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Saso’s first slide at the opening talk was 

Data Mining: Prediction 
The Statistical point of view: Prediction and Inference 

 

Inference:  

How close the model is the true always-unknown one. 

Is it real? tests 

How big? Estimate size 

How far from the true value? Confidence intervals 
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Steel and Torrie (1960) bring from Erdman (1946): 

6 groups of red clover plants, each inoculated with a 

different strain of Rhizobium bacteria.  

5 measurements of Nitrogen content on each group ( 

the standard textbook/manuals example) 
         Yi+ ~ N(µι,σ2/5)             i=1,2,…,6;  

Interest in comparing strain effects 
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• Estimates          Yi+ -Yj+ 

• Test the significance of the difference, with H0: µι = µj   

  via two-sample normal tests or t-tests 

• Can do it by p-values 

            P-value =ProbH0 ( |Z | > |Y(i+) -Y(j+) |/ σdiff)  

            under H0  P-value ~U(0,1).  

• To reject H0 with the probability of type I error  ≤ α  

(make a discovery with prob. to make a false discovery ≤ α)  

            Reject if P-value ≤ α. 
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• Suppose we select the most promising groups’ difference    
  Y(k+) -Y(1+) 

• With the  such tests, each at level α 

 Prob( Z> |Y(k+) -Y(1+) |/ σdiff ) < α  

  even if there is no difference.  The larger k the worse it gets! 

• In fact going back to the original paper we found  13 such 
groups resulting in  pairwise comparisons. With 
the limiting computing power of the 40s a large scale 
inference problem was encountered.  

The multiple comparisons problem (procedures)  MCP  
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Scientists study rumours: 
Eating coloured jelly 
beans causes Acne 

xkcdSignificant.webarchive 
 



 “Unussual secrets are hidden in numbers. for 

instance, an orange car is less likely to have 

serious damages that are discovered only after 

the purchase….” 
 

 

Data mining from KAGGLE website 

THE MARKER IT    2.5.2012   
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Giovanni and others (95) examined the possible effect of excess 
eating of 130 different kinds of foods on prostate cancer.  

3 kinds of foods cleared the statistical significance bar –  

    these are the only ones reported in the article’s abstract.  
 

Eat ketchup and pizza to prevent prostate cancer 
 
In the article itself all 130 results are reported but the abstract is 

usually the only information that passes on to the public – even 
to the professionals. 

 
    Selection by the abstract phenomenon 
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In the meanwhile the paper was cited over 1000 times. 
Dozens of studies about the contribution of tomatoes to the 
 heeling of different types of cancers with unclear results. 
A recent study, claims the secret is in the Oregano.  

Selective inference 



1. The null hypotheses tested: H1,H2,…,Hm. 
  
m0 of the m hypotheses tested are true, 
we do not know which ones are true or even their number  
 
2. The result of any testing procedure is Ri i=1,2,…,m: 
  Ri= 1  if Hi is rejected;   
     = 0  if not  
 Let    Vi = 1  if Ri=1 but Hi is true (a type I error was made) 
      = 0  otherwise 
 
3.    R=ΣRi     # hypotheses rejected; 
     V= ΣVi    # hypotheses rejected in error 
 
So, e.g. 
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• FamilyWise Error-Rate 

For any configuration of true and null hypotheses 
  
               FWER =Prob(V ≥ 1) 
 
Thus by assuring FWER ≤ α, the probability of making 

even one type I error in the family, is controlled at level α:  
 
Simultaneous Inference: all inference made are jointly 

correct up to the pre-specified error 
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Estimate m parameters by a confidence interval for each. 

Define  

V = # of intervals failing to cover their respective parameter. 

If for any configuration of parameters 

                   FWER =Prob(V ≥ 1) ≤ α 

the set of such intervals is said to offer  

  Simultaneous Coverage at level 1-α 
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If we test each hypothesis separately at level αBON 
 
       E(V)=E(ΣVi) = Σ E(Vi) ≤ m0 αBON ≤ m αBON 
 
So to assure E(V)≤α we may use  
 
  (Is any condition needed? ) 
This is 
 

that controls any configuration  of hypotheses  
      Expected number of errors  E(V)     ≤ α 
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  for pairwise comparisons:  
 Utilizes dependency by calculating  the distribution of the 

studentized range statistics  ( Y(k+) -Y(1+) )/(s/n1/2), 
   
   Known as post-hoc analysis 
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• Let Pi be the observed p-value of the test for Hi   

• Order the p-values   P(1) ≤ P(2) ≤…≤ P(m) 
 
• If P(1) ≤ α/m       Reject H(1)  
• If P(2) ≤ α/(m-1) Reject H(2)  

      … 
• Until for the first time P(k) > α/(m+1-k)  

 
• Then stop and reject no more. 
                  
