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Part I: A Short Introduction to Parcimony
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Early thoughts

(a) Dorothy Wrinch
1894–1980

(b) Harold Jeffreys
1891–1989

The existence of simple laws is, then, apparently, to be
regarded as a quality of nature; and accordingly we may infer
that it is justifiable to prefer a simple law to a more complex
one that fits our observations slightly better.

[Wrinch and Jeffreys, 1921]. Philosophical Magazine Series.
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Historical overview of parsimony

14th century: Ockham’s razor;

1921: Wrinch and Jeffreys’ simplicity principle;

1952: Markowitz’s portfolio selection;

60 and 70’s: best subset selection in statistics;

70’s: use of the ℓ1-norm for signal recovery in geophysics;

90’s: wavelet thresholding in signal processing;

1996: Olshausen and Field’s dictionary learning;

1996–1999: Lasso (statistics) and basis pursuit (signal processing);

2006: compressed sensing (signal processing) and Lasso consistency
(statistics);

2006–now: applications of dictionary learning in various
scientific fields such as image processing and computer vision.
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The modern parsimony and the ℓ1-norm
Sparse linear models in signal processing

Let x in R
n be a signal.

Let D = [d1, . . . ,dp] ∈ R
n×p be a set of

elementary signals.
We call it dictionary.

D is “adapted” to x if it can represent it with a few elements—that is,
there exists a sparse vector α in R

p such that x ≈ Dα. We call α the
sparse code.



x





︸ ︷︷ ︸

x∈Rn

≈



 d1 d2 · · · dp





︸ ︷︷ ︸

D∈Rn×p








α[1]
α[2]
...

α[p]








︸ ︷︷ ︸

α∈Rp
,sparse
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The modern parsimony and the ℓ1-norm
Sparse linear models in signal processing

How do we find α?

We try to solve the sparse approximation problem

min
α∈Rp

‖x−Dα‖22 s.t. ‖α‖0 ≤ k ,

but...
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The modern parsimony and the ℓ1-norm
Sparse linear models in signal processing

How do we find α?

We try to solve the sparse approximation problem

min
α∈Rp

‖x−Dα‖22 s.t. ‖α‖0 ≤ k ,

but... the problem is NP-hard [Natarajan, 1995].

Strategy 1: try anyway

use greedy algorithm to find an approximate solution.

Strategy 2: use a convex relaxation

replace ℓ0 by ℓ1.
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The modern parsimony and the ℓ1-norm
Sparse linear models: machine learning/statistics point of view

Let (yi , xi )
n
i=1 be a training set, where the vectors xi are in R

p and are
called features. The scalars yi are in

{−1,+1} for binary classification problems.

R for regression problems.

We assume there exists a relation y ≈ β⊤x, and solve

min
β∈Rp

1

n

n∑

i=1

L(yi ,β
⊤xi )

︸ ︷︷ ︸

empirical risk

+ λψ(β)
︸ ︷︷ ︸

regularization

.

Julien Mairal Sparse Estimation for Image and Vision Processing 8/82



The modern parsimony and the ℓ1-norm
Sparse linear models: machine learning/statistics point of view

A few examples:

Ridge regression: min
β∈Rp

1

n

n∑

i=1

1

2
(yi − β⊤xi )

2 + λ‖β‖22.

Linear SVM: min
β∈Rp

1

n

n∑

i=1

max(0, 1− yiβ
⊤xi ) + λ‖β‖22.

Logistic regression: min
β∈Rp

1

n

n∑

i=1

log
(

1 + e−yiβ
⊤xi

)

+ λ‖β‖22.
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The modern parsimony and the ℓ1-norm
Sparse linear models: machine learning/statistics point of view

A few examples:

Ridge regression: min
β∈Rp

1

n

n∑

i=1

1

2
(yi − β⊤xi )

2 + λ‖β‖22.

Linear SVM: min
β∈Rp

1

n

n∑

i=1

max(0, 1− yiβ
⊤xi ) + λ‖β‖22.

Logistic regression: min
β∈Rp

1

n

n∑

i=1

log
(

1 + e−yiβ
⊤xi

)

+ λ‖β‖22.

