

Ontology of Data Mining

Panče Panov

Jožef Stefan Institute, Department of Knowledge Technologies

Ljubljana, Slovenia

Joint work with Larisa Soldatova and Sašo Džeroski

Available @ http://www.ontodm.com

MAESTRA Summer School on Mining Big and Complex Data, Ohrid, Macedonia, 5 SEP 2016

Outline

- Ontologies in a nutshell
- The domain of data mining
- Ontologies for data mining
 - Ontology of datatypes
 - Ontology of core data mining entities
- Use cases
- Conclusions

What is an ontology?

- Ontology the "science of being"
- Different meanings in different contexts
 - Philosophical -- categorical analysis
 - ``What are the entities in the world?", ``What are the categories of entities?"
 - Computer science -- creation of engineering models of the reality
 - used by software, directly interpreted and reasoned over by inference engines
 - In AI: "Specification of a conceptualization"
- Our context: Ontologies as data and knowledge models
 - logically defined, flexible and interoperable representations of principal domain entities

Basic ontology vocabulary – The pizza

domain IceCream **RELATIONS CLASSES** Food Pizza and (hasTopping some CheeseTopping) CheeseyPizza DeepPanBase PizzaBase Pizza and (hasTopping some MeatTopping) MeatyPizza Thin&Crispy Base Pizza and (not (hasTopping some FishTopping)) hasBase VegetarianPizza and (not (hasTopping some MeatTopping)) CheeseTopping Pizza InterestingPizza Pizza and (hasTopping min 3 Topping) MeatTopping hasTopping Pizza and (not (VegetarianPizza)) NonVegetarianPizza VegetableTopping Topping FishTopping Pizza and (hasBase only ThinAndCrispyBase) ThinAndCrispyPizza FishTopping Pizza and (hasTopping some SpicyTopping) Sp **AXIOMS** SouceTopping **INSTANCES** SpicyTopping

Ontology source: http://protege.stanford.edu/ontologies/pizza/pizza.owl

Why are ontologies useful?

- Formalize core domain entities
 - using some logical representation (e.g., Description Logic)
- Specify controlled vocabularies
 - Integration of heterogeneous data
 - Annotation of experimental data
 - Assist to information retrieval
 - Assist to literature mining
- Provide interoperability services
 - Exchange of data among different systems

•

How do we build ontologies?

- No universally accepted design principles
- Best practices: Open Biomedical Ontologies (OBO) foundry
 - State-of-the-Art in the biomedical domains
 - 19 recommendations for building ontologies
 - Upper-level ontology as a guidance prototype
 - Standardized relations
 - Avoidance of multiple inheritance
 - Development of orthogonal resources
 - ...
- Ontology engineering methodologies:
 - TOVE, METHONTOLOGY, On-To-Knowledge, NeOn ...
- Use of semantic languages, query languages and tools
 - Resource Description Framework (RDF), RDF Schema, Ontology Web Language (OWL)
 - SPARQL and SPARQL-DL query languages
 - Integrated ontology engineering environment Protégé

Why do we need an ontology of data mining?

- Help us understand in more depth how things in DM function
- Annotation and querying
 - Machine learning dataset repositories
 - Repositories of data mining algorithms
 - Machine learning experiments
 - Data mining papers
- Automatic workflow construction
- Describe data mining scenarios in domain applications

The Big Picture: The process of knowledge discovery

Source: The **CRISP-DM** user guide

- Data mining deals with analyzing different types of data
- The data is organized in a form of a dataset
 - Composed of data examples
 - The structure is described by datatype
- The task of data mining is to produce some type of a output from a given dataset
 - We call this output a generalization
 - Predictive model, set of patterns, probability distribution, clustering ...
- A data mining task is solved by using a data mining algorithm
 - Algorithms are implemented as a computer program
 - When executed they take as input a dataset and give as output a generalization

What is our task?

