
Architectures for Distributed Mining of Big Data

Albert Bifet (@abifet)

MAESTRA Summer School, 6 September ���6
albert.bifet@telecom-paristech.fr

Big Data

BIG DATA are data sets so large or complex that
traditional data processing applications can not deal with.

BIG DATA is an OPEN SOURCE Software Revolution.

Big Data

BIG DATA are data sets so large or complex that
traditional data processing applications can not deal with.

BIG DATA is an OPEN SOURCE Software Revolution.

Big Data 6V’s

• Volume
• Variety
• Velocity
• Value
• Variability
• Veracity

Controversy of Big Data

• All data is BIG now
• Hype to sell Hadoop based systems
• Ethical concerns about accessibility
• Limited access to Big Data creates new digital divides
• Statistical Signi�cance:

• When the number of variables grow, the number of fake
correlations also grow Leinweber: S&P ��� stock index
correlated with butter production in Bangladesh

Batch and Streaming Engines

Figure: Batch, streaming and hybrid data processing engines.

Motivation MapReduce

How Many Servers Does Google Have?

Figure: Asking Google

Typical Big Data Challenges

• How do we break up a large problem into smaller tasks that can
be executed in parallel?

• How do we assign tasks to workers distributed across a
potentially large number of machines?

• How do we ensure that the workers get the data they need?
• How do we coordinate synchronization among the different

workers?
• How do we share partial results from one worker that is needed

by another?
• How do we accomplish all of the above in the face of software

errors and hardware faults?

Google 2004

There was need for an abstraction that hides
many system-level details from the

programmer.

MapReduce addresses this challenge by
providing a simple abstraction for the

developer, transparently handling most of the
details behind the scenes in a scalable, robust,

and efficient manner.

Google 2004

There was need for an abstraction that hides
many system-level details from the

programmer.

MapReduce addresses this challenge by
providing a simple abstraction for the

developer, transparently handling most of the
details behind the scenes in a scalable, robust,

and efficient manner.

Jeff Dean

MapReduce, BigTable, Spanner
MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat
OSDI’04: Sixth Symposium on Operating System Design and
Implementation

Jeff Dean Facts

Google Culture Facts
”When Jeff Dean designs software, he first codes the binary and
then writes the source as documentation.”
”Jeff Dean compiles and runs his code before submitting, but only to
check for compiler and CPU bugs.”

Jeff Dean Facts

Google Culture Facts
“The rate at which Jeff Dean produces code jumped by a factor of 40
in late 2000 when he upgraded his keyboard to USB2.0.”
”The speed of light in a vacuum used to be about 35 mph. Then Jeff
Dean spent a weekend optimizing physics.”

MapReduce

References

Numbers Everyone Should Know (Jeff Dean)

L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns
Send packet CA to Netherlands to CA 150,000,000 ns

Typical Big Data Problem

• Iterate over a large number of records
• Extract something of interest from each
• Shuffle and sort intermediate results
• Aggregate intermediate results
• Generate final output

Typical Big Data Problem

• Iterate over a large number of records
• Extract something of interest from each –MAP–
• Shuffle and sort intermediate results
• Aggregate intermediate results –REDUCE–
• Generate final output

Functional Programming

Figure: Map as a transformation function and Fold as an aggregation
function

Map and Reduce functions

• In MapReduce, the programmer defines the program logic as
two functions:
• map: (k1, v1) ! list[(k2, v2)]

• Map transforms the input into key-value pairs to process
• reduce: (k2, list[v2]) ! list[(k3, v3)]

• Reduce aggregates the list of values for each key

• The MapReduce environment takes in charge distribution
aspects.

• A complex program can be decomposed as a succession of
Map and Reduce tasks

Simplified view of MapReduce

Figure: Two-stage processing structure

An Example Application: Word Count

Input Data
foo.txt: Sweet, this is the foo file

bar.txt: This is the bar file

Output Data
sweet 1

this 2

is 2

the 2

foo 1

bar 1

file 2

WordCount Example

1: class Mapper
2: method Map(docid a,doc d)
3: for all term t 2 doc d do
4: Emit(term t, count 1)
5: end for
6: end method
7: end class

1: class Reducer
2: method Reduce(term t, counts [c1, c2, . . .])
3: sum 0
4: for all count c 2 counts [c1, c2, . . .] do
5: sum sum + c
6: end for
7: Emit(term t, count sum)
8: end method
9: end class

Simple MapReduce Variations

No Reducers

Each mapper output is directly written to a file disk

No Mappers
Not possible!