    Always: FWER ≤ α  
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Behavioral Endpoint Mixed 
Prop. Lingering Time 0.0029 
# Progression segments 0.0068 
Median Turn Radius (scaled) 0.0092 
Time away from wall 0.0108 
Distance traveled 0.0144 
Acceleration 0.0146 
# Excursions 0.0178 
Time to half max speed 0.0204 
Max speed wall segments 0.0257 
Median Turn rate 0.0320 
Spatial spread 0.0388 
Lingering mean speed 0.0588 
Homebase occupancy 0.0712 
# stops per excursion 0.1202 
Stop diversity 0.1489 
Length of progression segments 0.5150 
Activity decrease 0.8875 

 Significance of 8 Strain differences 

Bonferroni 
.05/17=.0029 

Unadjusted 
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 In the search for food affecting Prostate Cancer, 
 
 3 food intakes were reducing with unadjusted significance 
 0     with Bonferroni. 
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    (Stein et al.’10) 

• Alzheimer's Disease Neuroimaging Initiative (ADNI) 
study: 2003-2008 

• Goal: determine biological markers of  
Alzheimer’s disease by testing for associations 
between volume changes at voxels with genotype 
 

YB 20 



YB 

32,000 1 Voxels searched 

1 

448,000 

SNPs 

  

number of tests ~ 13,000,000,000 
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In these large problems: 
 
• The selected are presented, highlighted, discussed. 
 Their strength is displayed (p-values) 
  The effect estimated 
 
• Those inferences that are not selected are simply ignored: 
 There are so many of them that even their identities   
 are not reported, needless to say further details 
 about the results of the inference for each 
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Tukey (1978): one should always control the FWER 
 
Tukey et al (‘94,2000): National assessment of 

Educational Progress , comparing 35 States in US 
 
        # of comparisons 35*(35-1)/2 = 595 
 
There was a debate how to report results:  
   with pairwise adjustment or without.  
Their solution 
   
  Use the False Discovery Rate (FDR) approach 
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1. Simultaneous and Selective inference  
2. Testing with FDR control   
3. False Coverage Rate 
4. Estimation and Model Selection   

  
5. More complex  families  
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                                                        Benjamini and Hochberg (89, 95)  

R = # rejected hypotheses =  # discoveries  

V of these may be in error = # false discoveries 

The error (type I) in the entire study is measured by 
 

i.e. the proportion of false discoveries among the 
discoveries (0 if none found) 

FDR = E(Q) 

Does it make sense? 
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Y Benjamini 

• Inspecting 100 features: 

2 false ones among 50 discovered - bearable 

2 false ones among 4 discovered - unbearable 

So this error rate is adaptive 

• The same argument holds when inspecting 10,000 

So this error rate is scalable 

• If nothing is “real” controlling the FDR at level q 
guarantees  

  Prob( V ≥ 1 ) = E( V/R ) = FDR ≤ q  

• But otherwise 

  Prob( V ≥ 1 ) ≥ FDR 

 So there is room for improving detection power 
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• Simultaneous inference: inference should hold jointly for 
all parameters in the family, and therefore jointly for any 
sub-family 
 

• Selective inference: Inference should hold for the selected 
parameters the same way it holds for each parameter 
separately 
 

 “on the average over the selected” 
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• Instead of ignoring multiplicity, which still offers ‘control’ on 
the average, 
 

 

• FDR control assures 
 

 
• The above is hindsight.  Our original motivation was a 

paper by Soric (’89)  arguing that “most research 
discoveries might be false” when using 0.05 level testing. 