- To formally represent the process of data mining
 - Datatypes, data examples, datasets
 - Data mining tasks
 - Data mining algorithms
 - Models, patterns, sets of clusters, probability distributions (we call these generalizations)
- To formally represent the knowledge discovery (KD) process
 - Phases of the KD process
 - Inputs and outputs
- Express it in a semantic language
 - OWL language based on description logic (DL)

The OntoDM data mining ontology

- Built using best practices from biomedical domains
 - the OBO Foundry principles [Smith et al., 2007]
- Complementary to and integrated with state-of-the-art ontologies for representing scientific knowledge
 - Interoperability with other resources
 - Allows for cross-domain reasoning
- Use of upper level ontology
 - Basic Formal Ontology (BFO) as a template
 - Small set of formally defined relations
- Reuse of classes from other ontologies
 - Ontology of Biomedical Investigations (OBI)
 - Information Artifact Ontology (IAO)
 - Software Ontology (SWO)
- Modular ontology
 - Three ontology modules (OntoDT, OntoDM-core, OntoDM-KDD)
 - Modules can be used together and independently
- Today we focus on OntoDT and OntoDM-core

Ontology modules

- OntoDT Ontology of datatypes
- Representation of scientific knowledge about datatypes
- Available @ http://www.ontodt.com

Information Sciences

Volume 329, 1 February 2016, Pages 900-920

Special issue on Discovery Science

Generic ontology of datatypes

Panče Panov [♣] · ^a · Larisa N. Soldatova^d · Sašo Džeroski^{a, b, c} · [™]

Ontology of datatypes – OntoDT

- Mid-level ontology
- Based on International Standard for Datatypes in Computer Systems ISO/IEC 11404
 - Terminology and semantics for a collection of data types
 - Programming languages and software interfaces
 - The datatypes defined in the standard are general in
- The generic nature enables support to a wide range of other applications
- The notion of a datatype is very important in data mining
 - Characterize the types of data contained in a dataset
 - Applicability of a data mining task on data from a given datatype
 - Applicability of a data mining algorithm on a dataset

P. Panov, L. N. Soldatova, S. Džeroski (2016) "Generic ontology of datatypes", Information sciences 329:900-920 doi: 10.1016/j.ins.2015.08.006

The basic structure of OntoDT

Example of a datatype class

Taxonomy of datatypes

- Primitive datatypes
 - defined by explicit specification and are independent of other datatypes
 - E.g., Real, Integer, Ordinal, Enumerated, Discrete, Boolean
- Generated datatypes
 - syntactically and semantically dependent of other datatypes and are specified implicitly with datatype generators.
 - E.g., bag, set, sequence, array, tuple
- User defined datatypes
 - defined by a datatype declaration
 - allow defining additional identifiers and refinements to both primitive and generated datatypes.
 - E.g., tree, graph

Taxonomy of primitive datatypes

Taxonomy of generated datatypes

Aggregate properties

access type
aggregate-imposed ordering
aggregate-imposed identifier uniqueness
aggregate size
component mandatoriness
homogeneity
recursiveness
uniqueness
structuredness

ONTODM ONTOLOGY OF DATA MINIG

Example: Datatypes describing the Iris

Ontology modules

- OntoDM-core Ontology of core data mining entities
- Representation of core data mining entities
- Available @ http://www.ontodm.com

Data Mining and Knowledge Discovery

September 2014, Volume 28, <u>Issue 5</u>, pp 1222–1265

Ontology of core data mining entities

Panče Panov M, Larisa Soldatova, Sašo Džeroski

Ontology of core data mining entities - OntoDM-core

- Based on a proposal for a general framework for data mining (Džeroski, 2007)
- OntoDM-core describes the most essential data mining entities
 - Data specification
 - Dataset
 - Data mining task
 - Data mining algorithm
 - Generalizations (patterns, models)
- Taxonomies of datasets, data mining tasks, generalizations, data mining algorithms based on the type of data.
- Representational framework for description of mining of structured data

Design structure

ONTODN Ontology of data M

Core data mining entities

Data mining algorithm

Outputs

Data specification

- One of the most important representational aspects
 - Data specification describes the datatype of the data examples
 - Datatypes are further specified with the OntoDT ontology
- Defines other entities
 - dataset specification, data mining task, generalization specification
- Two types of specifications
 - Descriptive data specification
 - data used for descriptive purposes (e.g., attributes or features)
 - Output data specification
 - data used for predictive purposes (e.g., classes/targets)