The squared ℓ2-norm induces “smoothness” in β. When one knows in
advance that β should be sparse, one should use a sparsity-inducing
regularization such as the ℓ1-norm. [Chen et al., 1999, Tibshirani, 1996]
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The modern parsimony and the ℓ1-norm

Originally used to induce sparsity in geophysics [Claerbout and Muir,
1973, Taylor et al., 1979], the ℓ1-norm became popular in statistics with
the Lasso [Tibshirani, 1996] and in signal processing with the Basis
pursuit [Chen et al., 1999].

Three “equivalent” formulations

1

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1;

2

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖1 ≤ µ;

3

min
α∈Rp

‖α‖1 s.t. ‖x−Dα‖22 ≤ ε.
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The modern parsimony and the ℓ1-norm

And some variants...

For noiseless problems

min
α∈Rp

‖α‖1 s.t. x = Dα.

Beyond least squares

min
α∈Rp

f (α) + λ‖α‖1,

where f : Rp → R is convex.
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The modern parsimony and the ℓ1-norm

And some variants...

For noiseless problems

min
α∈Rp

‖α‖1 s.t. x = Dα.

Beyond least squares

min
α∈Rp

f (α) + λ‖α‖1,

where f : Rp → R is convex.

An important question remains:

why does the ℓ1-norm induce sparsity?
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The modern parsimony and the ℓ1-norm

Why does the ℓ1-norm induce sparsity?

Can we get some intuition from the simplest isotropic case?

α̂(λ) = argmin
α∈Rp

1

2
‖x−α‖22 + λ‖α‖1,

or equivalently the Euclidean projection onto the ℓ1-ball?

α̃(µ) = argmin
α∈Rp

1

2
‖x−α‖22 s.t. ‖α‖1 ≤ µ.

“equivalent” means that for all λ > 0, there exists µ ≥ 0 such that
α̃(µ) = α̂(λ).
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The modern parsimony and the ℓ1-norm

Why does the ℓ1-norm induce sparsity?

Can we get some intuition from the simplest isotropic case?

α̂(λ) = argmin
α∈Rp

1

2
‖x−α‖22 + λ‖α‖1,

or equivalently the Euclidean projection onto the ℓ1-ball?

α̃(µ) = argmin
α∈Rp

1

2
‖x−α‖22 s.t. ‖α‖1 ≤ µ.

“equivalent” means that for all λ > 0, there exists µ ≥ 0 such that
α̃(µ) = α̂(λ).
The relation between µ and λ is unknown a priori.
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Why does the ℓ1-norm induce sparsity?
Regularizing with the ℓ1-norm

ℓ1-ball

‖α‖1 ≤ µ

α[2]

α[1]

The projection onto a convex set is “biased” towards singularities.
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Why does the ℓ1-norm induce sparsity?
Regularizing with the ℓ2-norm

α[2]

α[1]
ℓ2-ball

‖α‖2 ≤ µ

The ℓ2-norm is isotropic.
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Why does the ℓ1-norm induce sparsity?
In 3D. (images produced by G. Obozinski)
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Why does the ℓ1-norm induce sparsity?
Regularizing with the ℓ∞-norm

α[2]

α[1]
ℓ∞-ball

‖α‖∞ ≤ µ

The ℓ∞-norm encourages |α[1]| = |α[2]|.
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Why does the ℓ1-norm induce sparsity?
Analytical point of view: 1D case

min
α∈R

1

2
(x − α)2 + λ|α|

Piecewise quadratic function with a kink at zero.

Derivative at 0+: g+ = −x + λ and 0−: g− = −x − λ.

Optimality conditions. α is optimal iff:

|α| > 0 and (x − α) + λ sign(α) = 0

α = 0 and g+ ≥ 0 and g− ≤ 0

The solution is a soft-thresholding:

α⋆ = sign(x)(|x | − λ)+.
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Why does the ℓ1-norm induce sparsity?
Analytical point of view: 1D case

β

αst

λ

−λ

(c) Soft-thresholding operator,
αst = sign(β)max(|β| − λ, 0).