• (See Ioannidis ’05 famous paper) 
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The BH (Linear Step-up )procedure: 
Let Pi be the observed p-value of the test for Hi  

    
• Order the p-values   P(1) ≤ P(2) ≤…≤ P(m) 
• Let  

 
• Reject   
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Behavioral Endpoint Mixed Linear StepUp 
Prop. Lingering Time 0.0029 0.0029 =.05(1/17) 
# Progression segments 0.0068 0.0058 =.05(2/17) 
Median Turn Radius (scaled) 0.0092 0.0088 =.05(3/17) 
Time away from wall 0.0108 0.0117 =.05(4/17) 
Distance traveled 0.0144 0.0147 =.05(5/17) 
Acceleration 0.0146 0.0176 =.05(6/17) 
# Excursions 0.0178 0.0205 =.05(7/17) 
Time to half max speed 0.0204 0.0235 =.05(8/17) 
Max speed wall segments 0.0257 ) 
Median Turn rate 0.0320 0.0294 =.05(10/17) 
Spatial spread 0.0388 0.0323 =.05(11/17) 
Lingering mean speed 0.0588 0.0352 =.05(12/17) 
Homebase occupancy 0.0712 0.0382 =.05(13/17) 
# stops per excursion 0.1202 0.0411 =.05(14/17) 
Stop diversity 0.1489 0.0441=.05(15/17) 
Length of progression segments 0.5150 0.0470=.05(16/17) 
Activity decrease 0.8875 0.05    =.05(17/17) 

Significance of 8 Strain  
31 
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            Westfall and Young (‘98), Storey (‘03) 

• Order the p-values   P(1) ≤ P(2) ≤…≤ P(m) 
• Let  

 
       or 
 

 
• Define BH adjusted p-values, called q-values 

 
 

• Reject H(i)     
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If the test statistics are : 
• Independent                                 

• independent and continuous        

• Positive dependent     

• General                 

 
  
 
 
YB&Hochberg (‘95). YB&Yekutieli (‘01) 
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• Important cases covered by PRDS 
• Multivariate Normal with positive correlation 
• Absolute Studentized independent normal 
• (Studentized PRDS distribution, for q<.5) 
• Monotone latent variable X | U=u  ind. and co-

monotone in u         
• Important cases not covered by theory 

• Absolute (studentized) correlated normals 
• Pairwise comparisons 

• But by practice   
 (i.e. simulations, partial theoretical results) 
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• Recall the m0/m (=p0) factor of conservativeness 
• Hence: if m0 is known, the BH procedure  
  with q i/ m(m/m0) = q i/ m0 controls the FDR at q exactly  
    i.e. an “FDR Oracle” 
• The adaptive procedure  

Estimate m0 (or p0) from the p-values  
 
Schweder&Spjotvol (‘86), Hochberg&BY (‘90), BY&Hochberg (‘00) 
Storey (‘03)… 

Y Benjamini 36 
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m0 
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Holm: Starting with p(1), Compare p(i) ≤ α/(m+1-i);  
step to higher p-value reducing the size of the family by 1. 

Stop with first non-rejection.  
Multi-stage: Starting with p(1), compare p(i) to q i/(m+1-i(1-q)); 
 step to higher p-value reducing the size of the family by  1-q. 

Stop with first non-rejection.  
 
 

Y Benjamini 38 



 The step-down Multiple Stage procedure:  

 FDR controlling properties Gavrilov et al (‘10) 
Asymptotic Optimality Shown Finner et al (‘10) 
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• Started with Tusher et al (2001) in the context of gene 
expression analysis . Thresholding significance at a 

• Storey (2012)     pFDR(a) =E(V(a)/R(a) | R(a) >0) 

    =FDR(a)/Pr(R(a)>0) ~ FDR 

• Efron (’01),… until ‘Large Scale Inference’ Book (‘10) 

            Fdr(a) =E(V(a))/E(R(a)) ~ FDR ~ pFDR 

    and the local FDR fdr(x) =p0f0(x)/f(x) 

    =p0f0(x)/ (p0f0(x)+p1f1(x)) 

and estimating p0 , f(x) and even f0(x) makes it ‘empirical. 