Examples of different types of data

- Unlabeled data only descriptive part
 - Feature-based data example ([tuple of primitives])
 - Transactional data example ({set of discrete})
- Labeled data both descriptive and output parts
 - Feature-based data example with primitive output
 - ([tuple of primitives],real)
 - ([tuple of primitives],boolean)
 - ([tuple of primitives], discrete)
 - Feature-based data example with structured output
 - ([tuple of primitives],[tuple of reals])
 - ([tuple of primitives],[tuple of discrete])
 - ([tuple of primitives],{set of discrete})
 - ([tuple of primitives],(sequence of real))
 - ([tuple of primitives], tree with boolean edges and discrete nodes)
 - ([tuple of primitives], DAG with boolean edges and discrete nodes)

Data mining task

- The task of data mining is to produce a generealization from given data
 - Patterns, models, clusterings
- Data mining task depends directly on the data specification
 - Taxonomy of data mining tasks based on the data specifications
- Four top level data mining tasks
 - Clustering defined for unlabeled data
 - Pattern discovery defined for unlabeled data
 - Probability distribution estimation defined for unlabeled data
 - Predictive modeling defined for labeled data
- Predictive modeling is represented in more detail

Predictive modeling task taxonomy multi-target multi-target D:Tp(P) D:Tp(P) classification prediction Tp(Ds or B) O: Tp(P) task task ([tuple of primitives],[tuple of reals]) multi-target multi-label D:Tp(P) D:Tp(P) regression Structured output O: Tp(R) classification O: St(Ds) task task prediction tasks feature-based tree based time-series D: Tp(P) D:T(P) structured output D: Tp(P) hierarchical prediction O: Sq(R) prediction task O: Tr(Ed:B, classification task Nd:Ds) task structured output structure-based DAG based hierarchical prediction D:Tp(P) structured output hierarchical classification D:Tp(P) O: LG(Ed:B. task prediction task classification task O: DAG(Ed:B. Nd:Ds) predictive task Nd·Ds) modelling binary task D: Tp(P) regression D: Tp(P) feature-based classification primitive 0: R D: Tp(P) task primitive output task O: P output prediction task prediction multi-class flat D:Tp(P) D: Tp(F) task classification classification O:D or B O: Ds Primitive output task task structure-based prediction tasks ([tuple of primitives], discrete) primitive output prediction task

Use case: Annotating and querying data mining algorithm repositories

- We annotated a software system that contains algorithms for structured output prediction using OntoDM-core and OntoDT
 - The Clus software Tree and rule learning system based on predictive clustering (https://dtai.cs.kuleuven.be/clus/)
 - Gives as output generalizations predictive clustering trees (PCTs) and rules (PCRs)
 - Single and ensemble algorithms for primitive and structured output prediction tasks
 - Classification, regression, multi-target prediction, hierarchical classification, multi-label classification, time-series prediction
- We populated the ontology with Clus instances:
 - 29 DM task instances, 22 generalization specification instances, 48 DM algorithm instances, 40 classes of datasets and 79 instances of datasets, 2 language specification instances

Types of queries and reasoning

Query types

- 1. Queries that concern only classes (TBox queries)
 Find all subclasses of predictive modeling single generalization algorithm that has as part structured output prediction task.
- 2. Queries that concern only instances (ABox queries)
 Find all data mining algorithms that can be applied on Yeast dataset having as a result a generalizion that is expressed in the language of PCRs.
- 3. Mixed queries (ABox/TBox queries) Find all datasets to which the bagging of multi-target classification PCTs algorithm can be applied.

