Architectures for Distributed Mining of Big Data

Albert Bifet (@abifet)

. ® TELECOM

U n Ive rs Ite r’m"irsTech

PARIS-SACLAY IR

MAESTRA Summer School, 6 September 2016
albert.bifet@telecom-paristech.fr

Big Data

BIG DATA are data sets so large or complex that
traditional data processing applications can not deal with.

Big Data

BIG DATA are data sets so large or complex that
traditional data processing applications can not deal with.

BIG DATA is an OPEN SOURCE Software Revolution.

Big Data 6V’s

* Volume

* Variety

* Velocity

* Value

* Variability
* Veracity

Controversy of Big Data

+ All data is BIG now

* Hype to sell Hadoop based systems

« Ethical concerns about accessibility

* Limited access to Big Data creates new digital divides
- Statistical Significance:

« When the number of variables grow, the number of fake
correlations also grow Leinweber: S&P 500 stock index
correlated with butter production in Bangladesh

Batch and Streaming Engines

Batch only Z
&
[/)

Streaming only 5:

Hybrid
& Spor‘l'g

Figure: Batch, streaming and hybrid data processing engines.

Motivation MapReduce

How Many Servers Does Google Have?

how many servers does google have? - Google Search - Mozilla Firefox

G howmanyserversd... x

ttps://www.google.fr/searchrclient=ubuntu v C | ¥ B8 ©@ ¥ H~ B+ A A >
% share onLinkedin Share enLinkedin Linked@v

GO gle how many servers does google have? H

Web Images Videos ~ News Maps More ™

Search tools

About 4,680,000 results (0.30 seconds)

Prior to Ballmer's keynote speech, the best
guesstimate had put Google's server count at
around 900,000 in 2010; so, hearing
confirmation that it's now over one million isn't
a big surprise. We've never had any data from
Amazon, other than abstract figures, such as
the number of objects stored in its

cloud. Jul 19,2013

Microsoft now has one million servers — less than Google
www exiremetech.com.../161772-microsoft-now-has-one-million-servers-L..

How many servers does Google have? My estimate ...
hitps:/iplus google.com/+ James Pearn/postsVaQUISNIUY ~

Jan 25, 2012 - From those numbers, Koomey calculated that Google was operating
~900,000 servers in 2010. He does say, however, that this is only "educated
guesswork’. He factored in an estimate that Google's servers are 30% more energy
efficient than ones.

Figure: Asking Google

Typical Big Data Challenges

« How do we break up a large problem into smaller tasks that can
be executed in parallel?

- How do we assign tasks to workers distributed across a
potentially large number of machines?

- How do we ensure that the workers get the data they need?

« How do we coordinate synchronization among the different
workers?

- How do we share partial results from one worker that is needed
by another?

« How do we accomplish all of the above in the face of software
errors and hardware faults?

Google 2004

There was need for an abstraction that hides
many system-level details from the
programmetr.

Google 2004

There was need for an abstraction that hides
many system-level details from the
programmetr.

MapReduce addresses this challenge by
providing a simple abstraction for the
developer, transparently handling most of the
details behind the scenes in a scalable, robust,
and efficient manner.

Jeff Dean

MapReduce, BigTable, Spanner

MapReduce: Simplified Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat

0SDI'04: Sixth Symposium on Operating System Design and
Implementation

Jeff Dean Facts

Google Culture Facts

"When Jeff Dean designs software, he first codes the binary and
then writes the source as documentation.”

"Jeff Dean compiles and runs his code before submitting, but only to
check for compiler and CPU bugs.”

Jeff Dean Facts

Google Culture Facts

“The rate at which Jeff Dean produces code jumped by a factor of 40
in late 2000 when he upgraded his keyboard to USB2.0”

"The speed of light in a vacuum used to be about 35 mph. Then Jeff
Dean spent a weekend optimizing physics.”

MapReduce

References

M moromgciarroot rususurs ‘ : Web Data

Data-Intensive Text

Processing with MapReduce ‘ M dn ag eme nt

.