β

αht

µ

−µ

(d) Hard-thresholding operator
αht = δ|β|≥µβ.
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Why does the ℓ1-norm induce sparsity?
Comparison with ℓ2-regularization in 1D

ψ(α) = α2

ψ′(α) = 2α

ψ(α) = |α|

ψ′
−(α) = −1, ψ′

+(α) = 1

The gradient of the ℓ2-penalty vanishes when α get close to 0. On its
differentiable part, the norm of the gradient of the ℓ1-norm is constant.
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Why does the ℓ1-norm induce sparsity?
Physical illustration

E1 = 0 E1 = 0

x
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Why does the ℓ1-norm induce sparsity?
Physical illustration

E1 =
k1
2 (x − α)2

E2 =
k2
2 α

2 α

α

E1 =
k1
2 (x − α)2

E2 = mgα
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Why does the ℓ1-norm induce sparsity?
Physical illustration

E1 =
k1
2 (x − α)2

E2 =
k2
2 α

2 α

α = 0 !!

E1 =
k1
2 (x − α)2

E2 = mgα
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Non-convex sparsity-inducing penalties

(e) ℓ0.5-ball, 2-D (f) ℓ1-ball, 2-D (g) ℓ2-ball, 2-D

Figure: Open balls in 2-D corresponding to several ℓq-norms and pseudo-norms.

‖α‖qq =

p
∑

j=1

|α[j ]|q.

Julien Mairal Sparse Estimation for Image and Vision Processing 22/82



Non-convex sparsity-inducing penalties

α[2]

α[1]
ℓq-ball

‖α‖q ≤ µ with q < 1
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Elastic-net

The elastic net introduced by [Zou and Hastie, 2005]

ψ(α) = ‖α‖1 + γ‖α‖22,

The penalty provides more stable (but less sparse) solutions.

(a) ℓ1-ball, 2-D (b) elastic-net, 2-D (c) ℓ2-ball, 2-D
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The elastic-net
vs other penalties

α[2]

α[1]
ℓq-ball

‖α‖q ≤ µ with q < 1
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The elastic-net
vs other penalties

ℓ1-ball

‖α‖1 ≤ µ

α[2]

α[1]
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The elastic-net
vs other penalties

elastic-net

ball

(1− γ)‖α‖1 + γ‖α‖22 ≤ µ

α[2]

α[1]
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The elastic-net
vs other penalties

α[2]

α[1]
ℓ2-ball

‖α‖22 ≤ µ
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Structured sparsity
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Structured sparsity
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Part II: Discovering the structure of
natural images
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Dictionary learning

Neuroscientists were the first to automatically learn local structures in
natural images.

The model of Olshausen and Field [1996] looks for a dictionary D
adapted to a training set of natural image patches xi , i = 1, . . . , n:

min
D∈C,A∈Rp×n

1

n

n∑

i=1

‖xi −Dαi‖22 + λψ(αi ),

where A = [α1, . . . ,αn] and C △
= {D ∈ R

m×p : ∀ j , ‖dj‖2 ≤ 1}.

Typical settings

n ≈ 100 000;

m = 10× 10 pixels;

p = 256.
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Dictionary learning

Figure: with centering
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Dictionary learning

Figure: with whitening

Julien Mairal Sparse Estimation for Image and Vision Processing 31/82



Dictionary learning

Why was it found impressive by neuroscientists?

since Hubel and Wiesel [1968], it is known that some visual neurons
are responding to particular image features, such as oriented edges.

Later, Daugman [1985] demonstrated that fitting a linear model to
neuronal responses given a visual stimuli may produce filters that
can be well approximated by a two-dimensional Gabor function.

the original motivation of Olshausen and Field [1996] was to
establish a relation between the statistical structure of natural
images and the properties of neurons from area V1.

The results provided some “support” for classical models of V1 based on
Gabor filters.
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Dictionary learning

Why was it found impressive by neuroscientists?

since Hubel and Wiesel [1968], it is known that some visual neurons
are responding to particular image features, such as oriented edges.

Later, Daugman [1985] demonstrated that fitting a linear model to
neuronal responses given a visual stimuli may produce filters that
can be well approximated by a two-dimensional Gabor function.

the original motivation of Olshausen and Field [1996] was to
establish a relation between the statistical structure of natural
images and the properties of neurons from area V1.

Warning

In fact, little is known about the early visual cortex [Olshausen and
Field, 2005, Carandini et al., 2005].
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Dictionary learning
Point of views

Matrix factorization

It is useful to see dictionary learning as a matrix factorization problem

min
D∈C,A∈Rp×n

1

2n
‖X−DA‖2F + λΨ(A).

This is simply a matter of notation:

min
D∈C,A∈Rp×n

1

n

n∑

i=1

‖xi −Dαi‖22 + λψ(αi ),

but the matrix factorization point of view allows us to make connections
with numerous other unsupervised learning techniques, such as K-means,
PCA, NMF, ICA...

