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Network Reconstruction Task 
 Also network inference task 
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Given time-series data Find network links 



Applications and Methods 
 Example applications by domain 
 Bioinormatics: from expression data to gene regulatory networks 
 Social networks: from time-series of number of retweets to Twitter 

influence networks 
 Collaborative environments: from number of article edits to 

information propagation networks in Wikipedia 
 Climate: from time-series data measured at a regular grid over the 

globe, identify geographical regions affected by El Nino 

 Methods and approaches to network reconstruction 
 Operate on various target formal representation of the networks 
 Methods for Bayesian networks, more general graphical models 
 This talk: Relevance Network Approach 
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Relevance Network Approach 
 Assumption: (high) similarity between the time series observed in 

two nodes indicate a presence of network link between them 
 Thus: the focus is on measuring similarity between time series 
 Problem: Similarity often symmetric, leading to undirected nets 
 Solution: symmetry-breaking scoring schemes 
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What is this Talk About? 
 Brief survey of the relevance network approaches 
 Similarity measures and scoring schemes 
 Spoiler alert: in sum, there are (too) many of them 

 So: which similarity measure and scoring scheme should be used? 
 Michelangelo’s answer: all of them at the same time 
 We rephrase the question into: What works where? 

 Ideally, we would be able to provide recommendations 
 You should use similarity measure X and scoring scheme Y, since 
 There is a large number of nodes in the network, and 
 The time series are long 
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Talk Outline 
 Introduction and motivation 

 Relevance network (RN) approach 
 Similarity measures 
 Scoring schemes 

 Empirical comparison of the RN variants 
 Experimental setup: networks, data sets, performance measures 
 Comparison methodology 
 Empirical results: what works where? 

 Conclusion and further work 
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Similarity Measures (SM) 
 Similarity measure m: Rn x Rn → R 
 Detects (non)linear relation between two given time series 

 Many different measures proposed; can be clustered in 5 classes 
 Distances 
 Dynamic Time Warping 
 Correlations 
 Mutual Information 
 Symbolic 
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SM: Distances (Norms) 
 Distance-based similarities regard time series as vectors 

 Distance between x and y defined as a p-norm of the vector x–y: 
 dp(x,y) = (Σi |xi–yi|p)1/p 

 p=1: Manhattan distance 
 p=2: Euclidian distance 
 Often used (please do not ask why) p=10 

 From distance to similarity? 
 Many ways, most simple m(x,y) = – dp(x,y) 
 Or, if you are afraid of negative numbers m(x,y) = 1 / dp(x,y) 
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SM: Dynamic Time Warping 
 Optimal mapping between two time series x and y, such that 
 Points from x are linked to points in y 
 Each point should participate in at least one link 
 The sum of the link lengths is minimal 

 

 

 

 

 Finding the optimal mapping: dynamic programming formula 
 Different variants of the formula lead to different DTW measures 
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SM: Correlation Coefficients 
 Regard time series as random variables X and Y 
 Pearson rP(X,Y) = E[(X−E[X])(Y−E[Y])] / (E[(X−E[X])2] E[(Y−E[Y])2]) 

 More robust to non-normal distributions 
 Spearman rS(X,Y) = rP(ranks(X), ranks(Y)) 
 Kendall rK(X,Y) = 2(nC–nD) / (n (n−1)) 
 nC: number of concordant pairs of time points 
 nD: number of dis-concordant pairs of time points 

 Often squared values used 
 Since we are not inferring the direction of the relationship (positive, 

negative), but only to its degree 
 We are not referring here to the causal direction, which could have 

been interpreted as a link direction 
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SM: Mutual Information 
 Treat the time series as random variables X and Y 
 MI(X,Y) = H(X) + H(Y) – H(X,Y), where H denotes entropy 

 
 
 
 
 

 Requires discretization of the numeric variables; hence different 
variants corresponding to different discretization methods 
 Equal-frequency or equal-width bins 
 Various techniques for determining the number of bins 
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SM: Simple Qualitative/Symbolic Distance 

 Comparing simple pairwise increase/decrease trends 
 (t1,t2): X↑Y↑, (t1,t3): X↑Y↑, (t1,t4): X↑Y↑, (t1,t5): X↑Y↑ 
 (t2,t3): X↓Y↓, (t2,t4): X↓Y↑, (t2,t5): X↑Y↑ 
 (t3,t4): X↑Y↑, (t3,t5): X↑Y↑ 
 (t4,t5): X↑Y↑ 

