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Microbiota in Main conce ptS

Health & Disease

Microbiota
Microorganisms ecosystems
inhabiting a particular
environment

Microbiome

The community composition,
biomolecular repertoire and
ecology of microorganisms
inhabiting particular environments

(collective genes of the microbiota)

Metagenomics

The application of high-throughput DNA
sequencing to profile the genomic composition
of a microbial community

- Taxonomic biomarkers

- Functional biomarkers

Metabolomics
Study of end products of the metabolism of
the host and its microbiota

Metaproteomics

enabling identification of biomarkers
Metabonomics

comparison with unidentified compounds

Exposomics

cumulative exposures to molecules from the
environment
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Microbiome impacts
on human health

The microbiota affects prenatal and

postnatal growth:
Understanding the community structuring
could help to prevent and treat disease

Microbiota and diet interact to

influence metabolism
Effects of diet on host metabolic status is modulated
-> potential for therapeutic interventions

Interaction with pathogenic bacteria
Pathogenic species drive their expansion by

exploiting microbiota derived nutrients and triggering
inflammation

Specific microbes determine aspects

of adaptive immunity
Induction of immune tolerance and conditions
(allergy and intestinal inflammation ... cancer)

NATULCINSIGHT

INTESTINAL MICROBIOTA IN HEALTH AND DISEASE
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the field of microbiota-host interactions to provide an PERSPECTIVE

overview of basic biological processes and important 48

advances in the development of clinical applications.
Jeff Gordon and colleagues present a microbial

perspective of human developmental biology. They

describe how the microbiota affects prenatal and

he human gut is home to trillions of
microorganisms, which modulate health and

disease. This Insight brings together leaders in

A microbial perspective of human
developmental biology
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diverse lifestyles and patterns of disease.

Justin Sonnenburg and Fredrik Backhed analyse how
the microbiota and diet interact to influence metabolism.
They review mechanisms used by the microbiota to
modulate the effects of diet on the host’s metabolic status,

Justin L. Sonnenburg & Fredrik Backhed
Editor, Nature Sy
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Insights Editor as well as the potential for therapeutic intervention.
Ursula Weiss . h
o Eran Elinav and colleagues discuss crosstalk between
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on bacterial components and host response pathways,

Crosstalk between the microbiota

and the innate immune system
Bacterial components and host response
pathways can be mutual beneficial, but
diseases arise when interaction is disturbed

Microbiome-wide association studies
DNA Seq, Metabolomics, Computation

Promise of microbiome-based precision
diagnostics and therapies



Diet as modulator of gut microbiota

e Microbiota of the human gut responds rapidly to large changes in diet (composition and
function of the microbiota shifts over 1-2 days after change in diet)

e Long-term dietary habits are a dominant force in determining the composition of an
individual’s gut microbiota

e Change in diet can have a highly variable effect on different people owing to the
individualized nature of their gut microbiota [Sonnenburg et al, Nature, 2016]
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Interactions between the diet and the gut microbiota dictate the production of short-chain fatty
acids

-
-

Dietary fibre is a source of complex carbohydrates, which are required for the production of
short-chain fatty acids (i.e.: acetate, butyrate and propionate): anti-inflammatory responses,
signalling to the host

Fermentation of fibre in the colon has been shown to decrease pH levels, which can help to
increase the diversity of the gut microbiota or results in the reinforcement by certain taxa of
a pH that favours their own growth



ML and diet-based therapeutics
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Strategies for modulating the gut microbiota to improve human health

[Sonnenburg et al, Nature, 2016]

Machine learning can be used to identify aspects of the clinical
profile of individuals (including data on the microbiota) that help to
predict the response of others to dietary interventions

Such predictive elements can also be used to guide mechanistic studies in
experimental models.




Maternal-fetal microbial landscape

e Vaginal microbiota composition is more stable during pregnancy than at other times
during adulthood (Lactobacillus-dominated community)

e The initial microbiota of nursing infants is an assemblage of microbes derived from
mother’s faecal, vaginal and skin microbiota

® Microbes that are transferred to offspring before or during delivery might reflect
environmental exposures of the mother during pregnancy (for example, diet)

e Within weeks, development of a milk-oriented microbiota occurs: microbiota
dominated by Bifidobacterium species whose primary end fermentation products
important sources of energy for colonocytes. Can also result in ‘cross-feeding’ of
secondary consumers, including potentially pathogenic bacteria in the infant gut.

e Variations in the transfer of microbes from mothers to infants might affect early
postnatal development of the child’s microbiota, immune system and metabolic

processes.
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Discovery pipeline for developing microbiome
characterization

Population of interest

N

Samples of faecal, oral or
vaginal microbiota

~ .

