Selected Env. Apps. Of Structured Output Prediction

Sašo Džeroski

Jozef Stefan Institute, Ljubljana, Slovenia

ANNOTATED, AND STRUCTURED DATA

Environment <-> Biota

- Predict the biota (or specific components of it)
- At a given site
- From characteristics of the environment at the site
- E.g. predict river water biota from water properties

	Descriptive variables										Tar	get v	arial	oles						
Sample ID	Temperature	K ₂ Cr ₂ O ₇	^Z ON	CI	CO ₂		Cladophora sp.	Gongrosira incrustans	Oedogonium sp.	Stigeoclonium tenue	Melosira varians	Nitzschia palea	Audouinella chalybea	Erpobdella octoculata	Gammarus fossarum	Baetis rhodani	Hydropsyche sp.	Rhyacophila sp.	Simulim sp.	Tubifex sp.
ID1	0.66	0.00	0.40	1.46	0.84		1	0	0	0	0	1	1	0	1	1	1	1	1	1
ID2	2.03	0.16	0.35	1.74	0.71		0	1	0	1	1	1	1	0	1	1	1	1	1	0
ID3	3.25	0.70	0.46	0.78	0.71		1	1	0	0	1	0	1	0	1	1	1	0	1	1

Habitat modeling

 Model the presence & absence (abundance) of each species separately

Binary Classification (Regression)

Predicting species composition

One model for all the species at once

L1:

Gammarus fossarum: 0 Achnanthes minutissima: 1 Eiseniella tetraedra: 1

L2:

Gammarus fossarum: 0 Achnanthes minutissima: 1 Eiseniella tetraedra: 0

L3:

Gammarus fossarum: 1 Achnanthes minutissima: 1 Eiseniella tetraedra: 1 L4:

Gammarus fossarum: 1 Achnanthes minutissima: 1 Eiseniella tetraedra: 0

L5:

Gammarus fossarum: 0 Achnanthes minutissima: 1 Eiseniella tetraedra: 1

• Multi-target classification/regression

Predicting community structure

One model for all of the species at once,
 additionally using the taxonomical hierarchy

L1:

Amphipoda: 1
Gammarus: 1
Gammarus fossarum: 1
Gammarus lacustris: 0

Bacillariophyta: 1
Achnanthes: 1
Achnanthes minutissima: 1
Eiseniella: 0
Eiseniella tetraedra: 0

L2:

Amphipoda: 1
Gammarus: 1
Gammarus fossarum: 1
Gammarus lacustris: 1

Bacillariophyta: 0
Achnanthes: 0
Achnanthes minutissima: 0
Eiseniella: 0
Eiseniella tetraedra: 0

L3:

Amphipoda: 1
Gammarus: 1
Gammarus fossarum: 0
Gammarus lacustris: 1

Bacillariophyta: 1
Achnanthes: 1
Achnanthes minutissima: 1
Eiseniella: 0
Eiseniella tetraedra: 0

L5:

Amphipoda: 1
Gammarus: 1
Gammarus fossarum: 1
Gammarus lacustris: 1

Bacillariophyta: 1
Achnanthes: 0
Achnanthes minutissima: 0
Eiseniella: 1
Eiseniella tetraedra: 1

L4:

Amphipoda: 1
Gammarus: 1
Gammarus fossarum: 1
Gammarus lacustris: 0

Bacillariophyta: 1
Achnanthes: 1
Achnanthes minutissima: 1
Eiseniella: 1
Eiseniella tetraedra: 1