A well developed methodology addressing same goals. 
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• The approaches we have described take all hypotheses 
on equal footing 

• Weighted procedures make distinctions, hypothesis Hi 
receives weight ωι ,  Σ ωι =m, reflecting 

• (a) Its importance                                      YB & Hochberg (‘98) 

 wFDR =E(ΣωιVi ) / (ΣωιRi ) ) 
   it allows to assign monetary to decisions. Or, 
• (b) The advantage it gets          Genovese & Wasserman (‘06) 

                pi*=pi/ωι       
             FDR defined, and tested, as before 
• Both are underutilized 
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Y Benjamini 

• Marginal (standard) 95% Confidence Interval (CI) offers: 

  Pr(the marginal interval covers its parameter) = 0.95 

or equivalently 

  Pr(the marginal interval fails to cover its parameter) = 0.05 

• With many such intervals 

      Pr(some intervals fail to cover) > 0.05, 

 using Simultaneous CIs, (e.g. Bonferroni), assures ≤0.05 

 

• Why bother? On the average over all parameters,  

  the expected proportion of intervals failing to cover ≤ 0.05 . 

 

3 
3 



3/20 do not cover  
   
3/4  CI do not cover  
 when selected 

These so selected 4  
will tend to fail,  
or shrink back, 
when replicated 

Selection of this form  
harms Bayesian Intervals  
as well  
(Wang & Lagakos ‘07 EMR, Yekutieli 2012) 
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            YB & Yekutieli (’05) 

A selective CIs procedure uses the data T 
• to select 
• to state confidence intervals for the selected 
  
The False Coverage-statement Rate (FCR) of a selective 

CIs procedure is 
 
 
(|S| may be 0 in which case the ratio is 0) 
FCR is the expected proportion of coverage-statements 

made that fail to cover their respective parameters 

YB  5 



(1) Apply a selection criterion S(T)  
(2) For each i ε S(T), 
        construct a marginal 1- q   Conf. Int. 
 
Thm: For any (simple) selection procedure S(), if  
the components of T are independent or Positive Regression 
Dependent, the above Conf. Ints enjoy FCR ≤ q. 

 
Simple need not be that simple:  
unadjusted testing, Bonferroni testing,BH , largest k… 
If  Test µi=0   &  Select controlling FDR  (with BH) 
Select i <-> the FCR-adjusted CI doesn’t cover 0 
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SCIENCE, 1 JUNE 2007  

7 
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Region   Odds ratio  0.95 CIs  FCR-adjusted CIs  
• FTO     1.17    [1.12, 1.22]   [1.05, 1.30]  
• CDKAL1   1.12    [1.08, 1.16]   [1.03, 1.22]  
• HHEX     1.13    [1.08, 1.17]   [1.02, 1.25]  
• CDKN2B   1.20    [1.14, 1.25]   [1.07, 1.34]  
• CDKN2B   1.12    [1.07, 1.17]   [1.00, 1.25]  
• IGF2BP2   1.14    [1.11, 1.18]   [1.06, 1.23]  
• SLC30A8   1.12    [1.07, 1.16]   [1.01, 1.24]  
• TCF7L2   1.37    [1.31, 1.43]   [1.23, 1.53]  
• KCNJ11   1.14    [1.10, 1.19]   [1.03, 1.26]  
• PPARG   1.14   [1.08, 1.20]  [1.00, 1.30] 
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Region   Odds ratio  0.95 CIs  FCR-adjusted CIs  
• FTO     1.17    [1.12, 1.22]   [1.05, 1.30]  
• CDKAL1   1.12    [1.08, 1.16]   [1.03, 1.22]  
• HHEX     1.13    [1.08, 1.17]   [1.02, 1.25]  
• CDKN2B   1.20    [1.14, 1.25]   [1.07, 1.34]  
• CDKN2B   1.12    [1.07, 1.17]   [1.00, 1.25]  
• IGF2BP2   1.14    [1.11, 1.18]   [1.06, 1.23]  
• SLC30A8   1.12    [1.07, 1.16]   [1.01, 1.24]  
• TCF7L2   1.37    [1.31, 1.43]   [1.23, 1.53]  
• KCNJ11   1.14    [1.10, 1.19]   [1.03, 1.26]  
• PPARG   1.14   [1.08, 1.20]  [1.00, 1.30] 

 

1-.05*10/400000 
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Success 

Problem? 
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Utilize the nature of the selection process being used in 
order to improve selective inference CIs and tests  

 

In particular selection of θ if its estimator is big enough 

   X=(Y |  |Y| ≥ c), 

 

where c is  either fixed  or (simple) data dependent. 

