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Introduction

x =

Binary classification

y ∈ {sunset, non sunset}



Introduction

x =

Multi-class classification

y ∈ {sunset, people, foliage, beach, urban}



Introduction

x =

Multi-label classification

y ⊆ {sunset, people, foliage, beach, urban}
∈ {0, 1}5 = [1, 0, 1, 0, 0, 0]

i.e., multiple labels per instance instead of a single label.



Introduction

K = 2 K > 2
L = 1 binary multi-class
L > 1 multi-label multi-output†

† also known as multi-target, multi-dimensional.

Figure: For L target variables (labels), each of K values.

multi-output can be cast to multi-label, just as multi-class
can be cast to binary

set of labels (L) is predefined (contrast to tagging/keyword
assignment)



Introduction

Table: Academic articles containing the phrase “multi-label
classification” (Google Scholar, 2016)

year in text in title
1996-2000 23 1
2001-2005 188 18
2006-2010 1470 164
2011-2015 5280 629



Single-label vs. Multi-label

Table: Single-label Y ∈ {0, 1}

X1 X2 X3 X4 X5 Y
1 0.1 3 1 0 0
0 0.9 1 0 1 1
0 0.0 1 1 0 0
1 0.8 2 0 1 1
1 0.0 2 0 1 0

0 0.0 3 1 1 ?

Table: Multi-label Y ⊆ {λ1, . . . , λL}

X1 X2 X3 X4 X5 Y
1 0.1 3 1 0 {λ2, λ3}
0 0.9 1 0 1 {λ1}
0 0.0 1 1 0 {λ2}
1 0.8 2 0 1 {λ1, λ4}
1 0.0 2 0 1 {λ4}
0 0.0 3 1 1 ?



Single-label vs. Multi-label

Table: Single-label Y ∈ {0, 1}

X1 X2 X3 X4 X5 Y
1 0.1 3 1 0 0
0 0.9 1 0 1 1
0 0.0 1 1 0 0
1 0.8 2 0 1 1
1 0.0 2 0 1 0

0 0.0 3 1 1 ?

Table: Multi-label [Y1, . . . ,YL] ∈ 2L

X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4

1 0.1 3 1 0 0 1 1 0
0 0.9 1 0 1 1 0 0 0
0 0.0 1 1 0 0 1 0 0
1 0.8 2 0 1 1 0 0 1
1 0.0 2 0 1 0 0 0 1

0 0.0 3 1 1 ? ? ? ?
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Text Categorization and Tag
Recommendation

For example, the IMDb dataset: Textual movie plot summaries
associated with genres (labels). Also: Bookmarks, Bibtex,
del.icio.us datasets.



Text Categorization and Tag
Recommendation

For example, the IMDb dataset: Textual movie plot summaries
associated with genres (labels). Also: Bookmarks, Bibtex,
del.icio.us datasets.
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Labelling Images

Images are labelled to indicate

multiple concepts

multiple objects

multiple people

e.g., Associating Scenes with concepts
⊆ {beach, sunset, foliage, field, mountain, urban}



Labelling Audio

For example, labelling music with emotions, concepts, etc.

amazed-surprised

happy-pleased

relaxing-calm

quiet-still

sad-lonely

angry-aggressive

amazed happy relaxing quiet sad angry

amazed

happy

relaxing

quiet

sad

angry



Related Tasks
multi-output1 classification: outputs are nominal

X1 X2 X3 X4 X5 ra
n

k

ge
n

d
er

gr
o

u
p

x1 x2 x3 x4 x5 1 M 2
x1 x2 x3 x4 x5 4 F 2
x1 x2 x3 x4 x5 2 M 1

multi-output regression: outputs are real-valued

X1 X2 X3 X4 X5 p
ri

ce

ag
e

p
er

ce
n

t

x1 x2 x3 x4 x5 37.00 25 0.88
x1 x2 x3 x4 x5 22.88 22 0.22
x1 x2 x3 x4 x5 88.23 11 0.77

label ranking, i.e., preference learning

λ3 � λ1 � λ4 � . . . � λ2

1aka multi-target, multi-dimensional



Related Areas
multi-task learning: multiple tasks, shared representation
sequential learning: predict across time indices instead of
across label indices; each label may have a different input

y1 y2 y3 y4

x1 x2 x3 x4

structured output prediction: assume particular structure
amoung outputs, e.g., pixels, hierarchy
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Streaming Multi-label Data

Many advanced applications must deal with data streams:

Data arrives continuously, potentially infinitely

Prediction must be made immediately

Expect concept drift

For example,

Demand prediction

Intrusion detection

Pollution detection



Demand Prediction
Outputs (labels) represent the demand at multiple points.