• Hierarchical multi-label classification

Slovenian rivers

- 1.060 samples
- 16 physical and chemical props.
 of water, 491 species
- data collected in 1990-1995


```
ephemeroptera
   ephemeroptera_acantrella
      ephemeroptera acantrella sinaica
   ephemeroptera baetidae
   ephemeroptera baetis
      ephemeroptera baetis alpinus
      ephemeroptera_baetis_buceratus
      ephemeroptera baetis fuscatus
      ephemeroptera_baetis_muticus
      ephemeroptera baetis rhodani
      ephemeroptera baetis scambus
      ephemeroptera baetis vernus
   ephemeroptera ecdyonurus
      ephemeroptera ecdyonurus forcipula
      ephemeroptera_ecdyonurus_helveticus
      ephemeroptera ecdyonurus insignis
      ephemeroptera ecdyonurus torrentis
      ephemeroptera ecdyonurus venosus
   ephemeroptera_electrogena
      ephemeroptera electrogena lateralis
      ephemeroptera_electrogena_quadrilineata
plecoptera
   plecoptera amphinemura
      plecoptera_amphinemura triangularis
   plecoptera brachyptera
      plecoptera_brachyptera_risi
      plecoptera brachyptera seticornis
```


Bacillariophyta Cyclotella Comta

Bacillariophyta Nitzschia Palea

Diptera Chironomidae Zeleni

Bacillariophyta Navicula Cryptocephala Vcryptoceph

Slovenian rivers: Species comp.

MLC: Multi-label classification tree

Slovenian rivers: Community struc.

- Tubifex 0.61

- Synedra 0.57

Slovenian rivers: Overall results

0.5	Australian vegetation									
0.5	ı	ı	-							
0.4					-					
					-					
0.3			,		-					
0.2					1					
0.2]					
0.1					-					
-										
0.0	Single 7	Γ. Multi	T. HMI	LC Ensem	nbles					

Dataset	Method	AUPRC	OS	Learning Time	Complexity	
	Single-label	0.239	0.537	23.3	15336	
Slovenian	HSC	0.309	0.445	10.2	25035	
rivers	Multi-label	0.322	0.002	9.4	1	
	HMC	0.374	0.057	0.6	37	
	Single-label	0.790	0.099	3.7	2605	
Danish	HSC	0.808	0.083	1.3	2873	
farms	Multi-label	0.801	0.112	0.7	265	
	HMC	0.815	0.065	0.4	259	

Danish farms: Soil Microarthropods

- 1.944 soil samples
- 137 attributes/agricultural events and soil biological parameters
- 35 collembolan species
- data collected1989-1993

Isotominae

Isotominae_Isotoma

Isotominae_Isotoma_anglicana Isotominae_Isotoma_notabilis Isotominae Isotoma tigrina

Lepidocyrtinae

Lepidocyrtinae_Lepidocyrtus

Lepidocyrtinae_Lepidocyrtus_cyaneus

Lepidocyrtinae_Lepidocyrtus_lanuginosus

Lepidocyrtinae_Pseudosinella

Lepidocyrtinae_Pseudosinella_alba

Lepidocyrtinae_Pseudosinella_sexoculata

Orchesellinae

Orchesellinae_Heteromurus
Orchesellinae_Heteromurus_nitidus
Orchesellinae_Orchesella
Orchesellinae_Orchesella_cincta
Orchesellinae_Orchesella_villosa

Sminthuridae

Sminthuridae_Smint
Sminthuridae_Sminthurinus
Sminthuridae_Sminthurinus_aureus
Sminthuridae_Sminthurinus_elegans
Sminthuridae_Sminthurus
Sminthuridae Sminthurus viridis

Tomoceridae

Tomoceridae_Tomocerus
Tomoceridae_Tomocerus_flavescens
Tomoceridae_Tomocerus_minor

Tullbergiidae

Tullbergiidae Mesaphorura

Victoria, Australia Vegetation

- 27.482 sites
- 81 env. attributes
- 3.173 species

DivisionConifer

DivisionConifer_callitris

DivisionConifer_callitris_endlicheri

DivisionConifer_callitris_glaucophylla

DivisionConifer_callitris_gracilis

DivisionConifer_callitris_gracilis_ssp~murrayensis

DivisionConifer_callitris_rhomboidea

DivisionConifer_callitris_verrucosa

DivisionMonocotyledon

DivisionMonocotyledon_leucopogon

DivisionMonocotyledon_leucopogon_attenuatus

DivisionMonocotyledon_leucopogon_australis

DivisionMonocotyledon_leucopogon_clelandii

DivisionMonocotyledon_leucopogon_juniperinus

DivisionMonocotyledon_leucopogon_lanceolatus

DivisionMonocotyledon_leucopogon_lanceolatus_var~lanceolatus DivisionMonocotyledon_leucopogon_maccraei