 

                     Weinstein, Fithian, YB (‘13) 
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The complication: θ is no longer only a shift parameter 

13 



Design acceptance region for testing θ=θ0 that: 

• Have correct level under the conditional distribution  

• Are as short as possible  

• Avoid including observations of opposite sign to θ0  

Invert them to get conditional CIs. 

                                      *following YB,Hochberg & Stark (‘98) 

 

 The intervals will also control the False Coverage Rate 
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16 Subjects view 2 movie segments of different stress 
level. Recordings was made of: 

• Activity at voxels in the brain and  
• The level of Cortisol in their blood 

Goal: Estimate the correlation between these  
difference in activity and the difference in Cortisol 
levels across subjects, in the promising voxels. 
 
• 14756 correlations - one for each voxel. 
• Interest lies only with voxels for which the correlation 

is high: |r| ≥ 0.6   (here: pre-determined). 
 
• 15 voxels r ≥ 0.6;            21 voxels with r ≤ - 0.6. 
 

15 



Estimated 
Correlation 

Marginal 
 CI 

Conditional  
CI 

Better than splitting to learning/testing; Software in JASA paper 
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Estimating quantities of interest correlated with brain activity 
from the same data used to locate the most promising ones.  
(Behavioral Neuroimaging). 

Vul et al 2009 ‘blew the whistle’ on the practice. 

It took a few years, heated debate, and a joint paper by  8 
experts to realize the problem is of selective inference 

(named also ‘Circular reasoning’, ‘Double Dipping’)  

and that: 

 Voodoo correlations are everywhere… 

Their proposed solution: data splitting 
 

17 Weinstein, Fithian &YB 

Addressing ‘voodoo correlations’ 



Confidence Calibration Plot: Observed correlations in  
significant voxels (B-H;FDR  0.1) encoding  
conditional confidence intervals as well.  Rosenblatt &YB ‘14+ 

Addressing in-study ‘voodoo correlations’ 



Amit Meir and YB (‘15+) 

Hedges ‘84, Zhong and Prentice ‘08 
In Fithian, Sun Taylor terminology: 100% used for selection 
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Noisy signal :     yi=µi+ei  , ei ~ N(0 ,σ2)      i=1,2,…m      ind. 

 

The idea: For the prediction of linear function of µi 

                Screen:  Threshold small coefficients  

 If µi
2 ≤ σ2    zeroing is better than estimating (screening) 

• Testing whether µi=0  <=>  Hard Thresholding 

• Bonferroni  <=>  Universal threshold  σ (2log(m))1/2 

         Donoho & Johnstone (‘94) 

• FDR testing 
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• Yi ~ N(µi ,σ2) i=1,2,…,m independent 
• Test using BH 

          p(k) ≤ qk/m        <=>        | Yi | ≥  σZ qk/2m  
• Estimate using 

   Yi
FDR = 0  if  |Yi | <  σZ qk/2m          (ignore) 

          = Yi  if |Yi | ≥  σZ qk/2m        (report) 
 amounting to hard thresholding 
• Use YFDR  instead of Y 

 
• Used to screen hundred of thousands of variables 

before complicated modeling (in genomics) 
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Testimation  -  some theory  

Measure performance of estimating vector by 
expected lr-loss   0 < r ≤ 2 :  

             Σ(error)2;     Σ|error|,      #(errors)   
 relative to best “oracle” performance  

Let  #( parameters) -> infinity 

Consider bodies of sparse signals such as: 

•  prop( non-zero coefficients) -> 0      (i.e. p0(m) -> 1),  

•  size of sorted coefficients decays fast 

  Hard thresholding by FDR testing of the coefficients 
(with q<1/2) is adaptively minimax simultaneously 
over bodies of sparse signals  

Abramovich, YB, Donoho, & Johnstone (‘06) 
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1. Use q < 1/2 for minimax performance 
 
1. FDR testing is relevant, and “works well”, even 

when no hypothesis is true 
 |µ|(i) ≤ C i -1/p         for all i, p < 2 
  

 (if small µi are moved to their null value 0 the 
estimation problem relative to oracle is harder) 

24 



Traditional model selection with  
penalized Residuals Sum of Squares (AIC, Cp), minimize: 
 
 
 
 
Penalty per parameter λk,m increases in m decreases in k 
An FDR testing based penalty: 

k #number of parameters in current model m #number of parameters searched 



 
Ex. 1: Diabetics data  (Efron et al ‘04) 

Data: 442 Diabetics patients;  
10 baseline measurements for each, 
to which 45 interactions and 9 quadratic terms were 

added   (SEX2=SEX…) 
 
Dependent variable: A quantitative measure of 

disease progress after one year. 
 