Randomized or rationally
designed culture subsets

®© ®
Clonally arrayed bacterial ©®© @©
culture collection
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Microbes transferred
to offspring

Transplantation into
germ-free animals

Representative diets
* +/- HMOs

¢ +/- Dietary ingredients
¢ +/- Antibiotics

Transmission of microbiota-
dependent phenotypes between
generations determined

Microbial community characteristics
* Membership and stability

* Gene expression (RNA and protein)
¢ Metabolic features

Effects on host phenotypes
e Growth

* Metabolism

¢ Behavorial phenotypes

Features of innate and adaptive immunity
» Targeting of bacteria by IgA

¢ Susceptibility to pathogenic bacteria

¢ Responsiveness to vaccines

Test for effects of different community configurations on host biology

[Charbonneau et al, Nature, 2016]

Recipient animals are fed diets representative of those consumed by their microbiota donors, or diets designed to test hypotheses
about the role of various components, including HMOs, on microbiota-mediated functions




Gut microbiota and inflammation

Dysbiosis (imbalance in the microbiota) is characterized by
- a reduced diversity of microbes
- areduced abundance of obligate anaerobic bacteria

- an expansion of facultative anaerobic bacteria in the phylum Proteobacteria, mostly

members of the family Enterobacteriaceae

Intestinal inflammation in people is associated with Dysbiosis
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[Thaiss et al, Nature, 2016]

Drivers of changes in the nutritional environment

1. The availability of nutrients in the large intestine

is altered during inflammation through changes in
the composition of mucous carbohydrates.

2. generation of reactive oxygen species and

reactive nitrogen species during inflammation.

Feedback loops between the host and the microbiome

Feedback loops that extend to the underlying lamina
propria involve communication between epithelial,
myeloid and lymphoid cells using cytokines and
chemokines



Microbiome in malnourished children

doi:10.1038/nature13421

Persistent gut microbiota immaturity in
malnourished Bangladeshi children

Sathish Subramanian', Sayeeda Huq? Tanya Yatsunenko!, Rashidul Haque?, Mustafa Mahfuz?, Mohammed A. Alam?,
Amber Benezra"?, Joseph DeStefano', Martin F. Meier', Brian D. Muegge', Michael J. Barratt!, Laura G. VanArendonk',
Qunyuan Zhang®, Michael A. Province®, William A. Petri Jr°, Tahmeed Ahmed? & Jeffrey I. Gordon®



Microbiome in malnourished children
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Subramanian et al, Na

Severe Acute Malnutrition is associated with
significant relative microbiota immaturity
e Machine Learning approach: Random Forest models

ture, 2014




APPLICATIONS OF THE
“METAGENOMIC CLOCK”
IN PRECLINICAL STUDIES

Gut bacteria that prevent
growth impairments
transmitted by microbiota

from malnourished children.
Blanton LV et al, Science, Feb 2016
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Preclinical evidence that gut microbiota immaturity is causally related to childhood under-
nutrition. (A) A model of normal gut microbial community development in Malawian infants and
children, based on the relative abundances of 25 bacterial taxa that provide a microbial signature

* Model of microbiota: 36 mo maturation in twin pairs healthy Malawian infants and children by
using RF to regress OTUs against chronological age, val on 259 h.

* Undernourished children in a Malawian birth cohort: > immature gut microbiota.

* Unlike microbiota from healthy children, immature microbiota transmit impaired growth,

altered bone morphology, and metabolic abnormalities in the muscle, liver, and brain to recipient
gnotobiotic mice.
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Next Generation sequencing

s

= NGS

Fragmentation Parallel reading of ...

ll_omic"
Material

Cycle 1 Cycle 2 Cycle 3
(C]
—_— —> ¢ 0 D)
A ) (C]

... billions of fragments
(reads)

e Massively parallel sequencing platforms able to produce millions of
sequences concurrently, with protocols for DNA, gene expression,
methilation, ...

® Throughput: up to 25 Gb (~¥8 human genomes) per day

® More than 85% bases correctly sequenced with
accuracy = 99.9% (lllumina HiSeq 2000)



Which platforms
for metagenomics markers?

Next Gen Sequencing methods for metagenomics
research and clinical applications:

Roche 454 Genome Sequencer FLX System
. Illumina HiSeq / MiSeq

. Ion Torrent PGM

. Oxford Nanopore

MinlON: electronic single-molecule
nanopore sensing (DNA, proteins)

LaBSSAH: Lab.of Biomolecular Sequence and Structure Analysis for Health,
a partnership of FBK, UniTN/CIBIO & CNR, with FEM



S
=5¢ Studying Metagenomics with NGS

¢

Targeted amplicons sequencing

e Only Gene 'markers’ assumed
phylogenetically informative are
sequenced

e Most used marker: the gene 16S
rRNA, common in all life forms

F515
or
F519

<
W

V4

Whole genome sequencing(WGS)

e Whole (intronic+exonic) genomes
from the potential microbiota,
incl. fungi and viruses

e Similar 16S are distinguished
e Strains may be identified

e 3 billion 100bp reads (HiSeq), 15
million 36bp (MiSeq)

¥ F968

Y F27
s

R534 T_—;

=

R9264__T

s
T yF1177

— V8],
L]

L8

R1492t |

B

1.%} 16S rDNA gene
[ variable region —p 454 FLX
—— Amplicon === 454 FLX Titanium

Experimental and analytical tools for studying the human microbiome. Kuczynski, 2012.



