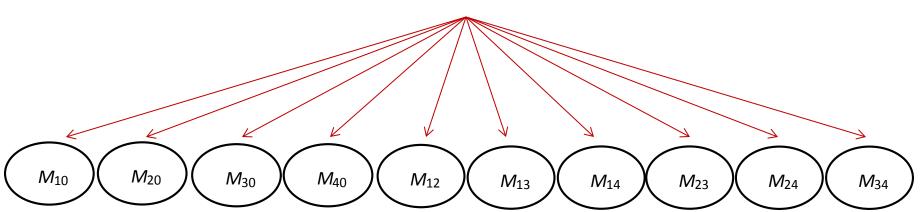
$$\mathbf{x_{i}} = \{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, ..., x_{i_{D}}, BP_{M_{10}}, BP_{M_{20}}, BP_{M_{30}}, BP_{M_{40}}\}$$

Calibrated label ranking (CLR)



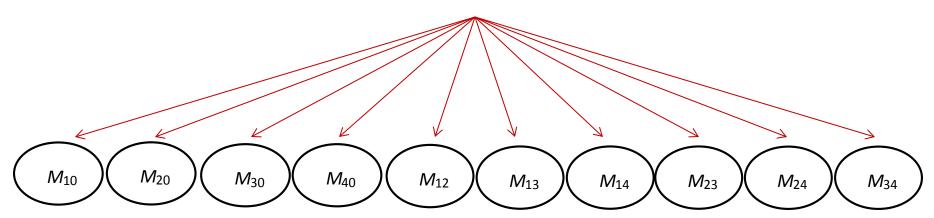
Calibrated label ranking (CLR)

$$X_{i} = \{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, ..., x_{i_{D}}\}$$



Calibrated label ranking (CLR)

$$X_{i} = \{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, ..., x_{i_{D}}\}$$

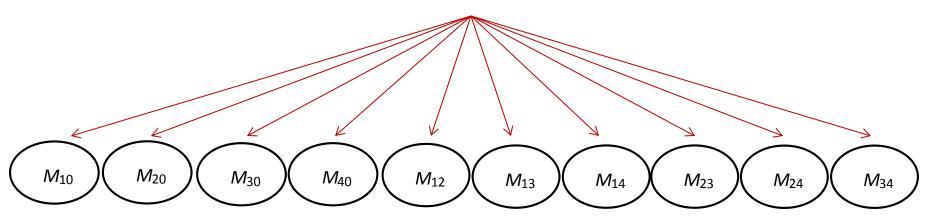


Labels

2 4 0 3 1

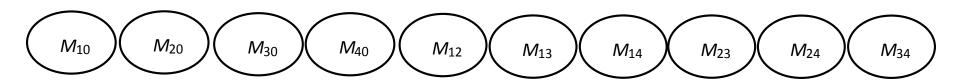
Calibrated label ranking (CLR)

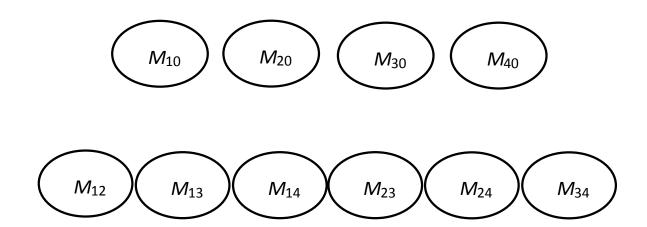
$$X_{i} = \{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, ..., x_{i_{D}}\}$$