 1 difference in 10 pairwise comparisons: d(X,Y) = 1/10 = 0.1 
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SM: Symbolic Dynamics 
 Transformation of time series to a vector of order patterns 
 Calculating distances or mutual information on symbolic vectors 
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Order patterns for 3 time points 

P1 P2 P3 P4 P5 P6 

(t1,t2,t3):P2 (t1,t2,t4):P2 (t1,t2,t5):P1 (t1,t3,t4):P1 
(t1,t3,t5):P1 (t1,t3,t5):P1 

(t2,t3,t4):P4 (t2,t3,t5):P5 (t2,t4,t5):P5 

(t3,t4,t5):P1 

 Symbolic vector (P2,P2,P1,P1,P1,P1,P4,P5,P5,P1) 

 

 

 

 



Symmetry Breaking Scoring Schemes 
 Time shifting (TS) 
 Common way to infer the directionality of causal relationships 
 Observing the trend of correlation change when shifting one time 

series, provides a hint on the direction of the causal relationship 
 X→Y: shifting X (the cause) to the right (forward in time) will 

increase the similarity/correlation between X and Y 

 Asymmetric Weighting (AWE) 
 Similarity matrix elements divided by the sum of the elements in the 

corresponding column, i.e., Wij = Mij / Σk Mkj 

 Can be used alone or in combination with TS 
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Other Scoring Schemes 
 Must be combined with time shifting to identify causal direction 

 Context Likelihood of Relatedness (CLR) 
 Uses the distribution of the values in the matrix M for 
 Normalization using the averages and standard deviations of the 

values in the columns and and rows of M 

 Identifying and discriminating indirect links 
 Algs for Reconstruction of Accurate Cellular Networks (ARACNE) 
 Heuristic for identification of indirect links: Mik <= min(Mij, Mjk) 

 
 Maximum Relevance / minimum redundancy Network (MRNET) 
 Assigns higher ranks to direct links, lower ranks to indirect links 
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Talk Outline 
 Introduction and motivation 

 Relevance network (RN) approach 
 Similarity measures 
 Scoring schemes 

 Empirical comparison of the RN variants 
 Experimental setup: networks, data sets, performance measures 
 Comparison methodology 
 Empirical results: what works where? 

 Conclusion and further work 
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Networks and Data: Yeast 
 Four Yeast networks (size: #nodes, #links, density) 
 YN1: 42, 61, 1.1E-2 
 YN2: 75, 135, 4.1E-3 
 YN3: 300, 448, 1.5E-3 
 YN4: 188, 283, 2.4E-3 

 13 time-series data sets that only partially cover network nodes 
 Real measurements that only partially cover network nodes 
 For each network data sets selected that cover at least 95% nodes 
 YN1: 6 data sets, YN2: 2, YN3: 5, and YN4: 3 data sets 

 Total of 20 network reconstruction tasks 
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Networks and Data: Dream5 
 Two Dream5 NR-challenge networks (size: #nodes, #links, density) 
 DN1: 4511, 2066, 1.1E-03 
 DN2: 5950, 3940, 3.8E-04 

 Four synthetic (simulated) data sets that cover all network nodes 
 DN1: 2 data sets, DN2: 2 data sets 

 Total of 4 network reconstruction tasks 
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Methods and Performance Measures 
 114 (=19*6) Relevance Network Approach Variants 
 19 similarity measures: 3 distances, 3 DTW variants, 3 correlation 

coefficients, 4 mutual-information variants, 6 symbolic variants 
 6 scoring schemes: TS, AWE, AWE+TS, CLR+TS, ARACNE+TS, MRNET+TS 

 2,736 (=114*(20+4)) experiments 

 Three performance measures 
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AuROC AuPRC AuPRC-20 



Comparison Methodology 
 One sample Student’s t-test (p-value < 0.05) 
 Identify well-performing methods that on average perform 

significantly better than the default/random NR 
 WRT at least one performance measure: AUROC default 0.5, AUPRC 

default 0.5, AUPRC-20% default 0.1 
 The average calculated on the 20 network reconstruction problems 