The Definitive Guide _
Sorge Abitebaul, loana Manolesea, Philippe Rigius,

STORAGE AND ANALYSIS AT INTERNET SCALE Marie-Christine Roasset, Pierre Senellark

Tom White

Numbers Everyone Should Know (Jeff Dean)

L1 cache reference 0.5ns
Branch mispredict 5ns
L2 cache reference 7ns
Mutex lock/unlock 100 ns
Main memory reference 100 ns
Compress 1K bytes with Zippy 10,000 ns
Send 2K bytes over 1 Gbps network 20,000 ns
Read 1 MB sequentially from memory 250,000 ns
Round trip within same datacenter 500,000 ns
Disk seek 10,000,000 ns
Read 1 MB sequentially from network 10,000,000 ns
Read 1 MB sequentially from disk 30,000,000 ns

Send packet CA to Netherlands to CA 150,000,000 ns

Typical Big Data Problem

- Iterate over a large number of records
Extract something of interest from each
Shuffle and sort intermediate results
Aggregate intermediate results
Generate final output

Typical Big Data Problem

- Iterate over a large number of records

Extract something of interest from each —~-MAP—
Shuffle and sort intermediate results

Aggregate intermediate results —~REDUCE—-
Generate final output

Functional Programming

80801
29000
RVaVarsvg

Figure: Map as a transformation function and Fold as an aggregation
function

Map and Reduce functions

 In MapReduce, the programmer defines the program logic as
two functions:

* map: (ki,v1) — list[(k2, v2)]
* Map transforms the input into key-value pairs to process
« reduce: (ky, list[vo]) — list[(ks, v3)]
* Reduce aggregates the list of values for each key
« The MapReduce environment takes in charge distribution
aspects.
« A complex program can be decomposed as a succession of
Map and Reduce tasks

Simplified view of MapReduce

S LN

[mapper } { mapper] { mapper } { mapper }

7] !

‘ Shuffle and Sort: aggregate values by keys ‘

reducer reducer } reducer }

! ! }

Figure: Two-stage processing structure

An Example Application: Word Count

Input Data

foo.txt: Sweet, this is the foo file
bar.txt: This is the bar file

Output Data
sweet 1

this 2

is 2

the 2

foo 1

bar 1

file 2

WordCount Example

1: class Mapper

2 method Map(docid a, doc d)

3 forall term t € doc d do

4: Emit(term t,count 1)

5 end for

6 end method ol 6l nl-0]-6] -
7. end class / j \

H—\H—\ [0l -0 el & o

. [Shuffle and Sort: aggregate values by keys]
. class Reducer DT Bmn

method Reduce(term t, counts [cy, C, .. .]) C'E

1

2

3 sum <+ 0
4 for all count ¢ € counts [cy,¢y,...] do

5; sum < sum-+c¢
6

7

8

9

end for
Emit(term t, count sum)
end method
: end class

Simple MapReduce Variations

No Reducers

Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers

Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers
Not possible!

Identity Function Mappers
Sorting and regrouping the input data

Simple MapReduce Variations

No Reducers
Each mapper output is directly written to a file disk

No Mappers AN RN
Not possible! rp Lo ’- -t-:E

Identity Function Mappers
Sorting and regrouping the input data

Identity Function Reducers
Sorting and regrouping the data from mappers

MapReduce Framework

namenode job submission node

-

tasktracker tasktracker

datanode daemon

Linux file system

28

slave node slave node slave node

Figure: Runtime Framework

MapReduce Framework

- Handles scheduling
- Assigns workers to map and reduce tasks
- Handles “data distribution”
= Moves processes to data
- Handles synchronization
- Gathers, sorts, and shuffles intermediate data
» Handles errors and faults
- Detects worker failures and restarts

 Everything happens on top of a distributed filesystem

Fault Tolerance

The Master periodically checks the availability and reachability of
the tasktrackers (heartbeats) and whether map or reduce jobs make
any progress