Identity Function Mappers
Sorting and regrouping the input data

Identity Function Reducers
Sorting and regrouping the data from mappers

Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers
Not possible!

Identity Function Mappers
Sorting and regrouping the input data

Identity Function Reducers
Sorting and regrouping the data from mappers

Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers

Not possible!

Identity Function Mappers
Sorting and regrouping the input data

Identity Function Reducers
Sorting and regrouping the data from mappers

Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers
Not possible!

Identity Function Mappers
Sorting and regrouping the input data

Identity Function Reducers
Sorting and regrouping the data from mappers

Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers
Not possible!

Identity Function Mappers
Sorting and regrouping the input data

Identity Function Reducers
Sorting and regrouping the data from mappers

MapReduce Framework

Figure: Runtime Framework

MapReduce Framework

• Handles scheduling
• Assigns workers to map and reduce tasks

• Handles “data distribution”
• Moves processes to data

• Handles synchronization
• Gathers, sorts, and shuffles intermediate data

• Handles errors and faults
• Detects worker failures and restarts

• Everything happens on top of a distributed filesystem

Fault Tolerance

The Master periodically checks the availability and reachability of
the tasktrackers (heartbeats) and whether map or reduce jobs make
any progress
• if a mapper fails, its task is reassigned to another tasktracker
• if a reducer fails, its task is reassigned to another tasktracker;

this usually require restarting mapper tasks as well (to produce
intermediate groups)

• if the jobtracker fails, the whole job should be re-initiated
Speculative execution: schedule redundant copies of the remaining
tasks across several nodes

Complete MapReduce Framework

Figure: Partitioners and Combiners

Partitioners and Combiners

Partitioners
Divide up the intermediate key space and assign intermediate
key-value pairs to reducers: “simple hash of the key”

partition: (k, number of partitions)! partition for k

Combiners
Optimization in MapReduce that allow for local aggregation before
the shuffle and sort phase: “mini-reducers”

combine: (k2, list[v2])! list[(k3, v3)]

Run in memory, and their goal is to reduce network traffic.

MapReduce Algorithms

Simple MapReduce Algorithms

Distributed Grep
• Grep: reports matching lines on input files

• Split all files across the nodes
• Map: emits a line if it matches the specified pattern
• Reduce: identity function

Count of URL Access Frequency
• Processing logs of web access

• Map: outputs <URL,1>

• Reduce: Adds together and outputs <URL, Total Count>

Simple MapReduce Algorithms

Reverse Web-Link Graph
• Computes source list of web pages linked to target URLs

• Map: outputs <target,source>

• Reduce: Concatenates together and outputs <target,

list(source)>

Inverted Index
• Build an inverted index

• Map: emits a sequence of <word, docID>

• Reduce: outputs <word, list(docID)>

WordCount Example Revisited

1: class Mapper
2: method Map(docid a,doc d)
3: for all term t 2 doc d do
4: Emit(term t, count 1)
5: end for
6: end method
7: end class

1: class Reducer
2: method Reduce(term t, counts [c1, c2, . . .])
3: sum 0
4: for all count c 2 counts [c1, c2, . . .] do
5: sum sum + c
6: end for
7: Emit(term t, count sum)
8: end method
9: end class

WordCount Example Revisited
1: class Mapper
2: method Map(docid a,doc d)
3: for all term t 2 doc d do
4: Emit(term t, count 1)
5: end for
6: end method
7: end class

1: class Mapper
2: method Map(docid a,doc d)
3: H new AssociativeArray
4: for all term t 2 doc d do
5: H{t} H{t}+ 1 . Tally counts for entire document
6: end for
7: for all term t 2 H do
8: Emit(term t, count H{t})
9: end for

10: end method
11: end class

WordCount Example Revisited

1: class Mapper
2: method Initialize
3: H new AssociativeArray
4: end method
5: method Map(docid a,doc d)
6: for all term t 2 doc d do
7: H{t} H{t}+ 1 . Tally counts across documents
8: end for
9: end method

10: method Close
11: for all term t 2 H do
12: Emit(term t, count H{t})
13: end for
14: end method
15: end class

Word count mapper using the“in-mapper combining”.