DivisionMonocotyledon_leucopogon_microphyllus

DivisionMonocotyledon_leucopogon_microphyllus_var~pilibundus

DivisionMonocotyledon_leucopogon_montanus

DivisionMonocotyledon_leucopogon_neurophyllus

DivisionMonocotyledon_leucopogon_parviflorus

DivisionMonocotyledon_leucopogon_virgatus

DivisionMonocotyledon_leucopogon_virgatus_var~brevifolius

DivisionMonocotyledon_leucopogon_virgatus_var~virgatus

DivisionMonocotyledon_leucopogon_woodsii

DivisionMonocotyledon_epacris

DivisionMonocotyledon_epacris_breviflora

DivisionMonocotyledon_epacris_celata

DivisionMonocotyledon_epacris_glacialis

DivisionMonocotyledon_epacris_gunnii

DivisionMonocotyledon_epacris_impressa

DivisionMonocotyledon_epacris_impressa_var~grandiflora DivisionMonocotyledon_epacris_impressa_var~impressa

New, much more extensive data: Collected 1960-2010, 53362 sites, more than 1.35 Mio indiv. spec. obs.

Each vascular species, recorded together with % cover

Plant photosynthetic type (carbon fixation pathways)

• C3: cool-season-active

• C4: warm-season-active

Phylogeny via main monocot families (Poaceae=Grasses, Cyperaceae=Sedges; Chenopodiaceae=Goosefoots)

Phylogeny via three main grass genera

Stress tolerance: Tolerance to salinity, fire, inundation

Extremo-philic and —tolerant fungi

- Can be found in naturally extreme environments, like salterns and Arctic glaciers, but also in
 - The air and water (tap-water)
 - Food preserved with high concentrations of salt/sugar
 - Household appliances (dishwashers, washing machines)
- Can represent a threat to health (e.g. farmers lung disease)
- We analyzed data collected by collaborators at Uni Lj
 - Building habitat models
 - Relating species, env. factors and metabolite composition
 - Using PCTs for MTR and HMLC

Extremo-philic and -tolerant fungi

- Wallemia propagules in the air
 - Highest concentrations in agric. buildings (barns) in early spring
 - Highest concentrations expected: during a cyclone, at temperatures between 10 °C and 17 °C, at relative air humidity below 60%

Fungi in washing machines

53 samples
Aureobasidium (2)
Candida (12)
Exophiala (5)
Fusarium (16)
Rhodotorula (5)
Cladosporium (3)
Meyerozyma (2)
Mucor (1)
Ochroconis (2)
Phoma (1)

Mining the ECOFINDERS Dataset

 Goal: Produce maps for features (related to soil functions) that are not measured globally, from those that are measured globally

Learn mapping from data where both measured

Mining the ECOFINDERS Dataset

EcoFinders data (transect with 81 sites)

3 land uses:

- Arable
- Grassland
- Forest

4 climate zones:

- Boreal
- Alpine
- Atlantic
- Continental

ECOFINDERS data: Attributes

- Lat(itude), Long(itude)
- Bio-Climate Group
- Landuse Group
- Temperature: temp mean, temp min, temp max
- Precipitation: prec mean, prec min, prec max
- WHC (ml 100 g fresh soil-1), pH, Clay %
- CEC (cmol+charge kg-1), Base saturation (%),
 Mehlich P (mg/L), Org C, Total C, Total N, C:N ratio

ECOFINDERS DATA: Targets

- 12 targets
- Small number of sites/samples

•	Only 32 where all
	measured

 75 where all but 2 measured (Mites)