- if a mapper fails, its task is reassigned to another tasktracker

- if areducer fails, its task is reassigned to another tasktracker;
this usually require restarting mapper tasks as well (to produce
intermediate groups)

- if the jobtracker fails, the whole job should be re-initiated

Speculative execution: schedule redundant copies of the remaining
tasks across several nodes

Complete MapReduce Framework

LN

[mapper] [mapper] [mapper J [mapper J

}) ! |

[combiner] { combiner] [combiner } [combiner }

7

[partitioner] [partitioner] [partitioner} [partitioner}

‘ Shuffle and Sort: aggregate values by keys ‘

| l l

[reducer J [reducer J [reducer

I I !
A 5| M 7]

Figure: Partitioners and Combiners

Partitioners and Combiners

Partitioners
Divide up the intermediate key space and assign intermediate
key-value pairs to reducers: “simple hash of the key”

partition: (k, number of partitions) — partition for k

Combiners
Optimization in MapReduce that allow for local aggregation before
the shuffle and sort phase: “mini-reducers”

combine: (ky, list[vy]) — list[(ks, v3)]

Run in memory, and their goal is to reduce network traffic.

MapReduce Algorithms

Simple MapReduce Algorithms

Distributed Grep

 Grep: reports matching lines on input files

- Split all files across the nodes
- Map: emits a line if it matches the specified pattern
 Reduce: identity function

Count of URL Access Frequency

» Processing logs of web access
« Map: outputs <URL, 1>
« Reduce: Adds together and outputs <URL, Total Count>

Simple MapReduce Algorithms

Reverse Web-Link Graph

- Computes source list of web pages linked to target URLs

» Map: outputs <target,source>
« Reduce: Concatenates together and outputs <target,
list(source)>

Inverted Index

» Build an inverted index

- Map: emits a sequence of <word, docID>
« Reduce: outputs <word, list(docID)>

WordCount Example Revisited

1: class Mapper

2 method Map(docid a, doc d)

3 forall term t € doc d do

4: Emit(term t,count 1)

5 end for

6 end method ol 6l nl-0]-6] -
7. end class / j \

H—\H—\ H_!r -6 ol 6B

. class Reducer T e
method Reduce(term t, counts [c;, ¢y, .. .]) C'E
sum + 0

1

2

3

4 for all count ¢ € counts [cy,¢y,...] do
5: sum < sum-+c¢
6 end for

7 Emit(term t, count sum)
8 end method

9: end class

WordCount Example Revisited

1: class Mapper

2 method Map(docid a, doc d)
3 for all term t € doc d do

4 Emit(term t, count 1)
5 end for

6 end method

7: end class

1: class Mapper

2 method Map(docid a, doc d)

3 H + new AssociativeArray

4: forall term t € doc d do

5: H{t} « H{t} +1 > Tally counts for entire document

6: end for

7 forallterm t € Hdo

8: Emit(term t, count H{t})
9: end for

10: end method

11: end class

WordCount Example Revisited

1: class Mapper
2 method Initialize
3 H + new AssociativeArray
4; end method
5; method Map(docid a, doc d)
6: forall term t € doc d do
7 H{t} « H{t} +1 > Tally counts across documents
8: end for
9: end method
10: method Close

11: foralltermt € Hdo

12: Emit(term t, count H{t})
13: end for

14: end method

15: end class

Word count mapper using the“in-mapper combining”.