Average Computing Example

Example
Given a large number of key-values pairs, where
• keys are strings
• values are integers

find all average of values by key

Example
• Input: <‘‘a’’,1>, <‘‘b’’,2>, <‘‘c’’,10>, <‘‘b’’,4>,

<‘‘a’’,7>

• Output: <‘‘a’’,4>, <‘‘b’’,3>, <‘‘c’’,10>

Average Computing Example

1: class Mapper
2: method Map(string t, integer r)
3: Emit(string t, integer r)
4: end method
5: end class
1: class Reducer
2: method Reduce(string t, integers [r1, r2, . . .])
3: sum 0
4: cnt 0
5: for all integer r 2 integers [r1, r2, . . .] do
6: sum sum + r
7: cnt cnt + 1
8: end for
9: ravg sum/cnt

10: Emit(string t, integer ravg)
11: end method
12: end class

Average Computing Example

Example
Given a large number of key-values pairs, where
• keys are strings
• values are integers

find all average of values by key

Average computing is not associative
• average(1,2,3,4,5) 6= average(average(1,2), average(3,4,5))
• 3 6= average(1.5, 4) = 2.75

Monoidify!

Monoids as a Design Principle for Efficient
MapReduce Algorithms (Jimmy Lin)
Given a set S, an operator � and an identity element e, for all a, b,c in
S:
• Closure: a� b is also in S.
• Associativity: a� (b� c) = (a� b)� c
• Identity: e� a = a� e = e

Average Computing Example

1: class Mapper
2: method Initialize
3: S new AssociativeArray
4: C new AssociativeArray
5: end method
6: method Map(string t, integer r)
7: S{t} S{t}+ r
8: C{t} C{t}+ 1
9: end method

10: method Close
11: for all term t 2 S do
12: Emit(term t,pair (S{t},C{t}))
13: end for
14: end method
15: end class

MapReduce Big Data Processing

A given application may have:
• A chain of map functions

• (input processing, filtering, extraction. . .)
• A sequence of several map-reduce jobs
• No reduce task when everything can be expressed in the map

(zero reducers, or the identity reducer function)
Prefer:
• Simple map and reduce functions
• Mapper tasks processing large data chunks (at least the size of

distributed filesystem blocks)

Apache Flink Motivation

Apache Flink Motivation

1 Real time computation: streaming computation
2 Fast, as there is not need to write to disk
3 Easy to write code

Real time computation: streaming computation

MapReduce Limitations

Example
How compute in real time (latency less than 1 second):
1 frequent items as Twitter hashtags
2 predictions
3 sentiment analysis

Easy to Write Code

case class Word (word : Str ing , frequency : I n t)

DataSet API (batch):
v a l l i n e s : DataSet [S t r i n g] = env . r e a d T e x t F i l e (. . .)

l i n e s . flatMap { l i n e => l i n e . s p l i t (” ”)
.map(word => Word (word , 1)) }

. groupBy (” word ”) . sum(” frequency ”)

. p r i n t ()

Easy to Write Code

case class Word (word : Str ing , frequency : I n t)

DataSet API (batch):
v a l l i n e s : DataSet [S t r i n g] = env . r e a d T e x t F i l e (. . .)

l i n e s . flatMap { l i n e => l i n e . s p l i t (” ”)
.map(word => Word (word , 1)) }

. groupBy (” word ”) . sum(” frequency ”)

. p r i n t ()

DataStream API (streaming):
v a l l i n e s : DataStream [S t r i n g] = env . fromSocketStream (. . .)

l i n e s . flatMap { l i n e => l i n e . s p l i t (” ”)
.map(word => Word (word , 1)) }

. window (Time . of (5 ,SECONDS)) . every (Time . of (1 ,SECONDS))

. groupBy (” word ”) . sum(” frequency ”)

. p r i n t ()

What is Apache Flink?

Figure: Apache Flink Overview

Batch and Streaming Engines

Figure: Batch, streaming and hybrid data processing engines.

Batch Comparison

Figure: Comparison between Hadoop, Spark And Flink.

Streaming Comparison

Figure: Comparison between Storm, Spark And Flink.

