Mars Express Power Challenge

European Space Agency

Martin Breskvar, Dragi Kocev, Jurica Levatić, Aljaž Osojnik, Matej Petković, Nikola Simidjievski, Bernard Ženko

Jožef Stefan Institute

Ohrid, September 5 2016

The equipment needs to be at certain temperature:Electronics – room temp.

• Imaging sensors - low temp.

Science Power = Produced Power - Thermal Power

The Problem

Given: data for 3 Martian years:
Year 1: 2008-08-22 to 2010-07-10
Year 2: 2010-07-10 to 2012-05-27
Year 3: 2012-05-27 to 2014-04-14

Multitarget regression

Predict: power consumption of 33 thermal lines for
Year 4: 2014-04-14 to 2016-03-01 (per hour)

The Data

- Solar Aspect Angles (SAAF)
- Detailed Mission Operations Plan (DMOP)
 subsystem on/off
- Flight Dynamics TimeLine with pointing events (FTL)
- Long term data
 - solar constant, mars-sun distance etc.
- Other events
 - Umbras, pen-umbras...
- 33 target attributes:
- Measured electric current every 30-60 seconds

Solar Aspect angles

6

ut_ms: unix timestamp in milliseconds
sa: angle of Mars Express solar panels' normal
sx: solar angle of the X axis of satellite
sy: solar angle of the Y axis of satellite
sz: solar angle of the Z axis of satellite

Detailed Mission Operations Plan

- ut_ms: unix timestamp in milliseconds
- subsystem: name of the operated subsystem command

Unix timestamp, Subsystem 121937050000, AXXX305A 1219370632000, AXXX3AFF 1219370819000, MAPO.000008333

Other events:

Unix timestamp, Description 121937050000, "1200 KM_DESCEND, 1219370632000, "MRB_AOS_10," 1219370819000, "800_KM_DESCEND," 1219370902000, "MAR_PENUMBRA_START, 1219370986000, "MAR_UMBRA_START," 1219371075000, "MAR_UMBRA_END,"

Feature Construction

- Data time frame (resolution)
- Current solar radiation
- Solar radiation in the past
- DMOP and FTL (orbiter commands and pointing events)

Data time frame

- Power data (targets) typically measured in 30-60s intervals with a lot of gaps
- 1min time resolution (=time step)
- Fixed 60s time step for entire data set
 Remove larger gaps (5 or 10 time steps)
- Linear interpolation and integration for continuous data (electric, solar power)

▶2.6 million examples!

Current Solar Radiation

 For each of the 6 six sides of the orbiter + solar panels:

$A_E = A \max\{\cos\alpha, 0\}$ $\texttt{feat}(t_i) = \int_{t_i}^{t_{i+1}} A_E(t)c(t)U(t)dt$

• Using orbiter orientation angles α , solar constant *c* and (pen)umbra coefficient *U*

Orbiter History

- Current orbiter state depends on its state in the past
- Lagged features
- Summed features

$\texttt{feat-sumN}(t_i) = \sum_{t=t_{i-1}}^{t_{i-N}} \texttt{feat}(t)$

• N = 4, 16, 32, 64, 128

DMOP and FTL Features

- DMOP: when different subsystems' commands have been triggered
- ≻Time since (max 1 day) activation for:
 - all command/subsystem pairs
 - any command for a given subsystem
- FTL: when different spacecraft pointing events took place + communication with Earth
- Event Active/Inactive

Final Data Set

- 1 min time resolution
- 465 features
- 2.6M examples
- 7.4 GB
- Newer versions:
 - 1 and 2 min time resolution
 - Lagged and summed DMOP and FTL
 - 600 and 1200 features
 - 2.6M and 1.3 M examples
 - 17 GB

Machine Learning

What we tried:

- Predictive Clustering Trees (PCTs)
- Random Forests of PCTs
- Single target and multi target prediction
- Clustering of targets to combine ST and MT
- Tuning of RF parameters
- All data (years 1+2+3) and only recent data (3rd year)
- A few different data sets
- Feature ranking
- Ensemble of ensembles
- Extreme Gradient Boosting

What worked best?

- Random Forests of PCTs:
 - 200 trees in ensemble
 - minimum of 500 examples in tree leafs
 - consider ¼ of all features (instead of sqrt)
- Smaller data set (465 features, 2.6M examples, 7.4 GB)
- Single target prediction (6th place -> 1st place)
- Training time: ~15h per target
- ~100 Gb of RAM

What the Others Did?