Average Computing Example

Example

Given a large number of key-values pairs, where
- keys are strings
- values are integers

find all average of values by key

Example

e Input: <“‘a’’,1>, < ‘Db’?,2>, <“‘c??,10>, < ‘Db’ ,4>,
<l(a;7’7>

e Qutput: <“‘a’’,4>, <“‘b’?,3>, <“‘c’’,10>

Average Computing Example

1: class Mapper

2 method Map(string t, integer r)

3 Emit(string t, integer r)

4 end method

5: end class

1: class Reducer

2: method Reduce(string t, integers [ry,12,. . .])
3 sum + 0

4 cnt<« 0

5 for all integer r € integers [ry,r2,...] do
6 sum < sum+r

7 cnt « cnt 4 1

8

end for
9: lavg <— Sum/cnt
10: Emit(string t, integer rayg)
11: end method

12: end class

Average Computing Example

Example

Given a large number of key-values pairs, where
- keys are strings
- values are integers

find all average of values by key

Average computing is not associative

- average(1,2,3,4,5) # average(average(1,2), average(3,4,5))
» 3+ average(1.5,4) =275

Monoidify!

Monoids as a Design Principle for Efficient
MapReduce Algorithms (Jimmy Lin)
Given a set S, an operator @ and an identity element e, for all a, b,c in
S:

 Closure:a®bisalsoin S.

- Associativity: a® (b&c)=(a®b)®c

 ldentity e;pa=ade=e

Average Computing Example

1: class Mapper
2 method Initialize
3 S + new AssociativeArray
4 C + new AssociativeArray
5: end method

6 method Map(string t, integer r)
7 S{t} « S{t} +r

8: C{t} < C{t} +1

9: end method
10: method Close

11: foralltermt € Sdo
12: Emit(term t, pair (S{t}, C{t}))
13: end for

14: end method
15: end class

MapReduce Big Data Processing

A given application may have:
A chain of map functions
- (input processing, filtering, extraction. . .)

- A sequence of several map-reduce jobs

< No reduce task when everything can be expressed in the map
(zero reducers, or the identity reducer function)

Prefer.
- Simple map and reduce functions

» Mapper tasks processing large data chunks (at least the size of
distributed filesystem blocks)

Apache Flink Motivation

Apache Flink Motivation

@ Real time computation: streaming computation
® Fast, as there is not need to write to disk
© Easy to write code

Flink

Real time computation: streaming computation

MapReduce Limitations

Example

How compute in real time (latency less than 1 second):
@ frequent items as Twitter hashtags
® predictions
® sentiment analysis

Flink

Easy to Write Code

case class Word (word: String, frequency: Int)
DataSet API (batch):

val lines: DataSet[String] = env.readTextFile (...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}
.groupBy ("word”).sum("frequency”)
.print ()

Flink

Easy to Write Code

case class Word (word: String, frequency: Int)

DataSet API (batch):

val lines: DataSet[String] = env.readTextFile (...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}
.groupBy ("word”).sum(" frequency”)
.print ()

DataStream API (streaming):

val lines: DataStream[String] = env.fromSocketStream (...)

lines.flatMap {line => line.split(" ")
.map(word => Word(word,1))}
.window (Time. of (5,SECONDS)) . every (Time. of (1,SECONDS))
.groupBy ("word”).sum("frequency")
.print ()

What is Apache Flink?

Dataflow
MRQL
Cascading (WiP)

Hadoop M/R
SAMOA
Dataflow (WiP)

DataSet (Java/Scala/Python) DataStream (Java/Scala)

Streaming dataflow runtime
(= —)
(= =)

Figure: Apache Flink Overview

Batch and Streaming Engines

Batch only (z
'@
Q /N

Streaming only 5:

Hybrid
@ Spor‘l'g

Figure: Batch, streaming and hybrid data processing engines.

Batch Comparison

API

Data Transfer

Memory
Management

Iterations

Fault tolerance

Good at

Libraries

Spoﬁzz

G

low-level high-level high-level
batch batch pipelined & batch
disk-based JVM-managed Active managed
file system in-memory
cached cached streamed
task level task level job level
massive scale out data exploration he.avy b'ack'end &
iterative jobs
many external built-in & external evolving built-in &
external

Figure: Comparison between Hadoop, Spark And Flink.