-5¢< Bioinformatics and the microbiome

International Projects (USA,EU)

Major research areas

. Sequence Analysis

. Genome Annotation

. Computational Biology

. Meta-transcriptomics

. Functional Annotations

. Comparative Genomics

. Phylogenetics Analysis

. Networks & Systems Biology

NIH HUMAN
MICROBIOME
PROJECT

coNOOUT B WN -

Bioinformatics Integrative Human Microbiome Project

A. Sequence Pre-filtering
B. Assembly

C. Gene Prediction . - “
D. Biodiversity S

E. Comparative Metagenomics

The Inflammatory Multi-Omic
Bowel Disease Microbiome Study- Onset of Type 2
Multi'omics Pregnancy Diabetes

Database Initiative
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16S rRNA

WGS

—

) |

Major reference databases

green

16S rRNA gene database and
workbench compatible with ARB

greengenes.lbl.gov

sﬂvaﬁd@%i

high quality ribosomal RNA databases

NIH HUMAN
MICROBIOME
PROJECT

(
2) NCBI

Release gg 13 5 99 (2013/05):
» 202,421 bacterial and archaeal sequences

Release 115 (SSURef NR):

» 418,497 bacterial sequences
» 17,530 archaeal sequences

» 43,698 eukaryotic sequences

Ref. metagenome (http://www.hmpdacc.org/HMREFG/):
* 1,253 Bacteria

* 97 Archaea

» 326 Eukaryotes

* 1,420 Viruses

Ref. metagenome (2013/06):
» 2,367 Bacteria, Archaea

* 35 Fungi

* 2,397 Viruses

Also: KEGG, COG, GO, EggNOG




Bioinformatics +
s . ML Framework
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Reads quality custom
[ control ] Mothur ar Pvthc:;rain:tc: bash

[ Reads mapping [ QIIME v1.8.0 ]

4 4

[ Quantification J [ QIIME v1.8.0 ]
g D g

Taxonomy UCLUST
assignment (Greengenes 13_8)
8 0 Zandona, Chierici, Jurman, Del Chierico,
Cucchiara, Putignani, Furlanello
Predictive MAQC-II NIPS-MLCB Workshop 2014
classification Data Analysis Plan Machine Learning in Computational

Biology: Montreal- Dec 13, 2014

g J

etwork arishh ] [ ReNette ] ar [ custom R scripts ]




genonﬁ:cs, 100 utentl (SON of Grid Engme queue
system) — now connected to FEM campus




Roche 454 GS Junior sequencer

| Biological
samples
l Healthy Disease

- person state
Reads quality

— Absolute or relative (compositional data)

Microbial abundances matrix <—

e
' sample oTu1 oTU2 — I
: $ i
: 501 120 42 abundance = : :
| . — |
. Quantification 502 11 108 proflles o .
I 0 S03 0 49 I
I |
. Taxonomy .
\ assignment OTU: operational taxonomic units = clusters of sequences by DNA similarity = taxonomic biomarkers ]




Two types of metagenomic data: absolute vslrelative abundance |
3 (compositional data)

For each sample, sum of microbial abundance is equal to 1
(growth or decay is connected to decay or growth of all others)

* Traditional Pearson correlation analysis treating the
observed data as absolute abundances of the
microbes may lead to spurious results with relative
abundances. $

e Special care and appropriate methods are required
prior to correlation analysis for these compositional
data.

CClLasso: novel method based on least squares with €1 penalty to infer the correlation network for
latent variables of compositional data from metagenomic data.

An effective alternating direction algorithm from augmented Lagrangian method is used to solve the
optimization problem.

[Fang et al, Bioinformatics, 2015]



Roche 454 GS Junior sequencer

D
Biological |
samples

!

Healthy Disease

person state
Reads quality ]
control .
e All sequencing platforms have artefacts
@ {CTTCGGGTGCGTTTTTTTTGCCCC
. 'CTTCCGCTCCC-TTTTTTTCCCCC
main artefact: long homopolymers CPTCCCCTCCCT PP PITGCCCE
{CTTCCGCTCCG~TTTTTTTGCCCC
{CTTCCGETCCG-TTTTTTTGCCCC
&
e Aim: getting qualitative and quantitative information about data
available for further analysis
g http://www.mothur.org

trim.seqs()

3 4 )

remove:
redundancies

low quality reads
long homopolymers

\ primers and adapters /

=
‘XXX




Trimming primers and adaptors

Adapter A BarcodeSequence LinkerPrimerSequence Target Sequence ReversePrimer Adapter B

>

Desired Sequence

The adapter and primer sequences do not If‘> This can cause an
correspond to the bases at the 3' end of the otherwise mappable
reference genome sequence sequence not to align

Introns and primer sequence frequently flank the sequence of amplified exons.
Unless removed by trimming, any of these artifacts will distort your sequence
assembly and downstream sequence analysis.