Reasoning

- HermiT 1.3.8 reasoner
- asserted+inferred ontology was queried
- SPARQL and SPARQL-DL query languages

Example

Find all algorithms that solve a structured output prediction task, produce a generalization expressed in the language of PCTs as output, and are applicable to the EDM dataset

SELECT DISTINCT ?dataMiningAlgorithm

```
WHERE { ?dataMiningAlgorithm RO:has_part ?dataMiningTask .
  ?datasetSpecification RO:has part ?outputDataSpecification .
  ?generalizationSpecification RO:has part OntoDM-clus:OntoDM clus 00106.
  ?datasetSpecification RO:has_part ?descriptiveDataSpecification .
  ?dataMiningTask RO:has part ?outputDataSpecification.
  ?generalizationSpecification RO:has_part ?descriptiveDataSpecification .
  ?dataMiningAlgorithm RO:has_part ?generalizationSpecification .
  ?generalizationSpecification RO:has_part ?outputDataSpecification .
  ?dataMiningTask RO:has_part ?descriptiveDataSpecification .
  ?datasetSpecification OBO:IAO 0000136 ?datasetInstance.
  ?datasetInstance rdf:type OntoDM-clus:OntoDM_clus_00266.
  ?outputDataSpecification rdf:type OntoDM-core:OntoDM 000027.
  ?datasetSpecification rdf:type OntoDM-core:OntoDM_000031.
  ?descriptiveDataSpecification rdf:type OntoDM-core:OntoDM 000247.
  ?dataMiningTask rdf:type OntoDM-core:OntoDM 600958.
  ?dataMiningAlgorithm rdf:type OntoDM-core:OntoDM 000038.
                                  SPARQL QUERY
```

QUERY RESULTS

dataMiningAlgorithm

```
algorithm_s:clus-Bagging-MTC-PCTs
algorithm_s:clus-RandomSubspace-MTC-PCTs
algorithm_s:clus-SubBag-MTC-PCTs
algorithm_s:clus-RandomForest-MTC-PCTs
algorithm_s:clus-MTC-PCTs
algorithm_s:clus-MTR-PCTs
algorithm_s:clus-Bagging-MTR-PCTs
algorithm_s:clus-RandomSubspace-MTR-PCTs
algorithm_s:clus-RandomForest-MTR-PCTs
algorithm_s:clus-SubBag-MTR-PCTs
```


Use case: Annotation and modelling of QSAR studies

- Quantitative Structure-Activity Relationship (QSAR) modeling
 - Key components of the drug discovery pipeline
 - Used for rapid prediction and virtual prescreening of compound activity
- QSAR algorithm is usually a DM algorithm
 - Input is a description of a set of compounds with associated pharmacological activities
 - Output is a predictive model of activity
- What did we do?
 - Used OntoDM-core in a combination with the Drug Discovery Ontology (DDI) to represent the QSAR modeling process
 - Proposed an annotation schema for annotating QSAR studies

Use case: Representing machine learning experiments

- Storing information about machine learning (ML) experiments
 - Machine learning experiment database proposed and implemented by Vanschoren et al. (2012)
 - This effort recently evolved to the OpenML platform available at http://openml.org/
- The database design and overall framework is based on the ontology named Exposé
 - Built using the same design principles as OntoDM-core
 - Uses OntoDM-core as a mid-level ontology and reuses and extends its classes

Conclusion

- OntoDM is designed and implemented by following ontology best practices and design principles
 - 3 modular ontolologies
 - Used together or independently depending on the use case
 - Fully interoperable with many application domain resources
- Generic representation used to describe the mining of structured data
 - It can be easily extended to cover new tasks and algorithm that operate on data of arbitrarily complex datatypes
- Provides support for a variety of applications:
 - Annotation and representation of datasets, data mining algorithms
 - Data mining scenarios, and knowledge discovery scenarios
 - Annotation and comparison of QSAR studies
 - Annotation of articles containing data mining terms
 - It can be used as a mid-level ontology by other ontologies

Future work

- Several directions for future work
- Align and map OntoDM-core to other upper-level ontologies (e.g., YAMATO)
- Allign to and reuse other related domain ontologies
- Extend OntoDM-core with components of learning algorithms (e.g., distance functions)
- Extend the ontology in the dimensions covered by the MAESTRA project (work in progress)
 - data stream mining
 - semi-supervised mining
 - network context
- Populate the ontology with more instances

Questions and feedback are welcome!