Streaming Comparison

Streaming
API
Fault tolerance

State

Exactly once

Windowing
Latency

Throughput

Spori‘—(

G

“trye”

mini batches

“true”

low-level

high-level

high-level

tuple-level ACKs

RDD-based (lineage)

coarse checkpointing

not built-in

external

internal

at least once

exactly once

exactly once

not built-in restricted flexible
low medium low
medium high high

Figure: Comparison between Storm, Spark And Flink.

Spark Motivation

Apache Spark

IBM Announces Major Commitment to
Advance Apache®Spark™, Calling it

Nows rloasos. c N
Potentially the Most Significant Open Source
D Project of the Next Decade
image galery 18M Joins Spark Community, Plans to Educate More Than 1 Million Data
Sciontists
Blographies
Bockground Seloct a toplo or year 1BM Nows Room Twitter —
News room foeds & Nows roloase ¥ Contact(s) information @ Joln the conversation
e & Rolated XML foods Relatd rosources
Nows room search
Media contacts ARMONIG NY - e hatle
-
1B Cioud. 18N wil
Rolated inks o Spcnnd o
™
Investor relations ‘scientists and data engineers on Spark.

Al
>/

Figure: IBM and Apache Spark

What is Apache Spark

Spor‘lzg

Apache Spark is a fast and general engine for large-scale data
processing.

- Speed: Run programs up to 100x faster than Hadoop MapReduce
in memory, or 10x faster on disk.

- Ease of Use: Write applications quickly in Java, Scala, Python, R.
« Generality: Combine SQL, streaming, and complex analytics.

< Runs Everywhere: Spark runs on Hadoop, Mesos, standalone, or
in the cloud.

http://spark.apache.org/

Spark Ecosystem

(machine
learning)

Apache Spark

Spark API

Spcwr‘l:Z

text_file = spark.textFile("hdfs://...")

text_file.flatMap (lambda line: line.split())
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a+b)

Word count in Spark’s Python API

val f = sc.textFile(hdfs://...")

val we = f.flatMap(l => |.split(" "))
.map(word => (word, 1))
.reduceByKey (- + _)

Word count in Spark’s Scala API

Apache Spark

Apache Spark Project

r

Spa

- Spark started as a research project at UC Berkeley

» Matei Zaharia created Spark during his PhD
« lon Stoica was his advisor

- DataBricks is the Spark start-up, that has raised $46 million

$databricks

Resilient Distributed Datasets (RDDs)

Spor‘l'\(z

- An RDD is a fault-tolerant collection of elements that can be
operated on in parallel.
- RDDs are created :

- parallelizing an existing collection in your driver program, or
- referencing a dataset in an external storage system

Spark API: Parallel Collections

Spcwr‘lgZ

data = [1, 2, 3, 4, 5]
distData = sc.parallelize (data)

Spark’s Python API

val data = Array(1, 2, 3, 4, 5)
val distData = sc.parallelize (data)

Spark’s Scala API

List<Integer> data = Arrays.asList(1, 2, 3, 4, 5);
JavaRDD<Integer> distData = sc.parallelize (data);

Spark’s Java API

Spark API: External Datasets

Spor‘lgZ

>>> distFile = sc.textFile("data.txt"”)

Spark’s Python API

scala> val distFile = sc.textFile("data.txt")
distFile: RDD[String] = MappedRDD@1d4cee08

Spark’s Scala API

JavaRDD<String> distFile = sc.textFile("data.txt");

Spark’s Java API

Spark API: RDD Operations

.&’pcwr‘ll\(Z

lines = sc.textFile("data.txt”)
lineLengths = lines.map(lambda s: len(s))
totalLength = lineLengths.reduce(lambda a, b: a + b)

Spark’s Python API

val lines = sc.textFile("data.txt")

val lineLengths = lines.map(s => s.length)

val totalLength = lineLengths.reduce((a, b) => a + b)
Spark’s Scala API

JavaRDD<String> lines = sc.textFile("data.txt");
JavaRDD<Integer> lineLengths = lines .map(s —> s.length ());
int totalLength = lineLengths.reduce((a, b) — a + b);

Spark’s Java API

Apache Spark Streaming

Spoﬁ(\z Streaming
input data batches of batches of
stream Spark input data Spark processed data
Streaming Engine 1]

Spark Streaming is an extension of Spark that allows processing data
stream using micro-batches of data.