Reads mapping

Quantification

Taxonomy
assignment

/I¢-I¢-|f\

\

Assigning Taxa

-

vl

\_

pick_de_novo_otus.py

Generate OTUs

Pick representative sequence set from

each OTU

Align with database
(Greengenes 13 _

Assign taxonomy 165 tabase 2

Build OTU table  greengenes.Ibl.gov
(with absolute abundances)

green

~

—

filter taxa
(unassigned taxa)

l

-

>

-

\_

summarize_taxa.py
Domain, Phylum, Class,
Order, Family, Genus
Relative abundances
computed

~N

J

v

IMme

OTU table
sample OTU1 0oTU2
SO01 120 42
S02 11 108
S03 0 49

merging
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- Conceptual pipelines: meta-blocks
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8
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g
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(EDA The MAQC/SEQC initiatives

I]delI’@ VOLUME 32 NUMBER 9 SEPTEMBER 2014

b10technology

A set of guidelines for predictive

profiling
(2014: for high-throughput
sequencing with NGS)

1. Predictive models can be derived
from high-throughput data,

2. But they need to be Ca rEfU||y Focus on RNA sequencing quality control (SEQC)

. ABRF evaluation of RNA-seq
dEVEIOpEd d nd Independently Genome editing in hexaploid wheat '

tested

3. Reproducibility requires
substantial effort.




Need for Data Analysis Protocols

A Data Analysis Protocol (DAP) must be defined that details all
the procedures used to develop the predictive classifiers,
including the data preprocessing

SW N 2
RESOURCES % o ten
COMPUTING ==
RESOURCES ,

EXPERIMENTAL

—>

DESIGN (DAP)

29
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Quantification

Network analysis

OTU table
(training data) _’| Data splitting

OTU table
(validation data)

—>

Repeat 10 times MCC, ACC,...
/ 5-fold CV \
|_ =T TN Average
Training (Classifier Classification Ranked | metrics
/ set Tuning) model feature list |
|| Selected Best
Features Models
I ]
1 1
I 1
Test set Prediction P Perforrr_1ance : 1
evaluation : 1
1
I 1
1 1
__________ | 1
| Random || Random | 1 |
labels features 1 1
_labels _ 1| features _j : !
1 1
__________________________________ 1 1
| I
: s |
. 1
. 1
' 1
Selected . Predicted
features | Prediction B labels

=

put
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FRES

machine learning p
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DOWNSTREAM | Sense-
making

A MAQC-II/SEQC Data Analysis Plan

-~

\

Training Classifier Classification Ranked
/vl set Tuning model feature list
Quantified 5-fold CV
features Repeat 10 times
Internal N . Performance
Valid. set Prediction » evaluation

g

ReNe.tte ‘

ReNette WebServices

This is a web-interface for network analysis. It supports inference methods,
quantitative network distance and network stability analysis.

Network Distance
=

%

Random

labels

Used in

Random External
features Validation

® SuZetal Acomprehensive assessment of RNA-Seq accuracy,
reproducibility and information content by the Sequencing
Quality Control Consortium. Nature Biotech, 2014

e Wang Cet al. The concordance between RNA-Seq and
microarray data depends on chemical treatment and transcript
abundance. Nature Biotech, 2014

e Zhang W et al. Comparison of RNA-seq and microarray-based
models for clinical endpoint prediction. Genome Biology, 2015

network analysis

For network analysis of metagenomics data we apply
ReNette (based on the netTools R package)

e Filosi M et al. ReNette: a web-infrastructure for
reproducible network analysis. bioRxiv, Aug 2014

e Zandona, et al A metagenomic pipeline integrating
predictive profiling methods and complex
networks for the analysis of NGS microbiome data.
NIPS-MLCB Machine Learning in Computational
Biology: Montreal, Dec 13, 2014
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Summary of decisions/Challenges

i RNA-Seq
SEQUENCINE = = = = = = = = = = = = == — = ===
; i it 16S rRNA-Seq
/ Reads \
L quality UPSTREAM Choice of pipeline
control @ modules and strategies
‘ BWA
e Ensembl
R e
A eao.ls » Quantification NCBI
\ Mapping / Kallisto
/ . \ ° ML DAP to control bias &
Pre.d!ctl\{e ensure reproducibility
classification j
Linear/non-linear

j———@ associations
Pearson MIC - Maximal
T Information Coeffic.

differential
multi-level networks
(time, omics)

Network

analysis
4

\DOWNSTREAM

—— network kernels

A. Characterization of the features of interest (e.g. transcriptome);
B: Identification of predictive biomarkers; C: Co-abundance networks inference and analysis




MINEPY

in metagenomics
networks: a novel
tool to quantify
NON LINEAR
ASSOCIATIONS
between abundance
of microbial taxa

\ ARCH AR

Detecting Novel Associations
in Large Data Sets

David N. Reshef,*%**t Yakir A. Reshef,>**t Hilary K. qumne Sharon R. Grossman,>®
Gilean McVean, 57 Peter J. Turnbaugh,® Eric S. Lander,?"
Michael Mitzenmacher,'°} Pardis C. Sabeti*®}

Identifying interesting relationships between pairs of vanables in Iavge data sets ls increasingly
important. Here, we present a measure of the maximal
information coefficient (MIC). MIC captures a wide range ni associations both functional and

not, and for functional relationships provides a score that roughly equals the coefficient of
determination (R?) of the data relative to the regressmn function. MIC belongs to a larger

class of maximal i fion-based ion (MINE) statistics for identifying
and classifying relationships. We apply MIC and MINE to data sets in global health, gene
expression, major-league baseball, and the human gut microbiota and identify known and

novel relationships.