, ,	
Microbial_respiration	80
Microbial_Biomass	80
Functional_microbial_abundance	79
Functional_microbial_richness	78
Enchy_SpRichness	76
Enchy_Abundance	76
Nematode_diversity_Shannon	80
Nematode_abundance	80
Dikarya_abundance	80
Dikarya_Richness	80
Mite_Total_abundance	35
Mite Sp richness	35

Overall Results: Correlation

- Single trees on training and testing data
- Ensembles on testing data

	PCT Global	PCT Partial	PCT Local	PCT Global	PCT Partial	PCT Local	Bagging Globs	Bagging Parti	Bagging Local
Microbial_respiration	0.7316	0.8212	0.9426	0.3295	0.6623	0.6249	0.5595	0.7924	0.784
Microbial_Biomass	0.9321	0.8138	0.9927	0.7559	0.7202	0.762	0.8599	0.7972	0.8458
Functional_microbial_abundance	0.6961	0.6996	0.7256	-0.0302	-0.0233	-0.0117	-0.1033	-0.0447	-0.0388
Functional_microbial_richness	0.7284	0.5245	0.797	-0.0011	0.3096	0.3064	0.2291	0.496	0.433
Enchy_SpRichness	0.6402	0.3299	0.9551	0.1426	0.28	0.3431	0.0835	0.3833	0.4177
Enchy_Abundance	0.7637	0.5257	0.86	0.2385	0.0632	0.3255	0.2337	0.1918	0.4186
Nematode_diversity_Shannon	0.5665	0.3409	0.7308	0.1216	0.0274	0.1432	0.1353	0.1607	0.2706
Nematode_abundance	0.776	0.2282	0	-0.2385	-0.1213	-0.0558	-0.0683	-0.0871	0.0053
Dikarya_abundance	0.6536	0.402	0.7534	-0.0931	0.1533	0.1315	0.0599	0.2339	0.1733
Dikarya_Richness	0.5885	0.3199	0.688	0.0318	0.3439	0.3912	0.2848	0.3546	0.4881
Mite_Total_abundance	0.7317	-	0.8928	0.3944	-	0.4598	0.5252	_	0.5558
Mite_Sp_richness	0.8771	_	0.9093	0.3697	_	0.5333	0.521	_	0.6414

Single Trees (train+test) | Ensembl.tst.

Labeled and unlabeled data

Classical tasks

(classification, regression)

Labeled data

Unlabeled data

Structured output prediction

(multi-target regresion/classification,

---)

Labeled data

Partially labeled data

Unlabeled data

Target is known

Part of the target is unknown

Target is unknown

Incomplete Annotations: Multi-target regression

		Descripti	ve space	7	е		
Example 1	1	TRUE	0.49	0.69	?	0.60	3.91
Example 2	2	FALSE	0.08	0.07	0.56	0.99	7.59
Example 3	1	FALSE	0.08	0.07	Ş	;	?
Example 4	2	TRUE	0.49	0.69	0.08	0.77	8.86
Example 5	3	TRUE	0.49	0.69	0.11	?	?
Example 6	4	FALSE	0.08	0.07	0.43	2.10	8.09

- Task: prediction of water quality in agricultural fields in Ireland
- 3 numeric targets
 - Q biological water quality
 - P phosphorus-concentration;
 - N nitrate concentration.
- 708 examples
 - observation points (10x10km grid cells)
- Not all of the 3 target variables are measured in every observation point -> missing values!!!
- 27 numeric attributes:
 - Environmental pressures (soil mineralization, drought and grass growing season)
 - Pathways (soil drainage, net rainfall, rainfall intensity)

Data set suitable for methods that can handle partially labeled data

Multi-target tree from PL data: QPN

Predictive performance results

We acknowledge European Commission support through the grants

- MAESTRA: Learning from Massive, Incompletely annotated, and Structured Data, grant 612944
- HBP SGA1: The Human Brain Project, grant 720270
- LANDMARK: LAND Management: Assessment, Research, Knowledge base, grant 635201

As well as the Slovenian Research Agency through

- P2-0103 Knowledge technologies
- L2-7509 Structured output prediction ...

30

ECML PKDD 2017 SKOPJE, MACEDONIA 18-22 September 2017