Discretized Streams (DStreams)

Spoﬁg Streaming

 Discretized Stream or DStream represents a continuous stream
of data,
- either the input data stream received from source, or
- the processed data stream generated by transforming the input
stream.

- Internally, a DStream is represented by a continuous series of
RDDs

RDD @time1 RDD@tme2 RDD@time3 RDD @ time 4

DStream — —- datafrom | __ | datafrom |__| datafrom | _ | datafrom >

timeOto 1 time 1to 2 time2to3 time3to4

Discretized Streams (DStreams)

« Any operation applied on a DStream translates to operations on

SPC)I"I’(\Z Streaming

the underlying RDDs.

lines
DStream

words
DStream

lines from lines from lines from lines from
timeOto 1 time 1to 2 time2to3 time3to4
flatMap
operation
words from words from words from words from
timeOto 1 time 1to 2 time2to3 time3to4

Spark Streaming

Spofll(\z Streaming

val conf = new SparkConf().setMaster("local[2]").setAppName("WCount”)
val ssc = new StreamingContext(conf, Seconds(1))

// Create a DStream that will connect to hostname:port, like localhost:9999
val lines = ssc.socketTextStream(”localhost”, 9999)

// Split each line into words
val words = lines.flatMap(-.split(" "))

// Count each word in each batch
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(. + _)

// Print the first ten elements of each RDD generated in this DStream to the cor
wordCounts. print ()

ssc. start () // Start the computation
ssc.awaitTermination() // Wait for the computation to terminate

Spark SQL and DataFrames

Spor‘lz"

« Spark SQL is a Spark module for structured data processing.

- It provides a programming abstraction called DataFrames and
can also act as distributed SQL query engine.

- A DataFrame is a distributed collection of data organized into
named columns. It is conceptually equivalent to a table in a
relational database .

Spark Machine Learning Libraries

.S‘pcwr‘lgz

e MLLib contains the original API built on top of RDDs.
- spark.ml provides higher-level API built on top of DataFrames for
constructing ML pipelines.

Pipeline [i] [.] Logistic
(Estimator) Tokenizer | mp | HashingTF | =) Regression
Logistic
- = - = - == | Regression

Pipeline.fit() Words Feature Model
text vectors

Spark Machine Learning Libraries

.S‘pcwr‘lgz

e MLLib contains the original API built on top of RDDs.
- spark.ml provides higher-level API built on top of DataFrames for
constructing ML pipelines.

Logistic

PipelineModel [T keni] 3 [Hashi TF] m) | Regression
(Transformer) Model
H-8-=-080 -8
PipelineModel
.transform(() Raw Words Feature Predictions

text vectors

Spark GraphX

[

==Graph A’

« GraphX optimizes the representation of vertex and edge types
when they are primitive data types
e The property graph is a directed multigraph with user defined
objects attached to each vertex and edge.
Property Graph Vertex Table

Property (V)
(rxin, student)

a

(jgonzal, postdoc)

(frankiin, professor)

oo~ w

(istoica, professor)

Edge Table

Srld | Dstid | Property (E)
3 7 Collaborator

3 Advisor
5 Colleague
7 Pl

v (oo

Spark GraphX

ﬁﬁ@‘rapmf

// Assume the SparkContext has already been constructed
val sc: SparkContext
// Create an RDD for the vertices
val users: RDD[(Vertexld, (String, String))] =
sc.parallelize (Array ((3L, ("rxin”, "student”)), (7L, ("jgonzal”, "postdoc”)),
(5L, ("franklin”, "prof”)), (2L, ("istoica”, "prof”))))
// Create an RDD for edges
val relationships: RDD[Edge[String]] =
sc.parallelize (Array (Edge(3L, 7L, "collab”), Edge(5L, 3L, "advisor”),
Edge(2L, 5L, "colleague”), Edge(5L, 7L, "pi")))
// Define a default user in case there are relationship with missing user
val defaultUser = (”"John Doe”, "Missing”)
// Build the initial Graph
val graph = Graph(users, relationships, defaultUser)

Apache Spark Summary

Spor‘lzg

Apache Spark is a fast and general engine for large-scale data
processing.