17

- 1h time resolution
- Extreme Gradient Boosting, Neural Nets, Ensembles of ensembles
- Multi target to single target conversion (new attribute specifying the target):
 - Original dataset (F=Feature, L=Power Line): F_{1} F_{2} | L_{1} L_{2} 1.3 0.2 | 0.4 0.61.9 1.2 | 0.2 0.7

Flattened dataset (LID = Line ID): $F_1 F_2 LID L$ 1.3 0.2 1 0.4 1.3 0.2 2 0.61.9 1 2 1 0.2

Leaderboard :-)

Leaderboard

Name	Submissions	Last Submission	Best Submission	Best Score
MMMe8	21	July 30, 2016, 9:17 a.m.	July 30, 2016, 9:17 a.m.	0.0803769211622248
redrock	58	July 29, 2016, 11:39 p.m.	July 29, 2016, 11:39 p.m.	0.0804496833344005
fornaxintospace	58	July 29, 2016, 7:38 p.m.	July 29, 2016, 7:38 p.m.	0.0819239101733324
Alex	42	July 22, 2016, 8:24 p.m.	July 22, 2016, 8:22 p.m.	0.0846394180545192
trnka	38	July 29, 2016, 9:12 p.m.	May 22, 2016, 8:23 a.m.	0.0906015604695004
W	49	July 29, 2016, 8:12 p.m.	July 29, 2016, 8:12 p.m.	0.0906458520844299
otto	10	July 29, 2016, 7:35 p.m.	July 29, 2016, 7:35 p.m.	0.0966951084083446
Gagan@Gowda	39	July 30, 2016, 2:59 a.m.	July 30, 2016, 2:59 a.m.	0.0976163772137674
dinesh	26	July 30, 2016, 6:14 a.m.	July 28, 2016, 5:15 p.m.	0.0987883463469848
qianzhaozhi	3	May 26, 2016, 3:56 p.m.	May 25, 2016, 5:52 p.m.	0.0997231086092421
Mars_km.dfki	21	July 29, 2016, 7:13 p.m.	July 29, 2016, 7:13 p.m.	0.0997384213146519

Leaderboard :-(

Leaderboard

Name	Submissions	Last Submission	Best Submission	Best Score
redrock	64	July 31, 2016, 11:57 p.m.	July 31, 2016, 11:48 p.m.	0.0802580418739296
MMMe8	24	July 31, 2016, 11:53 p.m.	July 30, 2016, 9:17 a.m.	0.0803769211622248
fornaxintospace	63	July 31, 2016, 11:56 p.m.	July 29, 2016, 7:38 p.m.	0.0819239101733324
Alex	42	July 22, 2016, 8:24 p.m.	July 22, 2016, 8:22 p.m.	0.0846394180545192
luis	6	July 31, 2016, 11:56 p.m.	July 31, 2016, 11:56 p.m.	0.089078627464354
w	53	July 31, 2016, 5:06 p.m.	July 31, 2016, 5:06 p.m.	0.0895714760419749
trnka	42	July 31, 2016, 11:57 p.m.	May 22, 2016, 8:23 a.m.	0.0906015604695004
Gagan@Gowda	41	July 31, 2016, 10:39 p.m.	July 31, 2016, 10:39 p.m.	0.0963982366953394
vaseen	11	July 31, 2016, 11:13 p.m.	July 30, 2016, 5:42 p.m.	0.0964198045933572

Final Results :-)

Results

Rank	Name	Submission Date (UTC)	Score
1	MMMe8	July 30, 2016, 7:17 a.m.	0.079163638689759466
2	redrock	July 31, 2016, 9:48 p.m.	0.080301894079712499
3	fornaxintospace	July 29, 2016, 5:38 p.m.	0.081925542258189737
4	Alex	July 22, 2016, 6:22 p.m.	0.083848704280679837
5	luis	July 31, 2016, 9:56 p.m.	0.088395630359812905
6	w	July 31, 2016, 3:06 p.m.	0.088993096282001347
7	trnka	May 22, 2016, 6:23 a.m.	0.089866726592717425
8	Gagan@Gowda	July 31, 2016, 8:39 p.m.	0.096160889582667899
9	vaseen	July 30, 2016, 3:42 p.m	0.096190288456035195

Special Thanks

21

CNI JSI & ARNES

Team