Figure: Stops in the greater Helsinki region. The Kutsuplus taxi
service could be called to any of these.

We are interested in predicting, for each label [y1, . . . , yL],

p(yj = 1|x) • probability of demand at j-th node



Localization and Tracking
Outputs represent points in space which may contain an
object (yj = 1) or not (yj = 0). Observations are given as x.

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

Figure: Modelled on a real-world scenario; a room with a single light
source and a number of light sensors.

We are interested in predicting, for each label [y1, . . . , yL],

yj = 1 • if j-th tile occupied



Route/Destination Forecasting
Personal nodes of a traveller and predicted trajectory

L • number of geographic points of interest

x • observed data (e.g., GPS, sensor activity, time of day)

p(yj = 1|x) • probability an object is present at the j-th node

{xi, yi}N
i=1 • training data
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Multi-label Classification

y4y3y2y1

x

ŷj = hj(x) = argmax
yj∈{0,1}

p(yj |x) • for index, j = 1, . . . ,L

and then,

ŷ = h(x) = [ŷ1, . . . , ŷ4]

=
[

argmax
y1∈{0,1}

p(y1|x), · · · , argmax
y4∈{0,1}

p(y4|x)
]

=
[

f1(x), · · · , f4(x)
]
= f (W>x)

This is the Binary Relevance method (BR).



BR Transformation
1 Transform dataset . . .

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1
. . . into L separate binary problems (one for each label)

X Y1

x(1) 0
x(2) 1
x(3) 0
x(4) 1
x(5) 0

X Y2

x(1) 1
x(2) 0
x(3) 1
x(4) 0
x(5) 0

X Y3

x(1) 1
x(2) 0
x(3) 0
x(4) 0
x(5) 0

X Y4

x(1) 0
x(2) 0
x(3) 0
x(4) 1
x(5) 1

2 and train with any off-the-shelf binary base classifier.



Why Not Binary Relevance?

BR ignores label dependence, i.e.,

p(y|x) =
L∏

j=1

p(yj |x)

which may not always hold!

Example (Film Genre Classification)

p(yromance|x) 6= p(yromance|x, yhorror)



Why Not Binary Relevance?
BR ignores label dependence, i.e.,

p(y|x) =
L∏

j=1

p(yj |x)

which may not always hold!

Table: Average predictive performance (5 fold CV, EXACT MATCH)

L BR MCC

Music 6 0.30 0.37
Scene 6 0.54 0.68
Yeast 14 0.14 0.23
Genbase 27 0.94 0.96
Medical 45 0.58 0.62
Enron 53 0.07 0.09
Reuters 101 0.29 0.37



Classifier Chains

Modelling label dependence,

y4y3y2y1

x

p(y|x) = p(y1|x)
L∏

j=2

p(yj |x, y1, . . . , yj−1)

and,
ŷ = argmax

y∈{0,1}L

p(y|x)



Bayes Optimal CC

Example

0

0

0

0.5

10.5
0.2

1

0

0.9

10.1

0.8

0.4

1

0

0

0.4

10.6
0.7

1

0

0.5

10.5

0.3

0.6

1 p(y = [0, 0, 0]) = 0.040
2 p(y = [0, 0, 1]) = 0.040
3 p(y = [0, 1, 0]) = 0.288
4 . . .
6 p(y = [1, 0, 1]) = 0.252
7 . . .
8 p(y = [1, 1, 1]) = 0.090

return argmaxy p(y|x̃)