16 DECEMBER 2011 VOL 334 SCIENCE www.sciencemag.org

Home I

Download I

Documentation I

minepy 0.2.5 releasad
(2012-11-18)

minepy 0.3.4 releasad
(2012-10-01)

minepy 0.3.2 releasad
(2012-08-21)

minepy 0.3.2 releasad
(2012-08-13)

minepy 0.3.1 releasad
(2012-08-08)

minepy 0.2.0 releasad
(2012-05-31)

minepy
Maximal Information-based Nonparametric Exploration
in C, C++, Python and MATLAB/Octave

minepy provides an ANSI C library (with C++, Python and MATLAB/OCTAVE wrappers) for Maximal
Information-based Nonparametric Exploration (MIC and MINE family)

minepy contains:

« an ANSI C core API,

* a C++ interface,

« an efficient Python API written in Cython,

+ an efficient MATLAB/OCTAVE API,

+ a command-line application similar to MINE jar (_hitp://www.exploredata.net/Downloads/MINE-Application).

minepy is multiplatform (Linux, Mac OS X and Windows Xp, Vista and 7), it works with Python 2 and 3 and itis
Open Source, distributed under the GNU General Public License version 3.

If you use minepy, please cite:

Davide Albanese, Michele Filosi, Roberto Visintainer, Samantha Riccadonna, Giuseppe Jurman and

Cesare Furlanello.

minerva and minepy: a C engine for the MINE suite and its R, Python and MATLAB wrappers.

PN Bioinformatics (2013) 29(3): 407-408 first published online December 14, 2012
#doi:10.1093/bioinformatics/bis707.

-[Abstract [Full Text (HTML)] [Full Text (PDF)] [Supplementary Data] [Download citation]
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Albanese et al (Bioinformatics 2013): an open source implementation of MINE

Cesare Furlanello — FBK/MPBA - Sept2016

MINEPY (Python) , MINERVA (in R), also in MATLAB, Octave C++.




Microbiome: network differences
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The open source R package nettools and the dedicated web interface ReNette: a

complete implementation of the stability indicators and HIM with different network
inference methods (e.g. MIC)
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Example 1: Diet Induced Diversity

Diet induced diversity

“The effect of diet on the human gut microbiome: a

metagenomic analysis in humanized gnotobiotic mice.”
[Turnbaugh P et al, 2009]

- Illumina GA Il gut microbiome
16S rRNA-seq

- 389 low-fat, plant
polysaccharide-rich (LF) diet
269 high-fat, high-sugar
(Western) diet

i
=

60

50

404

Bacterial taxa {relative abundance)

- TASK. Compare the network

- Mu

CO-occurrence structure . westam
0 Bacteroidetes; Bacteroidetes B Firmicutes: Bacilli
[ Firmicutes; Clostridia O Firmicutes: Erysipelotrichi
B Actinobacteria; Actinobacteria [ Firmicutes: Unassigned

H Protecbacteria; Betaprotecbacteria [ Verrucomicrobia; Verrucomicrobiase
Cesare Furlanello - FBK/MPBA - Sept2016 Cysnobecieri; Cyanchecturis




Difference induced by diet: NETWORKS

 ONLY IN WESTERN DIET MICE
Co-occurrence of Actinobacteria
with Bacteroidetes, Firmicutes e
Verrucomicrobia

 ONLY IN LOW-FAT DIET MICE
Co-occurrence of Cyanobacteria
with Firmicutes and
Verrucomicrobia

* Western vs LF wrt taxonomy

Top 5 discriminant nodes

Phylum Western LF Total Rank %

Deferribactere

S 1.60E-06 0 6.53E-07
Fibrobacteres 1.55E-06 0 6.32E-07
Tenericutes 1.25E-05 0 5.12E-06

Lentisphaerae 1.34E-05 8.76E-07 5.98E-06
Cyanobacteria 1.67E-05 1.66E-06 7.81E-06

2.45
2.45
2.45
2.09
1.93

i Low-fat diet
E Western diet

Firmicutes

Nodes = Phyla (~ OTU abbondance)
Weighted edges: non linear MIC assoc.
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Gut microbiota and Gl in children with Autism Spectrum Disorder

Cesare Furlanello - FBK/MPBA - Sept2016

Example 2

[Kang et al, 2013]

Platform: Pyrosequencing 16S rDNA, Roche 454 FLX-Titanium

Mean: 24 695 reads per sample per campione

Bioinformatics Pipeline: FBK (taxa level: 712 species)

39 children (3-16 y) in 2 classes: 20 neurotypically developed, 19 ASD
ASD Phenotype: ADI-revised, ADOS, ATEC, PDD-BI

Gl: Gastro-Intestinal Severity Index, diet patterns survey*

TASK. Marker characterizing autism and Gl condition

OPEN @ ACCESS Freely available online @PLOS | oNe

Reduced Incidence of Prevotella and Other Fermenters
in Intestinal Microflora of Autistic Children

Dae-Wook Kang'?, Jin Gyoon Park?®, Zehra Esra Ilhan’, Garrick Wallstrom*?3, Joshua LaBaer?,
James B. Adams®, Rosa Krajmalnik-Brown'**

1Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America, 2 Virginia G. Piper Center for
Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America, 3 Department of Biomedical Informatics, Arizona State
University, Scottsdale, Arizona, United States of America, 4 School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, United States
of America, 5 School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, United States of America
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Results (Kang 2013)