Spark Motivation

Apache Spark

Figure: IBM and Apache Spark

What is Apache Spark

Apache Spark is a fast and general engine for large-scale data
processing.
• Speed: Run programs up to ���x faster than Hadoop MapReduce

in memory, or ��x faster on disk.
• Ease of Use: Write applications quickly in Java, Scala, Python, R.
• Generality: Combine SQL, streaming, and complex analytics.
• Runs Everywhere: Spark runs on Hadoop, Mesos, standalone, or

in the cloud.
http://spark.apache.org/

Spark Ecosystem

Spark API

t e x t f i l e = spark . t e x t F i l e (” hdfs : / / . . . ”)

t e x t f i l e . f latMap (lambda l i n e : l i n e . s p l i t ())
.map(lambda word : (word , �))
. reduceByKey (lambda a , b : a+b)

Word count in Spark’s Python API

va l f = sc . t e x t F i l e (hdfs : / / . . . ”)

va l wc = f . f latMap (l => l . s p l i t (” ”))
.map(word => (word , �))
. reduceByKey (+)

Word count in Spark’s Scala API

Apache Spark

Apache Spark Project

• Spark started as a research project at UC Berkeley
• Matei Zaharia created Spark during his PhD
• Ion Stoica was his advisor

• DataBricks is the Spark start-up, that has raised $�6 million

Resilient Distributed Datasets (RDDs)

• An RDD is a fault-tolerant collection of elements that can be
operated on in parallel.

• RDDs are created :
• parallelizing an existing collection in your driver program, or
• referencing a dataset in an external storage system

Spark API: Parallel Collections

data = [� , � , � , � , �]
d is tData = sc . p a r a l l e l i z e (data)

Spark’s Python API

va l data = Array (� , � , � , � , �)
va l d is tData = sc . p a r a l l e l i z e (data)

Spark’s Scala API

L is t<In teger> data = Arrays . asL is t (� , � , � , � , �) ;
JavaRDD<In teger> d is tData = sc . p a r a l l e l i z e (data) ;

Spark’s Java API

Spark API: External Datasets

>>> d i s t F i l e = sc . t e x t F i l e (” data . t x t ”)

Spark’s Python API

scala> va l d i s t F i l e = sc . t e x t F i l e (” data . t x t ”)
d i s t F i l e : RDD [S t r i ng] = MappedRDD@�d�cee�8

Spark’s Scala API

JavaRDD<St r ing> d i s t F i l e = sc . t e x t F i l e (” data . t x t ”) ;

Spark’s Java API

Spark API: RDD Operations

l i n e s = sc . t e x t F i l e (” data . t x t ”)
l ineLengths = l i n e s .map(lambda s : len (s))
to ta lLength = l ineLengths . reduce (lambda a , b : a + b)

Spark’s Python API

va l l i n e s = sc . t e x t F i l e (” data . t x t ”)
va l l ineLengths = l i n e s .map(s => s . length)
va l to ta lLength = l ineLengths . reduce ((a , b) => a + b)

Spark’s Scala API

JavaRDD<St r ing> l i n e s = sc . t e x t F i l e (” data . t x t ”) ;
JavaRDD<In teger> l i neLengths = l i n e s .map(s �> s . length ()) ;
i n t to ta lLength = l ineLengths . reduce ((a , b) �> a + b) ;

Spark’s Java API

Apache Spark Streaming

Spark Streaming is an extension of Spark that allows processing data
stream using micro-batches of data.

Discretized Streams (DStreams)

• Discretized Stream or DStream represents a continuous stream
of data,
• either the input data stream received from source, or
• the processed data stream generated by transforming the input

stream.
• Internally, a DStream is represented by a continuous series of

RDDs

Discretized Streams (DStreams)

• Any operation applied on a DStream translates to operations on
the underlying RDDs.