Goal: predictive modeling from baseline data 
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Multiple-Stage FDR with q=.05 

FSR: Introducing random explanatory variables and 
continuing until their proportion in the model reaches .05 
Wu, Boos, & Stefanski (2007). 

Least Angle Regression Selection (LARS) 

R2 Variables in the model N.  Method 

.53 BMI,S5,BP,AGE*SEX,BMI*BP, S3, 
SEX  

7 MS (at .05) 
FSR 

.55 BMI, S5, BP, S3,BMI*BP, AGE*SEX, 
S62, BMI2, AGE*BP, AGE*S6, SEX, 
S6, AGE*S5,AGE2, SEX*BP, BP*S3  

16 LARS 
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Affecting classification and ranking algorithms 
 
Example: Microarray dataset of 10 normal and 86 
cancerous lung tissues (Beer, et al., ‘02), 7127 features, 
analyzed in Rupin’s Lab (Bionformatics, ’05) 
The goal: Produce a stable ranked gene list,  
 the top of which should be a “good” set of classifiers.  
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Rupin’s Lab Method:  
(i) Producing 1000 different gene sets according to the SVM 
models of sizes 5 up to 100, on bootstrapped samples 
(ii) ranking the genes according to their repeatability frequency 
in the ensemble of predictive gene sets.  
Result: The gene with the highest score was “Rage”, its 
boxplot by two classes is presented below 
 



•Choose by forward (greedy) selection the features to enter 
the logistic model in order to minimizes the deviance plus 
FDR penalty. 
•Unlike the penalties in AIC, BIC or Cp where it linear in 
model size k ; and is unaffected by the size of the pool of 
features m from which selection takes place, the FDR 
penalty increases in m and decreases in k.      
   YB & Gavrilov (’13) 

 
• Replicating 120 times by bootstrapping,  
 

  In all replications only one gene is selected. 
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• So far interest in model selection for prediction  
• In last example tried to infer about the selected 
variables 

• What interpretation can we give to the parameters in 
the model selected with FDR penalty?  
• Control of the “false dimensions rate” in the selected 
model?  

• Not clear: Recall that as we move forward the 
parameters estimates (and the parameter estimated) 
change.     (My hunch – controlled) 

• Is the Forward Selection path essential? 

                     How about l1 LASSO (LARS) path? 
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• Three current papers out of Stanford teams deal with 
testing along the Lasso  path, while 

  controlling the size of the model using the FDR idea 
       False Discovery/Selection/Variables  Rate  
Data splitting                                      G'Sell, Hastie, Tibshirani, 

Asymptotic p-values      Lockhart, Taylor, Tibshirani, J. Tibshirani, 

Sequential Testing         G'Sell, Wager, Chouldechova,Tibshirani 

• The fourth introduces “sorted l1” version of FDR penalty 
    Bogdan, van den Berg, Su, Candes 

 
 

Y Benjamini 

More have come from Taylor (Stanford and his students)   
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 A family should best be defined by the danger of 
selective or simultaneous inference that is being 
faced: 

 
  A family is the richest set of inferences in an analysis, 

all achieving the same goal, from which one selected 
inference could be replaced by another selected 
inference for presentation, highlighting or action.   

 
Different researchers can have different goals and 
thus define differently the families – still decisions  can 

be defendable and with no arbitrariness. 
 
  

35 



We select interesting/significant/promising families 

We wish to test hypotheses within the selected families 

  and there too select the significant ones  

YB 36 
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Homogeneous case 50 families 10 hypotheses in each 
                     m0/m ~ constant ( < 1) 
S e p a r a t e ~ Joint   (scalability of the separate) 
Heterogeneous case 50 families 10 hypotheses in each 
        m0/m=1 for 49  families             mo/m=0 for 1 family 
When Joint analysis: too liberal for 49, too conservative for 
the 1 
S e p a r a t e analysis: too liberal for the 49.  
    Overall FDR may reach .9 
        Efron’s comment (2008) 
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• If Qi  is the false discovery proportion in family i, 
 control E(Qi ) separately for each family i , and 
get for free control of  the average over all families! 
 