Julien Mairal Sparse Estimation for Image and Vision Processing 33/82



Dictionary learning
Constrained variants

The formulations below are not equivalent

min
D∈C,A∈Rp×n

n∑

i=1

1

2
‖xi −Dαi‖22 s.t. ψ(αi ) ≤ µ.

or

min
D∈C,A∈Rp×n

n∑

i=1

ψ(αi ) s.t. ‖xi −Dαi‖22 ≤ ε.

Using one instead of another depends on the problem at hand.
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Pre-processing of natural image patches
Centering (also called removing the DC component)

xi ← xi −




1

m

m∑

j=1

xi [j ]



 1m,

(a) Without pre-processing. (b) After centering.
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Pre-processing of natural image patches
Contrast (variance) normalization

xi ←
1

max(‖xi‖2, η)
xi .

ex: η can be 0.2 times the mean value of the ‖xi‖2.

(a) After centering. (b) After contrast normalization.
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Pre-processing of natural image patches
Whitening after centering

xi ← US†U⊤xi ,

where (1/
√
n)X = USV⊤ (SVD). Sometimes, small singular values are

also set to zero. The resulting covariance (1/n)XX⊤ is close to identity.

(a) After centering. (b) After whitening.
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Dictionary learning on color image patches

(c) With centering - RGB. (d) With whitening - RGB.

Figure: Dictionaries learned on RGB patches.
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Dictionary learning with structured sparsity
Hierarchical dictionary learning

(a) Tree structure 1. (b) Tree structure 2.

Figure: Hierarchical dictionaries learned on natural image patches of
size 16× 16 pixels.
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Dictionary learning with structured sparsity
Topographic dictionary learning

(a) With 3× 3 neighborhoods. (b) With 4× 4 neighborhood.

Figure: Topographic dictionaries learned on whitened natural image patches of
size 12× 12 pixels.
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Part III: Sparse models for image processing
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Image denoising

y
︸︷︷︸

measurements

= xorig
︸︷︷︸

original image

+ w︸︷︷︸
noise
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Image denoising
Classical image models

y
︸︷︷︸

measurements

= xorig
︸︷︷︸

original image

+ w
︸︷︷︸

noise

.

Energy minimization problem - MAP estimation

E (x) =
1

2
‖y − x‖22

︸ ︷︷ ︸

relation to measurements

+ ψ(x)
︸︷︷︸

image model

.

Some classical priors

Smoothness λ‖Lx‖22;
total variation λ‖∇x‖21 [Rudin et al., 1992];

Markov random fields [Zhu and Mumford, 1997];

wavelet sparsity λ‖Wx‖1.
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Image denoising
The method of Elad and Aharon [2006]

Given a fixed dictionary D, a patch yi is denoised as follows:

1 center yi ,

yci
△
= yi − µi1m with µi

△
=

1

n
1⊤myi ;

2 find a sparse linear combination of dictionary elements that
approximates yci up to the noise level:

min
αi∈Rp

‖αi‖0 s.t. ‖yci −Dαi‖22 ≤ ε, (1)

where ε is proportional to the noise variance σ2;

3 add back the mean component to obtain the clean estimate x̂i :

x̂i
△
= Dα⋆

i + µi1m,
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Image denoising
The method of Elad and Aharon [2006]

An adaptive approach

1 extract all overlapping
√
m ×√m patches yi .

2 dictionary learning: learn D on the set of centered noisy
patches [yc1, . . . , y

c
n].

3 final reconstruction: find an estimate x̂i for every patch using the
approach of the previous slide;

4 patch averaging:

x̂ =
1

m

n∑

i=1

R⊤
i x̂i ,

Remark

Like other state-of-the-art denoising approaches, it is patch-based
[Buades et al., 2005, Dabov et al., 2007].
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Practical tricks

use larger patches when the noise level is high;

choose ε = m(1.15σ)2 or take the 0.9-quantile of
the χ2

m-distribution.

always use the ℓ0 regularization for the final reconstruction;

using ℓ1 for learning the dictionary seems to yield better results.
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Image inpainting
[Mairal et al., 2008a,b]

For removing small holes in the image, a natural extension consists in
introducing a binary mask Mi in the formulation:

min
D∈C,A∈Rp×n

1

n

n∑

i=1

1

2
‖Mi (yi −Dαi )‖22 + λψ(αi ),

The approach assumes that

the noise is not structured;

the holes are smaller than the patch size.