Spark Streaming

va l conf = new SparkConf () . setMaster (” l o ca l [�] ”) . setAppName (”WCount ”)
va l ssc = new StreamingContext (conf , Seconds (�))

/ / Create a DStream tha t w i l l connect to hostname : port , l i k e loca lhos t :����
va l l i n e s = ssc . socketTextStream (” loca lhos t ” , ����)

/ / S p l i t each l i n e i n to words
va l words = l i n e s . f latMap (. s p l i t (” ”))

/ / Count each word in each batch
va l pa i r s = words .map(word => (word , �))
va l wordCounts = pa i r s . reduceByKey (+)

/ / P r i n t the f i r s t ten elements of each RDD generated in t h i s DStream to the console
wordCounts . p r i n t ()

ssc . s t a r t () / / S t a r t the computation
ssc . awaitTerminat ion () / / Wait fo r the computation to terminate

Spark SQL and DataFrames

• Spark SQL is a Spark module for structured data processing.
• It provides a programming abstraction called DataFrames and

can also act as distributed SQL query engine.
• A DataFrame is a distributed collection of data organized into

named columns. It is conceptually equivalent to a table in a
relational database .

Spark Machine Learning Libraries

• MLLib contains the original API built on top of RDDs.
• spark.ml provides higher-level API built on top of DataFrames for

constructing ML pipelines.

Spark Machine Learning Libraries

• MLLib contains the original API built on top of RDDs.
• spark.ml provides higher-level API built on top of DataFrames for

constructing ML pipelines.

Spark GraphX

• GraphX optimizes the representation of vertex and edge types
when they are primitive data types

• The property graph is a directed multigraph with user de�ned
objects attached to each vertex and edge.

Spark GraphX

/ / Assume the SparkContext has a l ready been constructed
va l sc : SparkContext
/ / Create an RDD fo r the ve r t i c es
va l users : RDD [(Vertex Id , (S t r ing , S t r i ng))] =

sc . p a r a l l e l i z e (Array ((�L , (” r x i n ” , ” student ”)) , (�L , (” jgonza l ” , ” postdoc ”)) ,
(�L , (” f r a n k l i n ” , ” prof ”)) , (�L , (” i s t o i c a ” , ” prof ”))))

/ / Create an RDD fo r edges
va l r e l a t i onsh i p s : RDD [Edge [S t r i ng]] =

sc . p a r a l l e l i z e (Array (Edge (�L , �L , ” co l l ab ”) , Edge (�L , �L , ” adv isor ”) ,
Edge (�L , �L , ” col league ”) , Edge (�L , �L , ” p i ”)))

/ / Def ine a de fau l t user i n case there are r e l a t i o n sh i p with missing user
va l defau l tUser = (” John Doe” , ” Missing ”)
/ / Bu i ld the i n i t i a l Graph
va l graph = Graph (users , r e l a t i onsh ips , defau l tUser)

Apache Spark Summary

Apache Spark is a fast and general engine for large-scale data
processing.
• Speed: Run programs up to ���x faster than Hadoop MapReduce

in memory, or ��x faster on disk.
• Ease of Use: Write applications quickly in Java, Scala, Python, R.
• Generality: Combine SQL, streaming, and complex analytics.
• Runs Everywhere: Spark runs on Hadoop, Mesos, standalone, or

in the cloud.
http://spark.apache.org/

Apache Kafka

Apache Kafka from LinkedIn

Apache Kafka is a fast, scalable, durable, and fault-tolerant
publish-subscribe messaging system.

Apache Kafka from LinkedIn

Components of Apache Kafka
• topics: categories that Kafka uses to maintains feeds of

messages
• producers: processes that publish messages to a Kafka topic
• consumers: processes that subscribe to topics and process the

feed of published messages
• broker: server that is part of the cluster that runs Kafka

Apache Kafka from LinkedIn

• The Kafka cluster maintains a partitioned log.
• Each partition is an ordered, immutable sequence of messages

that is continually appended to a commit log.
• The messages in the partitions are each assigned a sequential id

number called the offset that uniquely identi�es each message
within the partition.

Apache Storm

Apache S4 from Yahoo

Not longer an active project.

Apache Storm

Stream, Spout, Bolt, Topology

Storm

Storm Abstractions:
• Tuples: an ordered list of elements.
• Streams: an unbounded sequence of tuples.
• Spouts: sources of streams in a computation
• Bolts: process input streams and produce output streams. They

can: run functions; �lter, aggregate, or join data; or talk to
databases.

• Topologies: the overall calculation, represented visually as a
network of spouts and bolts

Google Cloud DataFlow

Google 2004

There was need for an abstraction that hides
many system-level details from the

programmer.

MapReduce addresses this challenge by
providing a simple abstraction for the

developer, transparently handling most of the
details behind the scenes in a scalable, robust,

and efficient manner.

