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Network Reconstruction Task 
 Also network inference task 
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Given time-series data Find network links 



Applications and Methods 
 Example applications by domain 
 Bioinormatics: from expression data to gene regulatory networks 
 Social networks: from time-series of number of retweets to Twitter 

influence networks 
 Collaborative environments: from number of article edits to 

information propagation networks in Wikipedia 
 Climate: from time-series data measured at a regular grid over the 

globe, identify geographical regions affected by El Nino 

 Methods and approaches to network reconstruction 
 Operate on various target formal representation of the networks 
 Methods for Bayesian networks, more general graphical models 
 This talk: Relevance Network Approach 
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Relevance Network Approach 
 Assumption: (high) similarity between the time series observed in 

two nodes indicate a presence of network link between them 
 Thus: the focus is on measuring similarity between time series 
 Problem: Similarity often symmetric, leading to undirected nets 
 Solution: symmetry-breaking scoring schemes 
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What is this Talk About? 
 Brief survey of the relevance network approaches 
 Similarity measures and scoring schemes 
 Spoiler alert: in sum, there are (too) many of them 

 So: which similarity measure and scoring scheme should be used? 
 Michelangelo’s answer: all of them at the same time 
 We rephrase the question into: What works where? 

 Ideally, we would be able to provide recommendations 
 You should use similarity measure X and scoring scheme Y, since 
 There is a large number of nodes in the network, and 
 The time series are long 
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Talk Outline 
 Introduction and motivation 

 Relevance network (RN) approach 
 Similarity measures 
 Scoring schemes 

 Empirical comparison of the RN variants 
 Experimental setup: networks, data sets, performance measures 
 Comparison methodology 
 Empirical results: what works where? 

 Conclusion and further work 
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Similarity Measures (SM) 
 Similarity measure m: Rn x Rn → R 
 Detects (non)linear relation between two given time series 

 Many different measures proposed; can be clustered in 5 classes 
 Distances 
 Dynamic Time Warping 
 Correlations 
 Mutual Information 
 Symbolic 
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SM: Distances (Norms) 
 Distance-based similarities regard time series as vectors 

 Distance between x and y defined as a p-norm of the vector x–y: 
 dp(x,y) = (Σi |xi–yi|p)1/p 

 p=1: Manhattan distance 
 p=2: Euclidian distance 
 Often used (please do not ask why) p=10 

 From distance to similarity? 
 Many ways, most simple m(x,y) = – dp(x,y) 
 Or, if you are afraid of negative numbers m(x,y) = 1 / dp(x,y) 
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SM: Dynamic Time Warping 
 Optimal mapping between two time series x and y, such that 
 Points from x are linked to points in y 
 Each point should participate in at least one link 
 The sum of the link lengths is minimal 

 

 

 

 

 Finding the optimal mapping: dynamic programming formula 
 Different variants of the formula lead to different DTW measures 
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SM: Correlation Coefficients 
 Regard time series as random variables X and Y 
 Pearson rP(X,Y) = E[(X−E[X])(Y−E[Y])] / (E[(X−E[X])2] E[(Y−E[Y])2]) 

 More robust to non-normal distributions 
 Spearman rS(X,Y) = rP(ranks(X), ranks(Y)) 
 Kendall rK(X,Y) = 2(nC–nD) / (n (n−1)) 
 nC: number of concordant pairs of time points 
 nD: number of dis-concordant pairs of time points 

 Often squared values used 
 Since we are not inferring the direction of the relationship (positive, 

negative), but only to its degree 
 We are not referring here to the causal direction, which could have 

been interpreted as a link direction 
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SM: Mutual Information 
 Treat the time series as random variables X and Y 
 MI(X,Y) = H(X) + H(Y) – H(X,Y), where H denotes entropy 

 
 
 
 
 

 Requires discretization of the numeric variables; hence different 
variants corresponding to different discretization methods 
 Equal-frequency or equal-width bins 
 Various techniques for determining the number of bins 
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SM: Simple Qualitative/Symbolic Distance 

 Comparing simple pairwise increase/decrease trends 
 (t1,t2): X↑Y↑, (t1,t3): X↑Y↑, (t1,t4): X↑Y↑, (t1,t5): X↑Y↑ 
 (t2,t3): X↓Y↓, (t2,t4): X↓Y↑, (t2,t5): X↑Y↑ 
 (t3,t4): X↑Y↑, (t3,t5): X↑Y↑ 
 (t4,t5): X↑Y↑ 