Search space of {0, 1}L paths is too much



CC Transformation

Similar to BR: make L binary problems, but include previous
predictions as feature attributes,

X Y1

x(1) 0
x(2) 1
x(3) 0
x(4) 1
x(5) 0

X Y1 Y2

x(1) 0 1
x(2) 1 0
x(3) 0 1
x(4) 1 0
x(5) 0 0

X Y1 Y2 Y3

x(1) 0 1 1
x(2) 1 0 0
x(3) 0 1 0
x(4) 1 0 0
x(5) 0 0 0

X Y1 Y3 Y3 Y4

x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 0 0
x(4) 1 0 0 1
x(5) 0 0 0 1

and, again, apply any classifier (not necessarily a probabilistic
one)!



Greedy CC

y4y3y2y1

x

L classifiers for L labels. For test instance x̃, classify
1 ŷ1 = h1(x̃)
2 ŷ2 = h2(x̃, ŷ1)

3 ŷ3 = h3(x̃, ŷ1, ŷ2)

4 ŷ4 = h4(x̃, ŷ1, ŷ2, ŷ3)

and return
ŷ = [ŷ1, . . . , ŷL]



Example
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ŷ = h(x̃) = [?, ?, ?]

y3y2y1

x

1 ŷ1 = h1(x̃) =
argmaxy1

p(y1|x̃) = 1

2 ŷ2 = h2(x̃, ŷ1) = . . . = 0
3 ŷ3 = h3(x̃, ŷ1, ŷ2) = . . . = 1

Improves over BR; similar build time (if L < D);

able to use any off-the-shelf classifier for hj ; parralelizable

But, errors may be propagated down the chain
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ŷ = h(x̃) = [1, ?, ?]
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x
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3 ŷ3 = h3(x̃, ŷ1, ŷ2) = . . . = 1

Improves over BR; similar build time (if L < D);
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But, errors may be propagated down the chain
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Example
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ŷ = h(x̃) = [1, 0, 1]

y3y2y1

x

1 ŷ1 = h1(x̃) =
argmaxy1

p(y1|x̃) = 1

2 ŷ2 = h2(x̃, ŷ1) = . . . = 0
3 ŷ3 = h3(x̃, ŷ1, ŷ2) = . . . = 1

Improves over BR; similar build time (if L < D);

able to use any off-the-shelf classifier for hj ; parralelizable
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Monte-Carlo search for CC
Example
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Sample T times . . .

p([1, 0, 1]) = 0.6 · 0.7 · 0.6 =
0.252

p([0, 1, 0]) = 0.4 · 0.8 · 0.9 =
0.288

return argmaxyt
p(yt |x)

Tractable, with similar accuracy to (Bayes Optimal) PCC

Can use other search algorithms, e.g., beam search



Does Label-order Matter?

y4y3y2y1

x

vs

y1y3y2y4

x

In theory, models are equivalent, since

p(y|x) = p(y1|x)p(y2|y1, x) = p(y2|x)p(y1|y2, x)

but we are estimating p from finite and noisy data; thus

p̂(y1|x)p̂(y2|y1, x) 6= p̂(y2|x)p̂(y1|y2, x)

and in the greedy case,

p̂(y2|y1, x) ≈ p̂(y2|ŷ1, x) = p̂(y2|y1 = argmax
y1

p̂(y1|x)|x)



Does Label-order Matter?
In theory, models are equivalent, since

p(y|x) = p(y1|x)p(y2|y1, x) = p(y2|x)p(y1|y2, x)

but we are estimating p from finite and noisy data; thus

p̂(y1|x)p̂(y2|y1, x) 6= p̂(y2|x)p̂(y1|y2, x)

and in the greedy case,

p̂(y2|y1, x) ≈ p̂(y2|ŷ1, x) = p̂(y2|y1 = argmax
y1

p̂(y1|x)|x)

The approximations cause high variance on account of error
propagation. We can

1 can reduce variance with an ensemble of classifier chains
2 we can search space of chain orders (huge space, but a

little search makes a difference)



Label Powerset Method (LP)

One multi-class problem (taking many values),

y1, y2, y3, y4

x

ŷ = argmax
y∈Y

p(y|x) • where |Y| ≤ {0, 1}L

Each value is a label vector, 2L in total, but

typically, only the occurrences of the training set.