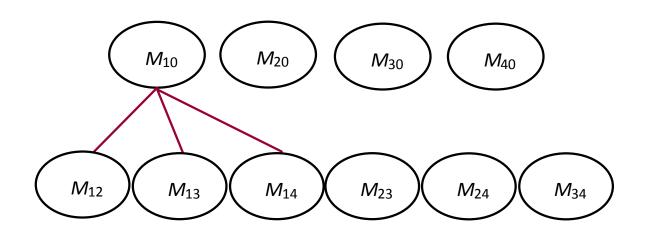


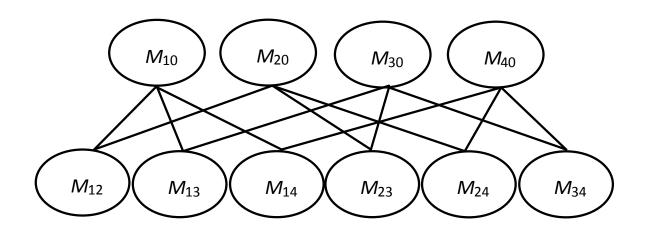
Labels

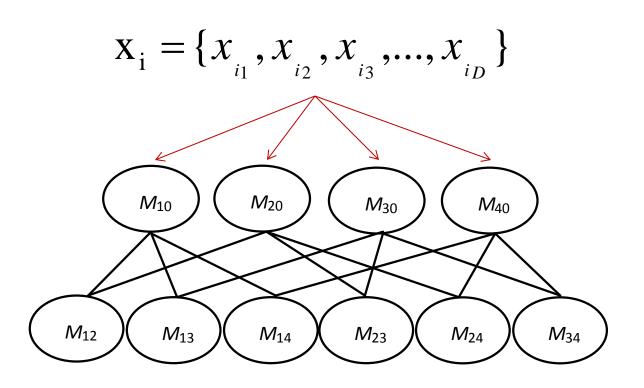
2 4 **0** 3 1

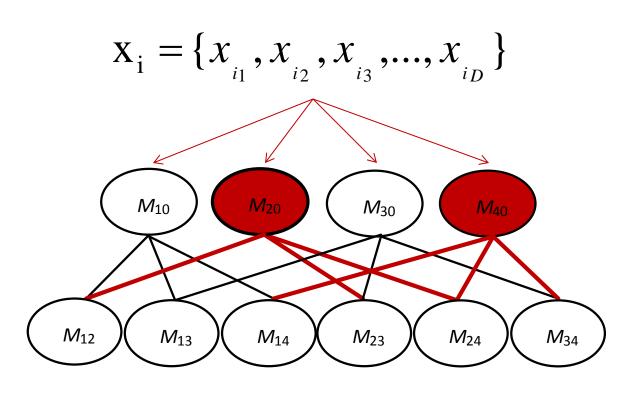


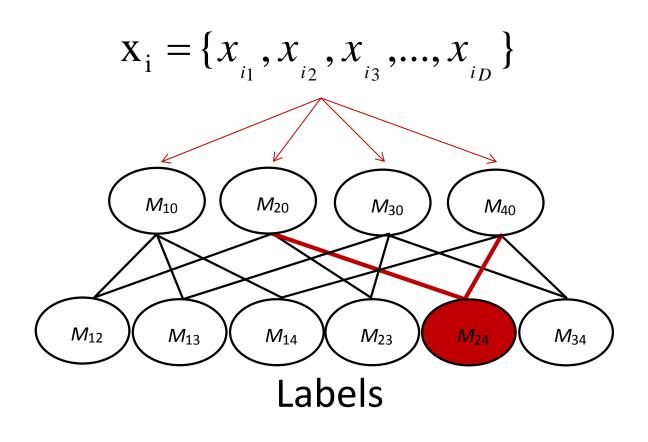


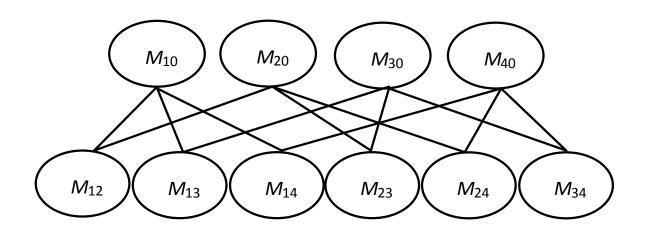












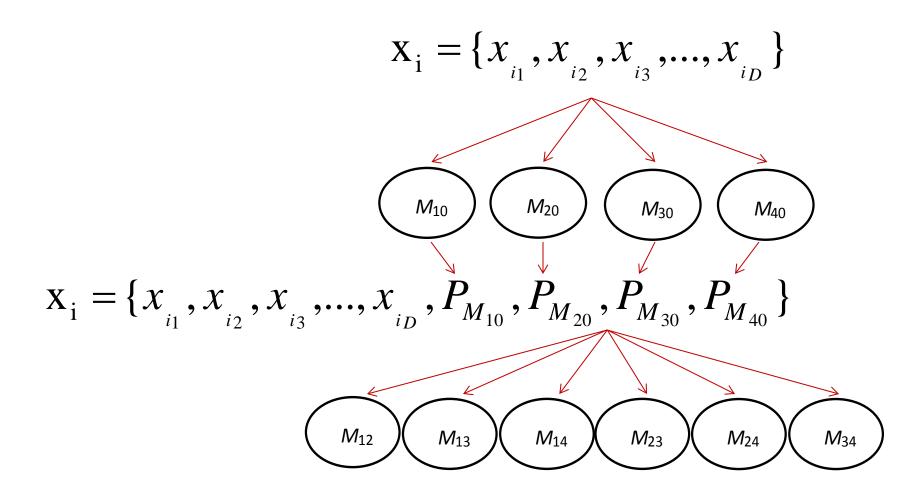
$$X_{i} = \{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, ..., x_{i_{D}}\}$$

$$M_{10} \qquad M_{20} \qquad M_{30} \qquad M_{40}$$

$$\mathbf{x_{i}} = \{x_{i1}, x_{i2}, x_{i3}, ..., x_{iD}\}$$

$$\mathbf{x_{i}} = \{x_{i1}, x_{i2}, x_{i3}, ..., x_{iD}, P_{M_{10}}, P_{M_{20}}, P_{M_{30}}, P_{M_{40}}\}$$

$$\mathbf{x_{i}} = \{x_{i1}, x_{i2}, x_{i3}, ..., x_{iD}, P_{M_{10}}, P_{M_{20}}, P_{M_{30}}, P_{M_{40}}\}$$

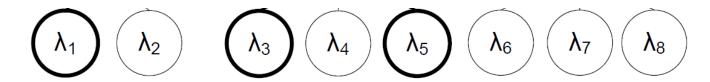


$$\mathbf{x}_{i} = \{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, \dots, x_{i_{D}}\}$$