Kang 2013
a. Limited association between 6-GSI score and severity of ASD

b. Difference in microbiome composition (richness, diversity)
c. Genus level: significant difference for 4 OTUs, specifically for
Prevotella, confirmed with qPCR, also for subgenus

Veillonellaceae E«q Prevotellaceae E"
unknown genus ¢...-.oo.¢ Prevotella ¢...-oo.®.¢
I | | I 1 | I 1 | | 1 |
-3 2 -1 0 1 2 8 -2 -1 0 1 2
Lachnospiraceae E}’* Lactobacillaceae ¢EE°"
Coprococcus |o ¢o.»..¢ Lactobacillus .,&.¢ 0
| | | I I | | | | | I |
3 ~2 <1 0 1 2 8 2 =t 0 1 2
Log, ,(relative abundance in %) Log, ,(relative abundance in %)
© Autism

® Neurotipical

Cesare Furlanello - FBK/MPBA - Sept2016



-3¢
. Results (FBK 2014)

a. Complete replication, from reads to biomarker extraction, based on the
FDA/SEQC Data Analysis Plan: classifier Support Vector Machine*

Taxonomic level (NCBI, 340 genera-712 species), which after filtering
105 genus, 195 species

RISULTATI:

70 species: Acc 72% (Cl1 0.69-0.76), OR: 7.11, with 3 sp in Prevotellae

b. Top 70 OTUs then used to develop co-abundance networks
* For all OTU pairs : Pearson correlation on normalized number of reads
(method: TMM-edgeR)
* Consider separately neurotypical development and ASD cases

GOAL: identify network difference

* (SVM-L2R/L2loss dual),

Cesare Furlanello - FBK/MPBA - Sept2016
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Network dysbiosis

Neurotipical

® OTU e Prevotellae = Link: Prevotellae — altra OTU

conserved
non conserved

Cesare Furlanello - FBK/MPBA - Sept2016



Cesare Furlanello - FBK/MPBA - Sept2016
| (
-2

FONDAZIONE

“*  Microbiota & Behaviour

Microbiota Modulate Behavioral and
Physiological Abnormalities Associated
with Neurodevelopmental Disorders

Janet Chow,' Sarah E. Reisman,” Joseph F. Petrosino,” Paul H. Patterson,'-** and Sarkis K. Mazmanian'."
'Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA

2Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

SAlkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA

“These authors contributed equally to this work L
*Correspondence: ehsiaoficaltech.edu (E.Y.H.), php@caltech.edu (P.H.P.), sarkis@caltech.edu (S.K.M.)
http://dx.dol.org/10.1016/).cell.2013.11.024

Elaine Y. Hsiao,'-"" Sara W. McBride,' Sophia Hsien,' Gil Sharon,' Embriette R. Hyde," Tyler McCue,”’ Julian A. Codelli,*

Hsiao et al., 19 Dec, 2013

Mice: 30 sequenced on 16S rRNA - Roche 454-Titanium

10 subjects with maternal immune activation (MIA) exhibit atypical
behaviours ASD-like (e.g. stereotypic, anxiety, reduced communication
and socialization ... ) + GSI

1. Microbiota is diverse from 10 mice fed with placebo
2. Bacteroides fragilis corrects the behavioural trait (10 MIA treated)
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B. fragilis

1. Improves gut barrier
integrity

2. Corrects species level
abnormalities

3. Ameliorates autism-related
behavioral abnormalities in
MIA offspring

Cesare Furlanello - FBK/MPBA - Sept2016

Anxiety and locomotion:

Open field exploration

A w00
o
'EZO-
c
]
e
2
S 104
o

S P P+BF

Stereotyped behavior: 1

Marble burying

C i
50 T
40+
2
= 30
=
e}
£ 20+
o
]
< 10-
0+
S P P+BF

Social Interaction:
Sociability

Social Interaction:
Social preference

Center duration (s)
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Communication:
Ultrasonic vocalizations

* *

eooq U I 1

O

Total number of calls

Sociability:
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Sensorimotor gating: —
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Hsiao et al., 19 Dec, 2013
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" Results (Hsiao et al 2013)

Limited diversity differences between MIA or control adults
b. Significant philogenetic distance between microbic communities:
OUT structure change is the main drivers of difference
c. 1474 OTUs identified, of which 67 discriminants (19+ controls, 48 MIA+),
with alteration in OTU mixtures for Bacteroidia and Clostridia classes

Q

B Clostridia and Bacteroidia OTUs

PC2 (10%)
S
o o o o P

_,’.L’—J\

PC3 (7.8%)

PC1 (12%)
Cesare Furlanello - FBK/MPBA - Sept2016
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Results (FBK)

a. Analysis on 1474 OTUs (Hsiao 2013):
after filtering: 351 OTUs |

OTU counts

b. Data Analysis plan from FDA/SEQC, °'| s
with SVM-L2R/L2loss dual i | |
c. RESULTS: ol | *
10 OTUs: Acc 93% (Cl 0.89-0.97), K
OR > 100 739 - |._ """""""""" |
|
NB: our top 10 markers are - —ll- """""""""" *
discriminants in Hsiao 2013 1 -
o | T +
OTU classes: i °
Erysipelotrichi: 61 **1
Bacteroidia: 44, 739, 671 163 - |.- """"""" *
Clostridiae: 145, 128, 956, 345, 53 e e
53 - |-
0 5 10 15 20 25

45

Cesare Furlanello - FBK/MPBA - Sept2016



IBD OPBG clinical dataset*

TRACKING GUT MICROBIOTA DYSBIOSIS AND HOST RESPONSE TO PREVENT IBD
AND IBS THROUGHOUT LIFE

Objectives of the bioinformatics analysis:
1.
2.

|dentification of omics markers as IBD/IBS predictors

Development of a dysbiosis scale useful to stratify the risk for IBS/IBD.