(in practice, |Y| ≤size of training set, and |Y| � 2L)



Label Powerset Method (LP)
1 Transform dataset . . .

X Y1 Y2 Y3 Y4

x(1) 0 1 1 0
x(2) 1 0 0 0
x(3) 0 1 1 0
x(4) 1 0 0 1
x(5) 0 0 0 1
. . . into a multi-class problem, taking 2L possible values:

X Y ∈ 2L

x(1) 0110
x(2) 1000
x(3) 0110
x(4) 1001
x(5) 0001

2 . . . and train any off-the-shelf multi-class classifier.



Issues with LP

complexity (up to 2L combinations)

imbalance: few examples per class label

overfitting: how to predict new value?

Example

In the Enron dataset, 44% of labelsets are unique (to a single
training example or test instance). In del.icio.us dataset, 98%
are unique.



Meta Labels
Improving the label-powerset approach:

decomposition of label set into M subsets of size k (k < L)

pruning, such that, e.g., Y1,2 ∈ {[0, 0], [0, 1], [1, 1]}
combine together with random subspace method with a
voting scheme

Y3Y2Y1

Y1,2 Y2,3

X3X2X1



Meta Labels

Improving the label-powerset approach:

decomposition of label set into M subsets of size k (k < L)

pruning, such that, e.g., Y1,2 ∈ {[0, 0], [0, 1], [1, 1]}
combine together with random subspace method with a
voting scheme

Method Inference Complexity
Label Powerset O(2L ·D)
Pruned Sets O(P ·D)

Decomposition / RAkEL O(M · 2k ·D)
Meta Labels O(M · P ·D′)

where P < 2L and P < 2k , D′ < D.



Summary of Mehtods

Two views of a multi-label problem of L labels:
1 L binary problems
2 a multi-class problem with up to 2L classes

Problem Transformation:
1 Transform data into subproblems (binary or multi-class)
2 Apply some off-the-shelf base classifier

or, Algorithm Adaptation:
1 Take a suitable single-label classifier (kNN, neural

networks, decision trees . . . )
2 Adapt it (if necessary) for multi-label classification
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Label Dependence in MLC
Common approach: Present methods to

1 measure label dependence
2 find a structure that best represents this

and then apply classifiers, compare results to BR.

Example

y2y4y1y3

xx

y4y3y2y1

y124 y234

x

Link particular labels (nodes) together (CC-based
methods)

Form particular label subsets (LP-based methods)



Label Dependence in MLC
Common approach: Present methods to

1 measure label dependence
2 find a structure that best represents this

and then apply classifiers, compare results to BR.

Measuring label dependence is expensive, models built on it
often do not improve over models built on random depen-
dence!

Problem

For some metrics (such as Hamming-loss / label accuracy),
knowledge of label dependence is theoretically unnecessary!

Problem



Marginal label dependence

Marginal dependence

When the joint is not the product of the marginals, i.e.,

p(y2) 6= p(y2|y1)

p(y1)p(y2) 6= p(y1, y2)
Y1 Y2

Estimate from co-occurrence frequencies in training data



Marginal label dependence
Example

amazed happy relaxing quiet sad angry

amazed

happy

relaxing

quiet

sad

angry

Figure: Music dataset - Mutual Information



Marginal label dependence
Example

beach sunset foliage field mountain urban

beach

sunset

foliage

field

mountain

urban

Figure: Scene dataset - Mutual Information



Marginal label dependence

Marginal dependence

When the joint is not the product of the marginals, i.e.,

p(y2) 6= p(y2|y1)

p(y1)p(y2) 6= p(y1, y2)
Y1 Y2

Estimate from co-occurrence frequencies in training data

Used for regularization/constraints:
1 ŷ = h(x) makes a prediction
2 ŷ′ = g(ŷ) regularizes the prediction



Conditional label dependence

But at classification time, we condition on the input!