 Compare the average rankings of the well-performing methods 
 Pareto fronts in the 3D performance space 
 Observing method ranks (can be also performances) 

 Which methods are in the first three Pareto fronts: 
 Similarity measures? Scoring schemes? 
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Methods Selection: T-Test 
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Pareto Fronts in the Performance Space 
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6.3–13.3 
SymQD-AWE  
SymQD-AWE-TS 
SymQD-CLR-TS 

8.1–13.8 
CorrP-TS 
MI-ARACNE-TS 
SymQD-TS 

10.6–14.3 
CorrP-AWE 
CorrP-AWE-TS 
MI-ARACNE-TS MDS of the performance space, 27 methods 



Pareto Fronts Analysis 
 Similarity measures (left-hand graph) 
 Mostly symbolic (dark green; 4, all 3 in the first Pareto front) 
 Some based on mutual-information (light green; 3) 
 Others based on correlation (yellow; 3) 

 Scoring schemes (right-hand graph) 
 Majority AWE weighting scheme (dark and light green), no MRNET 
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Comparison: Yeast vs. Dream5 (YvD) 
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Yeast Dream5 



YNvDN: Similarity Measures 
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 In both cases: symbolic measures (dark green) perform best 
 Yeast: also mutual-information (light green) based measures 
 Yeast: all the best symbolic performers use the simple QD measure 
 Dream5: the best performers use complex symbolic measures 

Yeast Dream5 



YNvDN: Scoring Schemes 
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 Difficult to generalize 
 Yeast: five schemes among top performers; only MRNET missing 
 Dream5: MRNET is the only scheme used by the top performers 

Yeast Dream5 



Network Size: Similarity Measures 
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  Again, symbolic measures prevail; Pearson correl (yellow) for small 
and medium networks 
 Small: symbolic (4; all simple QD), mutual info (1) and Pearson (1) 
 Medium: mutual info (5), symbolic (3 simple QD) and Pearson (3) 
 Large networks = Dream5 networks: complex symbolic 

 Network size important factor for selecting the similarity measure 

Small Medium Large 



Network Size: Scoring Schemes 
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  Scoring scheme selection more important for non-small networks 
 Small and medium: 4 and 5 different scoring schemes; no MRNET 
 Large networks = Dream5 networks: MRNET only 

 No obvious relation 

Small Medium Large 



Time Series Length: Similarity Measures 
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  Time series length important factor for selecting similarity measure 
 Short: symbolic (QD) and mutual-information based 
 Medium: symbolic (mostly QD, also complex) and Pearson corr. 
 Long: plain distances (L10 and Eucledian; red) perform best 

 Symbolic measures perform well for not-too-long time series only 

Short Medium Long 



Time Series Length: Scoring Schemes 
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  TS length not important when selecting the scoring scheme 
 Small: no MRNET 
 Medium: no AWE (dark orange) 
 Large: AWE and MRNET 

Short Medium Long 



Talk Outline 
 Introduction and motivation 

 Relevance network (RN) approach 
 Similarity measures 
 Scoring schemes 

 Empirical comparison of the RN variants 
 Experimental setup: networks, data sets, performance measures 
 Comparison methodology 
 Empirical results: what works where? 

 Conclusion and further work 
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Conclusion: What Works Where? 
 Most successful similarities: based on symbolic dynamics 
 The simple qualitative distance measure best overall performer; top 

performer for small/med networks and short/mid-length time series 
 Complex symbolic measures better for large networks 

 Pearson correlation seems to work well for medium networks 
 No other correlations among the top performers 

 Distances work well for long time series 
 Distances based on p=10 and Euclidian norm top performers 

 Mutual-info top performers for short time series 

 No DTW among the top performers 
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Further Work 
 Open issue: similarity measure and scoring scheme combo 
 Which combination work well and which are broken? 

 More experiments and benchmarks 
 These might be performed for additional GRN benchmarks 
 Other domains: Social Networks? Collaborative Environments? 

 General methodology for comparing methods performance 
 Taking into account multiple perf criteria 
 In contrast with current average rank diagrams that are limited to 

comparing methods wrt one performance criterion 
 Extend the methodology with quantifying and testing the 

significance of the differences between Pareto fronts 
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