 1 difference in 10 pairwise comparisons: d(X,Y) = 1/10 = 0.1 
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SM: Symbolic Dynamics 
 Transformation of time series to a vector of order patterns 
 Calculating distances or mutual information on symbolic vectors 
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Order patterns for 3 time points 

P1 P2 P3 P4 P5 P6 

(t1,t2,t3):P2 (t1,t2,t4):P2 (t1,t2,t5):P1 (t1,t3,t4):P1 
(t1,t3,t5):P1 (t1,t3,t5):P1 

(t2,t3,t4):P4 (t2,t3,t5):P5 (t2,t4,t5):P5 

(t3,t4,t5):P1 

 Symbolic vector (P2,P2,P1,P1,P1,P1,P4,P5,P5,P1) 

 

 

 

 



Symmetry Breaking Scoring Schemes 
 Time shifting (TS) 
 Common way to infer the directionality of causal relationships 
 Observing the trend of correlation change when shifting one time 

series, provides a hint on the direction of the causal relationship 
 X→Y: shifting X (the cause) to the right (forward in time) will 

increase the similarity/correlation between X and Y 

 Asymmetric Weighting (AWE) 
 Similarity matrix elements divided by the sum of the elements in the 

corresponding column, i.e., Wij = Mij / Σk Mkj 

 Can be used alone or in combination with TS 
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Other Scoring Schemes 
 Must be combined with time shifting to identify causal direction 

 Context Likelihood of Relatedness (CLR) 
 Uses the distribution of the values in the matrix M for 
 Normalization using the averages and standard deviations of the 

values in the columns and and rows of M 

 Identifying and discriminating indirect links 
 Algs for Reconstruction of Accurate Cellular Networks (ARACNE) 
 Heuristic for identification of indirect links: Mik <= min(Mij, Mjk) 

 
 Maximum Relevance / minimum redundancy Network (MRNET) 
 Assigns higher ranks to direct links, lower ranks to indirect links 
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Talk Outline 
 Introduction and motivation 

 Relevance network (RN) approach 
 Similarity measures 
 Scoring schemes 

 Empirical comparison of the RN variants 
 Experimental setup: networks, data sets, performance measures 
 Comparison methodology 
 Empirical results: what works where? 

 Conclusion and further work 
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Networks and Data: Yeast 
 Four Yeast networks (size: #nodes, #links, density) 
 YN1: 42, 61, 1.1E-2 
 YN2: 75, 135, 4.1E-3 
 YN3: 300, 448, 1.5E-3 
 YN4: 188, 283, 2.4E-3 

 13 time-series data sets that only partially cover network nodes 
 Real measurements that only partially cover network nodes 
 For each network data sets selected that cover at least 95% nodes 
 YN1: 6 data sets, YN2: 2, YN3: 5, and YN4: 3 data sets 

 Total of 20 network reconstruction tasks 
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Networks and Data: Dream5 
 Two Dream5 NR-challenge networks (size: #nodes, #links, density) 
 DN1: 4511, 2066, 1.1E-03 
 DN2: 5950, 3940, 3.8E-04 

 Four synthetic (simulated) data sets that cover all network nodes 
 DN1: 2 data sets, DN2: 2 data sets 

 Total of 4 network reconstruction tasks 
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Methods and Performance Measures 
 114 (=19*6) Relevance Network Approach Variants 
 19 similarity measures: 3 distances, 3 DTW variants, 3 correlation 

coefficients, 4 mutual-information variants, 6 symbolic variants 
 6 scoring schemes: TS, AWE, AWE+TS, CLR+TS, ARACNE+TS, MRNET+TS 

 2,736 (=114*(20+4)) experiments 

 Three performance measures 
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AuROC AuPRC AuPRC-20 



Comparison Methodology 
 One sample Student’s t-test (p-value < 0.05) 
 Identify well-performing methods that on average perform 

significantly better than the default/random NR 
 WRT at least one performance measure: AUROC default 0.5, AUPRC 

default 0.5, AUPRC-20% default 0.1 
 The average calculated on the 20 network reconstruction problems 