Conditional dependence

. . . conditioned on input observation x.

p(y2|y1, x) 6= p(y2|x) X

Y1 Y2

Have to build and measure models

Indication of conditional dependence if

the performance of LP/CC exeeds that of BR

errors among the binary models are correlated

But what does this mean?



Conditional label dependence

But at classification time, we condition on the input!

Conditional independence

. . . conditioned on input observation x.
For example,

p(y2) 6= p(y2|y1)

but p(y2|x) = p(y2|, y1, x)

X

Y1 Y2 vs

X

Y1 Y2

Have to build and measure models

Indication of conditional dependence if

the performance of LP/CC exeeds that of BR

errors among the binary models are correlated

But what does this mean?



The LOGICAL Problem

Example (The LOGICAL Toy Problem)

O
R

A
N

D

X
O

R

X1 X2 Y1 Y2 Y3

0 0 0 0 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 0

Each label is a logical operation (independent of the others!)



The LOGICAL Problem

or and xor

x

xorandor

x

or,and,xor

x

Figure: BR (left), CC (middle), LP (right)

Table: The LOGICAL problem, base classifier logistic regression.

Metric BR CC LP

HAMMING SCORE 0.83 1.00 1.00
EXACT MATCH 0.50 1.00 1.00

Dependence is introduced by an inadequate model!
Dependence depends on the model.



The LOGICAL Problem
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Figure: Binary Relevance (BR): linear decision boundary (solid line,
estimated with logistic regression) not viable for YXOR label



Solution via Structure
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Figure: Classifier chains (CC): linear model now applicable to YXOR



Solution via Multi-class
Decomposition
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Y[OR,AND,XOR] =[1,0,1]

Y[OR,AND,XOR] =[1,1,0]
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x

Figure: Label Powerset (LP): solvable with one-vs-one multi-class
decomposition for any (e.g., linear) base classifier.



Solution via Con. Independence
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Figure: Solution via latent structure (e.g., random RBF) to new input
space z; creating independence: p(yXOR|z, yOR, yAND) ≈ p(yXOR|z).



Solution via Suitable
Base-classifier

x1 = 1

x2 = 1 x2 = 1

[0, 1, 1] [1, 1, 0][0, 0, 0] [0, 1, 1]

no
yes

no yesno yes

Figure: Solution via non-linear classifier (e.g., Decision Tree). Leaves
hold examples, where y = [yAND, yOR, yXOR]



Detecting Dependence
Conditional label dependence and the choice of base model
are inseperable.

yj = hj(x) + εj

yk = hk(x) + εk
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Figure: Errors from logistic regression (left) and decision tree (right).

Only dependence is captured!



A fresh look at Problem
Transformation

X1 X2 X3

Y1

Y2

Y3

Y3Y2Y1

Y1,2 Y2,3

X3X2X1

Figure: Standard methods can be viewed as (‘deep’/cascaded) basis
functions on the label space.



Label Dependence: Summary

Marginal dependence for regularization
Conditional dependence

. . . depends on the model

. . . may be introduced

Should consider together:
base classifier
label structure
inner-layer structure

An open problem

Much existing research is relevant (latent-variable
models, neural networks, deep learning, . . . )
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Classification in Data Streams

Setting:

sequence is potentially infinite

high speed of arrival

stream is one-way

Implications

work in limited memory

adapt to concept drift



Multi-label Streams Methods

1 Batch-incremental Ensemble
2 Problem transformation with an incremental base learner
3 Multi-label kNN
4 Multi-label incremental decision trees
5 Neural networks



Batch-Incremental Ensemble
Build regular multi-label models on batches/windows of
instances (typically in a [weighted] ensemble).
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A common approach in the literature, and can be
surprisingly effective

Free choice of base classifier (e.g., C4.5, SVM)
What batch size to use?