Google 2004

There was need for an abstraction that hides
many system-level details from the

programmer.

MapReduce addresses this challenge by
providing a simple abstraction for the

developer, transparently handling most of the
details behind the scenes in a scalable, robust,

and efficient manner.

Google June 2014

What is using Google right now?

“We don’t really use MapReduce anymore,”
The company stopped using the system “years

ago.”

“Cloud Dataflow is the result of over a decade
of experience in analytics,” “It will run faster
and scale better than pretty much any other

system out there.”

Google June 2014

What is using Google right now?

“We don’t really use MapReduce anymore,”
The company stopped using the system “years

ago.”

“Cloud Dataflow is the result of over a decade
of experience in analytics,” “It will run faster
and scale better than pretty much any other

system out there.”

Google June 2014

What is using Google right now?

“We don’t really use MapReduce anymore,”
The company stopped using the system “years

ago.”

“Cloud Dataflow is the result of over a decade
of experience in analytics,” “It will run faster
and scale better than pretty much any other

system out there.”

Google Cloud Data Flow

The processing model of Google Cloud Dataflow is based upon
technology from
• FlumeJava(2010): Java library that makes it easy to develop,

test, and run efficient data parallel pipelines.
• MillWheel(2013): framework for building low-latency

data-processing applications

Google Cloud Data Flow

Cloud Dataflow consists of :
• A set of SDKs that you use to define data processing jobs:

• PCollection: specialized collection class to represent pipeline
data.

• PTransforms: powerful data transforms, generic frameworks that
apply functions across an entire data set

• I/O APIs: pipeline read and write data to and from a variety of
formats and storage technologies.

• A Google Cloud Platform managed service:
• Google Compute Engine VMs, to provide job workers.
• Google Cloud Storage, for reading and writing data.
• Google BigQuery, for reading and writing data.

Google Cloud Data Flow Paper

Figure: VLDB 2015

Google Cloud Data Flow

Figure: Conclusions of the VLDB 2015 paper

Apache Beam

47

Apache Beam
• Apache Beam code can run in:

• Apache Flink

• Apache Spark

• Google Cloud Dataflow

• Google Cloud Dataflow replaced MapReduce:

• It is based on FlumeJava and MillWheel, a stream engine as
Storm, Samza

• It writes and reads to Google Pub/Sub, a service similar to Kafka

48

Architectures

Lambda Architecture

Figure: Nathan Marz

Kappa Architecture

Figure: Questioning the Lambda Architecture by Jay Kreps

SAMOA

53

http://samoa-project.net

Data
Mining

Distributed

Batch

Hadoop

Mahout

Stream

Storm, S4,
Samza

SAMOA

Non
Distributed

Batch

R,
WEKA,…

Stream

MOA

G. De Francisci Morales, A. Bifet: “SAMOA: Scalable Advanced Massive Online Analysis”. JMLR (2014)

5 CREATING A FLINK ADAPTER ON APACHE SAMOA

5 Creating a Flink Adapter on Apache SAMOA

Apache Scalable Advanced Massive Online Analysis (SAMOA) is a platform for
mining data streams with the use of distributed streaming Machine Learning al-
gorithms, which can run on top of different Data Stream Processing Engines
(DSPE)s.

As depicted in Figure 20, Apache SAMOA offers the abstractions and APIs for
developing new distributed ML algorithms to enrich the existing library of state-
of-the-art algorithms [27, 28]. Moreover, SAMOA provides the possibility of inte-
grating new DSPEs, allowing in that way the ML programmers to implement an
algorithm once and run it in different DSPEs [28].

An adapter for integrating Apache Flink into Apache SAMOA was implemented
in scope of this master thesis, with the main parts of its implementation being
addressed in this section. With the use of our adapter, ML algorithms can be
executed on top of Apache Flink. The implemented adapter will be used for the
evaluation of the ML pipelines and HT algorithm variations.

Figure 20: Apache SAMOA’s high level architecture.

5.1 Apache SAMOA Abstractions

Apache SAMOA offers a number of abstractions which allow users to implement
any distributed streaming ML algorithms in a platform independent way. The most
important abstractions of Apache SAMOA are presented below [27, 28].

40

 Thanks!
@abifet

	Motivation MapReduce
	MapReduce
	Apache Hadoop
	MapReduce Algorithms