Outcomes (for clinical tests): \
1. .

2.

3.

New laboratory tests for IBD and IBS (biomarkers) —=

— |

Evaluation of the different staging of the dysbiosis status (risk factor) | i 1 '
Pyrosequencing:

Support to intervention protocols

barcoded pyrosequencing V1-V3 regions of

DATASET 1: the 16S rRNA gene (amplicon size 520 bp)
. - Fecal IBD/heaIthy on GS Junior platform (Roche 454)
CREDITS: - Paired biopsies IBD/ctrl
- OPBG (Lorenza Putignani)
- Dip. Univ. Pediatri — . DATASET 2:
ip. Univ. Pediatria e _:(G

Neuropsichiatria Infantile, - Biopsies health
Sapienza Universita di Roma WCB\/a“ey P
(S. Cucchiara) 2014 O O

Jul Nov



R
-5 IBD OPBG clinical dataset

/ Roche 454 GS Junior gut microbiome 16S rRNA-Seq \
- 30 IBD vs 27 healthy children (fecal samples)
- 15 paired (inflamed/control) biopsies from colon

- 20 colon biopsies from healthy individuals
\ - Age: 4 -19 years old /

Fecal IBD
(30)

/ \

Biopsy Healthy B; IBD ) Fecal Healthy
C (20) = OPSY (27)

NS
‘%»,,- +5
N

CBiopsy Control)
47




-5¢ IBD Classification models

Matthews correlation coefficient
(MCC): Indicator of predictive

performance
MCC=0 random classification Fecal IBD
MCC=1 perfect classification
(30)
MCC 0.74 (0.68-0.79) MCC 0.61 (0.52-0.68)
36 features 4 features
Biopsy Healthy : Fecal Healthy
” Biopsy IBD
C (20) > (27)
MCC 0.61 (0.54-0.68
( ) e
9 features ON +
0’/;@ i
o g
MCC 0.01 (0-0.02) MCC 0.81 (0.76-0.86)
3 features 30 features
CBiopsy Control)

48




Top discriminant features

Log10( relative abund )
10" 107 107 10 10°

l 1 llllllll L llllllll L llllllll L llllllll

f__Rikenellaceae (unsp. G)

f__[Barnesiellaceae] (unsp. G)

f__Coriobacteriaceae (unsp. G)

g__Dorea

Papa et al, 2012
Classes

Bl fecal IBD
BN fecal healthy

k__Bacteria (unsp. P)
g__Nitrosopumilus

g__Lachnospira
Gevers et al, 2014

g__[Ruminococcus]

g__Streptococcus

[Gevers et al, Cell Host & 0__Clostridiales (unsp. F)
Microbe, 2014]

f__Phyllobacteriaceae (unsp. G)

[Papa et al, PLoS ONE, 2012]



Chao 1

Bray-Curtis distance

Microbiome characterization

Alpha diversity
Classes
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Calprotectin level is associated to increasing

dysbiosis in Biopsy Networks
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10-24 [mg/kg]

Healthy : Calprotectin < 50 mg/kg

Phenotype: Cucchiara Lab - Rome 52
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Calprotectin level is associated to increasing

dysbiosis in Biopsy Networks
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Median OTUs abundance

25

15

10

Markers patterns vs Calprotectin

Features abundance vs Calprotectin range

- — i —
5 20 10 24 20 34 25 113 35 210

Calprotectin ranges [mg/Kg]

124_370

Feats
f _Erysipelotrichaceae;g__
g__Dialister
g__Oscillospira
g__[Ruminococcus]
g__Odoribacter
f__Lachnospiraceae;g__
g__Ruminococcus
g__Coprococcus
g__Dorea
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1 1

i__Erysipelotrichaceae (unsp. G)

g__Dialister

g__Oscillospira

g__[Ruminococcus]

g__Odoribacter

f__Lachnospiraceae (unsp. G)

g__Ruminococcus

g__Coprococcus

g__Dorea

Classes
biopsy_healthy
biopsy _infl



Biopsy IBD Networks

Co-occurrence nets for Pearson Correlation, for stronger links only (PCC > 0.5),
taxonomic assignment 6 levels deep: 20% presence filter > 3510 OTUs table led
to 168 OTUs,

Biopsy Healthy —

(20) Biopsy IBD

B_H_IBD
MCC 0.61 (0.54-0.68)

#reads
= =
o o -_—
he @ MCC plot
1 | i OPBG data (Nov2014): B_H_IBD [I1r_Ir minmax ]
f__Erysipelotrichaceae (unsp. G)
g__Dialister 08
—
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Biopsy networks trajectories