 
 
 
Again, the “Don’t worry be happy” approach seems to 
work. 
• But if only some of the families are selected               

based on the same data,  control on the average 
over the selected ones is not guaranteed  
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Let Pi be the p-values for the hypotheses in family i, 

S(P)    data based selection procedure of families.   

|S(P)|   the (random) number of families selected. 

The  control of error E(C) (FDR, but also FWER, and others) 
on the average over the selected families means  
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For any ‘simple’ selection procedure S(P), and for any error-
rate of the form E(Ci), if the Pi across families are 
independent,  

 controlling E(Ci) ≤ q|S(P)|/m   for all i,  

 assures control on the average over the selected at level q 

Note 1: if only one selected - amounts to q/m; 

    if all selected no adjustment needed 

Note 2: If not ‘simple’ selection rule only the definition of        
   |S(P)| is more complicated, that’s all. 
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• There was no restriction on the selection rule 

• In particular for each family calculate a p-value for the 
intersection hypothesis and test across families  

    
 
 

 
 

Get: *Within family FDR , * Average FDR over selected,     
* Across families FDR (or any other error-rate). 

 
Heller & YB (‘08), Sun & Wei (’10+) False Sets Rate YB, Bogomolov  

Yoav Benjamini 

H11 H12 H21 H22 H23 

Tested (selected) 

Hm1 Hm2 Hm3 
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If we use the BH adjusted p-value to test the intersection of 
each family 

and use BH (or Bonferroni)  to test within selected    
families, selection adjusted FDR ≤ q   

even under positive regression dependency.  
 
A recent result of Guo & Sarkar et al (+12) for families of 

equal size shows that the over-all FDR is controlled when 
the second stage uses adaptive Bonferroni method.  
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• Family = the set of all association hypotheses for a 
specific SNP and all voxels (~34K)  

    (So selection of families = selection of SNPs) 

    Calculate p-value per SNP-family using Simes’ test. 

• Test SNPs while controlling FDR over SNPs: 35 SNPs 

• Test voxels within families of selected SNPs 

   using BH at level .05*35/34,000 

 

• For most SNPs ≤ 50 voxels; the max 400 voxels. 
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• SNPs and gene expression (eQTL analysis) 

                          Peterson, Bogomolov,YB, Sabatti (Bioinformatics ‘15) 

Family – all SNPs associations with a gene    

Choose genes then SNPs in gene  

• SNPs and multiple phenotypes (features) 

                          (Peterson et al  Gen. Epid. 2014)  

Family – all phenotypes associations with a gene    

Choose SNPs then phenotypes associated with this SNP 



• What predicts quantitative aspects  of patients, each one 
separately? (Tal Kozlovski’s poster)  

Family - the individual predictors within for each clinical variable 
Select the clinical variables for which there is evidence for the 
entire model to predict (F-test) 
Then select predictors within each selected model (Bonferroni) 
 
• Current work in Brain research: generalize the methodology to 

3 or more levels 
  Purpose:       associate genes’ expression  
                                     with  
  hierarchically organized measures of bipolar disease  
  according to their  clinical structure. 
 



Multiple phenotypes 
NIH Bipolar Disorder research with Chiara Sabatti 



Foster & Stein (‘08): α-investment to control at level q the  
 
 
Hypotheses arrive sequentially; in study i, test Hi with αi ; 

if Hi rejected αi+1 > αi  (as only denominator increases) They 
gave a simple and effective rule.                      

An optimal set of online rules for FDR : 

Aharoni & Rosset (14); later by Javanmard & Montanari (15),  

 

Note: order still need to be maintained 
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• A potential challenge  
  Combine  

Hierarchical Testing Schemes 
              with  

Hierarchical Prediction Schemes  
 

Feasible? Useful? Worth a try 

Y Benjamini Louvain ‘05 



• Worry about the effect of selection 
• It might be enough to assure properties ‘on the average 

over the selected’ 
• There are simple and useful methods for testing and 

confidence intervals 
• The ideas seem important in other situations for the 

analysis of Big Data, or Large Scale Inference problems 
 

• Many challenges still exist, more are coming. 
 

 
 
    Thanks 

 
 

Y Benjamini 
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