$$\mathbf{x}_{i} = \{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, \dots, x_{i_{D}}, P_{M_{20}}, P_{M_{30}}\}$$

$$\mathbf{x}_{i} = \{x_{i_{1}}, x_{i_{2}}, x_{i_{3}}, \dots, x_{i_{D}}, P_{M_{20}}, P_{M_{30}}\}$$

What is the structuring of the output space?



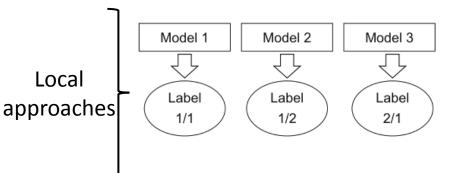
- Hierarchical multi-label classification
 - A hierarchical structure imposed on the label space

The importance of the label hierarchy in HMC

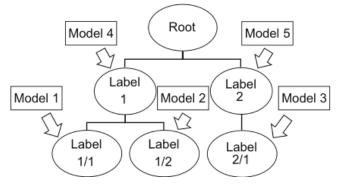
- The task of learning predictive models for hierarchical multi-label classification is addressed
- Investigation is made on
 - the differences in performance and interpretability of the local and global models
 - whether including information in the form of hierarchical relationships among the labels helps to improve the performance of the predictive models
 - inclusion of the information on the output structure also improves the performance of ensemble models.