The problem is called inpainting [Bertalmio et al., 2000].
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Image inpainting
[Mairal et al., 2008a,b]
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Image inpainting
[Mairal et al., 2008a,b]
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Image inpainting
[Mairal et al., 2008a,b]
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Image inpainting
Inpainting a 12-Mpixel photograph [Mairal et al., 2009a]
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Image inpainting
Inpainting a 12-Mpixel photograph [Mairal et al., 2009a]
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Image inpainting
Inpainting a 12-Mpixel photograph [Mairal et al., 2009a]
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Image inpainting
Inpainting a 12-Mpixel photograph [Mairal et al., 2009a]
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Image demoisaicking
RAW Image Processing

G R G R G R

GB GB GB

G R G R G R

GB GB GB

G R G R G R

GB GB GB

White
balance.
Black

substraction.
Denoising

Demosaicking

Conversion
to sRGB.
Gamma

correction.

Problem

The noise pattern is very structured: the previous inpainting scheme
needs to be modified [Mairal et al., 2008a].
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Image demoisaicking

(a) Mosaicked image (b) Demosaicked image A (c) Demosaicked image B

Figure: Demosaicked image A is with the approach previously described; image
B is with an extension called non-local sparse model [Mairal et al., 2009b].
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Image demoisaicking

(a) Zoom (b) Zoom (c) Zoom

Figure: Demosaicked image A is with the approach previously described; image
B is with an extension called non-local sparse model [Mairal et al., 2009b].
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Video processing

Extension developed by Protter and Elad [2009]:

Key ideas for video processing

Using a 3D dictionary.

Processing of many frames at the same time.

Dictionary propagation.
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Video processing
Inpainting, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Inpainting, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Inpainting, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Inpainting, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Inpainting, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Color video denoising, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Color video denoising, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Color video denoising, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Color video denoising, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Color video denoising, [Mairal et al., 2008b]

Figure: Inpainting results.
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]

Figure: Original
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]

Figure: Binary image
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Figure: Reconstructed.
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Figure: Reconstructed.

Julien Mairal Sparse Estimation for Image and Vision Processing 60/82



Inverting nonlinear local transformations
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Other patch modeling approaches

Non-local means and non-parametric approaches

Image pixels are well explained by a Nadaraya-Watson estimator:

x̂[i ] =
n∑

j=1

Kh(yi − yj)
∑n

l=1 Kh(yi − yl)
y[j ], (2)

with successful application to

texture synthesis: [Efros and Leung, 1999]

image denoising (Non-local means): [Buades et al., 2005]

image demosaicking: [Buades et al., 2009].
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Other patch modeling approaches

BM3D

state-of-the-art image denoising approach [Dabov et al., 2007]:

block matching: for each patch, find similar ones in the image;

3D wavelet filtering: denoise blocks of patches with 3D-DCT;

patch averaging: average estimates of overlapping patches;

second step with Wiener filtering: use the first estimate to
perform again and improve the previous steps.

Further refined by Dabov et al. [2009] with shape-adaptive patches and
PCA filtering.
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Other patch modeling approaches

Non-local sparse models [Mairal et al., 2009b]

Exploit some ideas of BM3D to combine the non-local means principle
with dictionary learning.

The main idea is that similar patches should admit similar
decompositions by using group sparsity:

The approach uses a block matching/clustering step, followed by group
sparse coding and patch averaging.
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Other patch modeling approaches
Non-local sparse image models
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Other patch modeling approaches
Non-local sparse image models
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Part IV: Optimization for sparse estimation
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0, 0)
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0, 0.75)
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0.24, 0.75)
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0.24, 0.65)
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993]

min
α∈Rp

‖ x−Dα
︸ ︷︷ ︸

r

‖22 s.t. ‖α‖0 ≤ k .

1: α← 0
2: r← x (residual).
3: while ‖α‖0 < k do
4: Select the predictor with maximum inner-product with the residual

̂← argmax
j=1,...,p

|d⊤j r|

5: Update the residual and the coefficients

α[̂] ← α[̂] + d⊤
̂
r

r ← r − (d⊤
̂
r)d̂

6: end while
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993]

Remarks

Matching pursuit is a coordinate descent algorithm. It greedily
selects one coordinate at a time and optimizes the cost function
with respect to that coordinate.