Too small = models insufficient
Too large = slow to adapt
Too many batches = too slow



Problem Transformation with
Incremental Base Learner

Use an incremental learner (Naive Bayes, SGD, Hoeffding
trees) with any problem transformation method (BR, LP, CC,
. . . )

y4y3y2y1

x

Simple implementation,

Risk of overfitting (e.g.,
with classifier chains)

Concept drift may
invalidate structure

Limited choice of base
learner
(must be incremental)



Multi-label kNN
Maintain a dynamic buffer of instances, compare each test
instance x̃ to the k neighbouring instances,

ŷj =

{
1
(

1
k

∑
i|x(i)∈Ne(x̃) y(i)

j > 0.5
)

0 otherwise

efficient wrt L

. . . but not wrt D

limited buffer size,

not suitable for all
problems



ML Incremental Decision Trees
A small sample can suffice to choose a splitting attribute
(Hoeffding bound gives guarantees)
As in regular tree, with modified splitting criteria, e.g.,

HML(S) = −
L∑

j=1

∑
c∈{0,1}

P(yj = c) log2 P(yj = c)

Examples with multiple labels collect at the leaves.

x1 = 1

[0, 0, 0], [0, 1, 1] x2 = 1

[0, 1, 1] [1, 1, 0]

no
yes

no yes



ML Incremental Decision Trees
Fast, and usually competitive,

But tree may grow very conservatively,

. . . and need to replace it (or part of it) when concept
changes.

x1 = 1

[0, 0, 0], [0, 1, 1] x2 = 1

[0, 1, 1] [1, 1, 0]

no
yes

no yes

Place multi-label classifiers at the leaves of the tree

and wrap it in an ensemble.



Neural networks
Each label is a node. Trained with SGD

y1 y2 y3 y4

x5x4x3x2x1

ŷ = W>x̃

g = ∇E(W)

W (t+1)
j,k = W (t)

j,k + λgj,k

Can be applied natively

One layer = BR, should use hidden layers to model label
dependence / improve performance

Hyper-parameter tuning can be tedious

Relatively poor performance in empirical comparisons on
standard data streams (improving now with recent
advances in SGD, more common use of basis expansion)



Multi-label Data Streams: Issues

Overfitting

Class imbalance

Multi-dimensional concept drift

Labelled examples difficult to obtain (semi-supervised)

Dynamic label set

Time dependence



Multi-label Concept Drift

Consider the relative frequencies of the j-th and k-th labels:[
pj pj,k

pk

]
(if marginal independence then pj,k = pjpk).

Possible drift:

pj increases (j-th label relatively more frequent)

pj and pk both decrease (label cardinality decreasing)

pj,k changes relative to pjpk (change in marginal
dependence relation between the labels)



Multi-label Concept Drift

And when conditioned on input x, we consider the relative
frequencies/values of the j-th and k-th errors:[

εj εj,k

εk

]
(if conditional independence, then εj,k ≈ εj · εk).

Possible drift:

εj increases (more errors on j-th label)

εj and εk both increase (more errors)

εj,k changes relative to εj , εk (change in conditional
dependence relation)



Example

Recall the distribution of errors
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This shape may change over time – and structures may need
to be adjusted to cope



Dealing with Concept Drift

Possible approaches

Just ignore it – batch models must be replaced anyway,
kNN and SGD adapt; in other cases can use weighted
ensembles/fading factor

Monitor a predictive performance statistic with a change
detector (e.g., window based-detection, ADWIN) and
reset models

Monitor the distribution with a change detector (e.g.,
window based, KL divergence) and reset/recalibrate
models

(similar to single-labelled data, except more complex
measurement)



Dealing with Unlabelled
Instances

Ignore instances with no label

Use active learning to get good labels

Use predicted labels (self-training)

Use an unsupervised process for example clustering,
latent-variable representations.



Dealing with Unlabelled
Instances

Use an unsupervised process for example clustering,
latent-variable representations.

1 zt = g(xt )
2 ŷt = h(zt )
3 update g with (xt , zt )
4 update h with (zt−1, yt−1) (if yt−1 is available)

yt−1

update(·,·)

ŷtOO
predict(·)

zt−1 ztOO
propagate(·)update(·,·)

xt

Can also be as one single model



Summary

Multi-label classification is an active area of research,
relevant to many real-world problems

Methods that deal appropriately wiith label dependence
can achieve significant gains over a naive approach

Many multi-label problems come in the form of a data
stream, incurring particular challenges
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