The importance of the label hierarchy in HMC

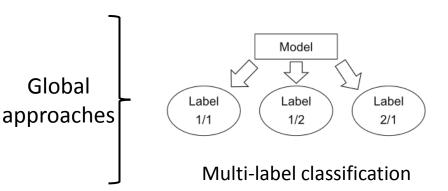
 Two local and two global modeling tasks that exploit different amounts of the information provided by the label hierarchy were considered

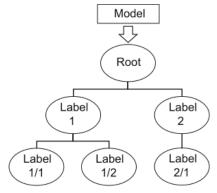


Single-label classification



Hierarchical single-label classification (HSC)





Hierarchical multi label classification (HMC)²⁹

The importance of the label hierarchy in HMC - conclusions

Single tree

- Label hierarchy improves the predictive performance of single trees
- HMC trees should be used on domains with well populated label hierarchy
- HSC tree architecture should be used if the number of labels per example is closer to one

Random Forests

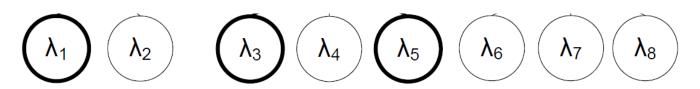
- Label hierarchy brings less (or no) advantage in terms of predictive performance to ensembles
- However, there are considerable differences in the learning time between global and local ensemble methods
- HMC ensembles are much more efficient in terms of learning time than the single-label ensembles and should be used if time is an issue (especially random forests)

Bagging

But what if we don't have a structure?

- Derive a structure from the data
 - Input space
 - Output space
 - Combination of the input and output space (no experimental results)

An example of a ML dataset and its transformed HMC dataset.



example	features	original labels
$\mathbf{x_1}$	$x_{11}, x_{12}, \dots, x_{1n}$	$\{\lambda_1\}$
\mathbf{x}_{2}	$x_{21}, x_{22}, \dots, x_{2n}$	$\{\lambda_3, \lambda_5\}$
$\mathbf{x_3}$	$x_{31}, x_{32}, \dots, x_{3n}$	$\{\lambda_6\}$
x ₄	$x_{41}, x_{42}, \dots, x_{4n}$	$\{\lambda_1, \lambda_6\}$
x ₅	$x_{51}, x_{52}, \dots, x_{5n}$	$\{\lambda_1, \lambda_2, \lambda_6\}$

Structuring of the output space — output data

- Label hierarchy based on the clustering of occurrence profiles of labels across instances
 - Identifying the relationships between labels by using expert provided information (maybe some features are not relevant for particular problem)
 - Not very relevant if the output space is sparse

Structuring of the output space — output data conclusions

- We have compared four different approaches to deriving label hierarchies
 - balanced k-means
 - hierarchical agglomerative clustering (single and complete linkage)
 - PCTs
- The hierarchies derived by using balanced k-means are clearly better to the ones derived by using the other approaches, yielding the highest improvements in predictive performance

Structuring of the output space — output space conclusions

 We have also compared data-derived hierarchies to expert-provided ones (where such hierarchies are available)

• The results reveal that they have approximately the same utility, i.e., both yield similar improvements in predictive performance

Structuring of the output space — input data

- We construct label hierarchies from the relevance scores of the features for every label
 - Each label from the output space is described (represented) by the relevance scores of the descriptive features for that particular label computed by using Relief
 - Balanced K-means (k=2,3,4,5)

Structuring of the output space — input data conclusions

- Great improvements as compared to the approach that does not use the structured output
- More general approach for structuring the output space (applicable even for multi-class classification problems)
- One extra step
 - Compute the relevance scores of the features for each label in the classification problem

Further work

 Combining the descriptions of the labels that come from (both) the input (relevance score) and the output (co-occurrence relationships) space

Decomposing the data-derived output space

Structuring with constraints