 Compare the average rankings of the well-performing methods 
 Pareto fronts in the 3D performance space 
 Observing method ranks (can be also performances) 

 Which methods are in the first three Pareto fronts: 
 Similarity measures? Scoring schemes? 
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Methods Selection: T-Test 
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Pareto Fronts in the Performance Space 
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6.3–13.3 
SymQD-AWE  
SymQD-AWE-TS 
SymQD-CLR-TS 

8.1–13.8 
CorrP-TS 
MI-ARACNE-TS 
SymQD-TS 

10.6–14.3 
CorrP-AWE 
CorrP-AWE-TS 
MI-ARACNE-TS MDS of the performance space, 27 methods 



Pareto Fronts Analysis 
 Similarity measures (left-hand graph) 
 Mostly symbolic (dark green; 4, all 3 in the first Pareto front) 
 Some based on mutual-information (light green; 3) 
 Others based on correlation (yellow; 3) 

 Scoring schemes (right-hand graph) 
 Majority AWE weighting scheme (dark and light green), no MRNET 
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Comparison: Yeast vs. Dream5 (YvD) 
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Yeast Dream5 



YNvDN: Similarity Measures 
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 In both cases: symbolic measures (dark green) perform best 
 Yeast: also mutual-information (light green) based measures 
 Yeast: all the best symbolic performers use the simple QD measure 
 Dream5: the best performers use complex symbolic measures 

Yeast Dream5 



YNvDN: Scoring Schemes 
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 Difficult to generalize 
 Yeast: five schemes among top performers; only MRNET missing 
 Dream5: MRNET is the only scheme used by the top performers 

Yeast Dream5 



Network Size: Similarity Measures 
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  Again, symbolic measures prevail; Pearson correl (yellow) for small 
and medium networks 
 Small: symbolic (4; all simple QD), mutual info (1) and Pearson (1) 
 Medium: mutual info (5), symbolic (3 simple QD) and Pearson (3) 
 Large networks = Dream5 networks: complex symbolic 

 Network size important factor for selecting the similarity measure 

Small Medium Large 



Network Size: Scoring Schemes 

Ljupčo Todorovski, University of Ljubljana 28 

  Scoring scheme selection more important for non-small networks 
 Small and medium: 4 and 5 different scoring schemes; no MRNET 
 Large networks = Dream5 networks: MRNET only 

 No obvious relation 

Small Medium Large 



Time Series Length: Similarity Measures 

Ljupčo Todorovski, University of Ljubljana 29 

  Time series length important factor for selecting similarity measure 
 Short: symbolic (QD) and mutual-information based 
 Medium: symbolic (mostly QD, also complex) and Pearson corr. 
 Long: plain distances (L10 and Eucledian; red) perform best 

 Symbolic measures perform well for not-too-long time series only 

Short Medium Long 



Time Series Length: Scoring Schemes 
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  TS length not important when selecting the scoring scheme 
 Small: no MRNET 
 Medium: no AWE (dark orange) 
 Large: AWE and MRNET 

Short Medium Long 



Talk Outline 
 Introduction and motivation 

 Relevance network (RN) approach 
 Similarity measures 
 Scoring schemes 

 Empirical comparison of the RN variants 
 Experimental setup: networks, data sets, performance measures 
 Comparison methodology 
 Empirical results: what works where? 

 Conclusion and further work 
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Conclusion: What Works Where? 
 Most successful similarities: based on symbolic dynamics 
 The simple qualitative distance measure best overall performer; top 

performer for small/med networks and short/mid-length time series 
 Complex symbolic measures better for large networks 

 Pearson correlation seems to work well for medium networks 
 No other correlations among the top performers 

 Distances work well for long time series 
 Distances based on p=10 and Euclidian norm top performers 

 Mutual-info top performers for short time series 

 No DTW among the top performers 
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Further Work 
 Open issue: similarity measure and scoring scheme combo 
 Which combination work well and which are broken? 

 More experiments and benchmarks 
 These might be performed for additional GRN benchmarks 
 Other domains: Social Networks? Collaborative Environments? 

 General methodology for comparing methods performance 
 Taking into account multiple perf criteria 
 In contrast with current average rank diagrams that are limited to 

comparing methods wrt one performance criterion 
 Extend the methodology with quantifying and testing the 

significance of the differences between Pareto fronts 
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