α[̂]← argmin
α∈R

∥
∥
∥
∥
∥
∥

x−
∑

l 6=̂

α[l ]dl − αd̂

∥
∥
∥
∥
∥
∥

2

2

.

Each coordinate can be selected several times during the process.

The roots of this algorithm can be found in the statistics
literature [Efroymson, 1960].
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993] α = (0, 0, 0)
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993] α = (0, 0, 0.75)
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993] α = (0, 0.29, 0.63)
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993]

min
α∈Rp

‖x−Dα‖22 s.t. ‖α‖0 ≤ k

1: Γ = ∅.
2: for iter = 1, . . . , k do
3: Select the variable that most reduces the objective

(̂, β̂)← argmin
j∈Γ∁,β

‖x−DΓ∪{j}β‖22.

4: Update the active set: Γ← Γ ∪ {̂}.
5: Update the coefficients:

α[Γ]← β and α[Γ∁]← 0.

6: end for

Julien Mairal Sparse Estimation for Image and Vision Processing 75/82



Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993]

Remarks

this is an active-set algorithm.

when a new variable is selected, the coefficients for the full set Γ are
re-optimized:

α[Γ] = (D⊤
Γ DΓ)

−1D⊤
Γ x,

and the residual is always orthogonal to the matrix DΓ of previously
selected dictionary elements:

D⊤
Γ (x−Dα) = D⊤

Γ (x−DΓα[Γ]) = 0.

several variants of OMP exist regarding the selection rule of ̂. The
one we use appears in Cotter et al. [1999].
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993]

Keys for a fast implementation

If available, use the Gram matrix G = D⊤D;

Maintain the computation of D⊤(x−Dα),

Update the Cholesky decomposition of (D⊤
Γ DΓ)

−1.

The total complexity for decomposing n k-sparse signals of size m with a
dictionary of size p is

O(p2m)
︸ ︷︷ ︸

Gram matrix

+O(nk3)
︸ ︷︷ ︸

Cholesky

+O(n(pm + pk2))
︸ ︷︷ ︸

D⊤(x−Dα)

= O(np(m + k2))

It is also possible to use the matrix inversion lemma instead of a
Cholesky decomposition.
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993]

Example with the software SPAMS

Software available at http://spams-devel.gforge.inria.fr/.

>> I=double(imread(’data/lena.eps’))/255;

>> %extract all patches of I

>> X=im2col(I,[8 8],’sliding’);

>> %load a dictionary of size 64 x 256

>> D=load(’dict.mat’);

>>

>> %set the sparsity parameter L to 10

>> param.L=10;

>> alpha=mexOMP(X,D,param);

On this dual-core laptop: 150000 signals processed per second!
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Sparse reconstruction with the ℓ1-norm
Coordinate descent for the Lasso [Fu, 1998]

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1.

The coordinate descent method consists of iteratively fixing all variables
and optimizing with respect to one:

α[j ]← argmin
α∈R

1

2
‖ x−

∑

l 6=j

α[l ]dl

︸ ︷︷ ︸

r

−αdj‖22 + λ|α|.

Assume the columns of D to have unit ℓ2-norm,

αj ← sign(d⊤j r)(|d⊤j r| − λ)+

This involves again the soft-thresholding operator.
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Optimization for Dictionary Learning

min
α∈Rp×n

D∈C

n∑

i=1

1

2
‖xi −Dαi‖22 + λψ(αi )

C △
= {D ∈ R

m×p s.t. ∀j = 1, . . . , p, ‖dj‖2 ≤ 1}.

Classical approach

Alternate minimization between D and α (MOD with ψ = ℓ0
[Engan et al., 1999], K-SVD with ψ = ℓ0 [Aharon et al., 2006], [Lee
et al., 2007] with ψ = ℓ1);

good results, reliable, but can be slow when n is large!
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Conclusion

What we have seen:

why the ℓ1-norm induce sparsity (part I);

the classical dictionary learning formulations on natural image
patches (part II);

a few applications to image restoration (part III);

a few algorithms (part IV).
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Conclusion

What we have NOT seen:

structured sparsity, theory of sparse estimation.

other matrix factorization formulations;

applications in computer vision;

many algorithms including stochastic optimization for dictionary
learning.
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