Calprotectin [5-20 mg/kg] vs other ranges

0.23
HIM distance: ('\ ‘}) 0.22
a quantitative method for evaluating differences \\ S )
between networks, here for metagenomics co- i
occurence. : )
Low distance means more similar networks. 0.21
=
<
Q
HIM distances between networks on samples with: 0.20 E)'_
: Y
=
lowest levels of calprotectin [5-20 mg/kg] 2
VS.
increasing levels of calprotectin [10 -374 mg/kg] 0.19
( ). 0.18
TN
0.17

10-24 20-34 25-113 124-370

Calprotectin [mg/kg]
S



Networks: healthy vs IBD

Co-occurrence nets for Pearson Correlation, for stronger links only (PCC > 0.5)

. /.
" . / 19 1 ’\
o .
e ..
13 17

Fecal, |
. Discriminant

taxa

Fecal, healthy

1: f_Barnesiellaceae

3:g Dorea

8: g_Streptococcus

9: o_Clostridiales

12: g Collinsella

13: (p_Proteobacteria);c_Gammaproteobacteria
15: p_Proteobacteria

18: f_Lachnospiraceae

=== Conserved links
Links conserved in healthy only

m== Links conserved in IBD only



Summary 1

o

Characterization of the bioinformatics/ML/network framework
(predictive classifiers+ networks) on

O Public data (Hsiao 2013, Kang 2013, Gevers 2014)
o High quality data/phenotype from OPBG (IBD and dysbiosis)
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m PROGRESS \ "IN PROGRESS: METHODS

A.

&

____________________

Integration of complementary
omics data: metagenomics,
metaproteomics, metabolomics

C. Dysbiosis trajectory:
microbiome
longitudinal dynamics by

On metaproteomics and network evolution

metagenomics data

A novel gut::brain study Autism
Spectrum Desorders
(UniTN-ODFLab, OPBG, FBK)

D. Functional
Metagenomics
Features (with N. Segata,
UniTN-CiBlo)

\
\
\
N
____________________ -
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ML Framework for Metagenomics

GPLOS | sateame

MetAML

(July 2016) Machine Learning Meta-analysis of Large
Metagenomic Datasets: Tools and Biological
- Insights

Edoardo Pasolli', Duy Tin Truong', Faizan Malik?, Levi Waldron?, Nicola Segata' *

1 Centre for Integrative Biology, University of Trento, Trento, Italy, 2 Graduate School of Public Health and
Health Policy, City University of New York, New York, New York, United States of America

A framework for validating computational tools for ML tasks in metagenomics

= 8 large-scale studies («shotgun» aka whole-genome, 2424 samples):
Liver Cirrhosis, Colorectal Cancer, Inflammatory Bowel Disease, Obesity, Type2
Diabetes, HMP Controls (~1K, no disease)

= Quantitative species/subspecies-level taxonomic profiling with MetaPhlAn2
Species (~ 500 features) vs strain (~100 000 features)
from 30-70 ML reads

= Support the systematic assessment of Models transferred between studies,
possibly on full archives on clinical outcomes.



M etA M L a Studies for validation b Addiftl(:n;L‘.’t?.lis‘::;i:';ts:;?:segies
1 2 n Stages for validation
RESULTS S -
2 §- Ccv'  CcStawh
g~ €SV, CcV, - CSV,, 5
o [ ] | . ] 1 1 (%)) — n n
A Data Analysis Plan oriented ¢ §)= cstav, ¢V
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validation on the k-th study validation on the t-th study

m U It I p I e I Og re g r, A N N ) B a ye S . Fig 1. Validation strategies implemented in the developed framework. (a) Main strategies include cross-validation on single studies and cross-

Logistic Regression

validation across multiple studies. (b) Additional strategies when multiple stages are available from the same study.

doi:10.1371/journal.pcbi.1004977.9001

1.Good disease prediction from metagenomic data in cv studies

2.RF advantage at species level

3.Best: strain-level markers and feature selection (with linear SVM > RF)
4.Extension to non-disease classification (gender, body site)
5.Cross-stage (labs ...) generalization is OK

6.Generalization improved by including healthy samples
from other cohorts

7.Good Cross-disease prediction (“general non-healthy status” = dysbiosis)



For reproducibility and upscaling

Output File
Dependency List
Pipelines as Makefiles
— Better automation
. . . . target: filel file2 file3 ... fileN
— Built-in control of parallelization €ras>  commandl
S < TaB> command?2 o

— Improved reproducibility & ran>

<7aB>  commandN

Galaxy Workflow Modeler —
— Automatic recording of analysis steps & parameters [==
—  Allows non-computational investigators to run

complex pipelines

Pushing pipelines on the Cloud
— Completely scalable infrastructure
— Use of computing resources as a service

— pay-as-you-go amazon
web services™

') Google Cloud Platform
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S
- Summary 2

Hunting patterns in metagenomes
with ML

1. Questions start from high throughput
metagenomics (aim to whole-genome, 100K features)
- ML framework: now available for a quick start

2. Bioinformatics pipelines
- The FDA/SEQC protocols for predictive markers
- Differential Network Analysis

Example 1: Markers and Diet (gut microbiome)
Example 2: Gut:brain axis (autism)
Example 3: Pediatric Dysbiosis
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