- Speed: Run programs up to 100x faster than Hadoop MapReduce
in memory, or 10x faster on disk.

- Ease of Use: Write applications quickly in Java, Scala, Python, R.
« Generality: Combine SQL, streaming, and complex analytics.

< Runs Everywhere: Spark runs on Hadoop, Mesos, standalone, or
in the cloud.

http://spark.apache.org/

Apache Kafka

Apache Kafka from LinkedIn

&3 kafka
producer \ consumer

producer —* Kafka consumer

/ Cluster

Apache Kafka is a fast, scalable, durable, and fault-tolerant
publish-subscribe messaging system.

producer consumer

Apache Kafka from LinkedIn

§@ kafka

Components of Apache Kafka

- topics: categories that Kafka uses to maintains feeds of
messages

- producers: processes that publish messages to a Kafka topic

< consumers: processes that subscribe to topics and process the
feed of published messages

- broker: server that is part of the cluster that runs Kafka

Apache Kafka from LinkedIn

&3 kafka

Partition0 Partition1 Partition 2

=]
=

o

z
E
z
BN v s w N

2o vonswnro

Writes

- The Kafka cluster maintains a partitioned log.

- Each partition is an ordered, immutable sequence of messages
that is continually appended to a commit log.

< The messages in the partitions are each assigned a sequential id
number called the offset that uniquely identifies each message
within the partition.

Apache Storm

Apache S4 from Yahoo

A keyless event (EV) arrives at PE1 with quote:
EV. _Quote . “/meantwhat!said and | said what | meant.", Dr. Seuss
KEY null QuoteSplitterPE (PE1) counts unique
words in Quote and emits events for
each word.

EV
- KEY
VAL _count=4

EV WordEvent

WordCountPE (PE2-4)
keeps total counts for
each word across all
quotes. Emits an event
any time a count is

EV _ UpdatedCountEv.
i updated.

KEY sortiD=2

EV UpdatedCountEv.
* KEY sortID=9
VAL word="i" count=35

SortPE (PE5-7)
continuously sorts partial
lists. Emits lists at periodic
intervals

MergePE (PE8) combines partial
TopK lists and outputs final
TopK list.

EV PartialTopKEv.
KEY topk=1234

VAL words={w:cnt;

P PE Name Key Tuple
"~ QuotesplitterPE null
WordCountPE word="said"
WordCountPE word='
SortPE sortl
SortPE sortiD=9
MergePE topk=1234

Not longer an active project.

Apache Storm

o
/@’/@,

m\
=y
0

oM

& &

Stream, Spout, Bolt, Topology

lllll

BBBBB

/ —
Z% =
\ \aouc

o

Storm

é}) APACHE
STORM™

Distributed + Resilient + Real-time

Storm Abstractions:

Tuples: an ordered list of elements.
Streams: an unbounded sequence of tuples.
Spouts: sources of streams in a computation

Bolts: process input streams and produce output streams. They
can: run functions; filter, aggregate, or join data; or talk to
databases.

Topologies: the overall calculation, represented visually as a
network of spouts and bolts

Google Cloud DataFlow

Google 2004

There was need for an abstraction that hides
many system-level details from the
programmetr.

Google 2004

There was need for an abstraction that hides
many system-level details from the
programmetr.

MapReduce addresses this challenge by
providing a simple abstraction for the
developer, transparently handling most of the
details behind the scenes in a scalable, robust,
and efficient manner.

Google June 2014

What is using Google right now?

Google June 2014

What is using Google right now?

“We don’t really use MapReduce anymore,”

The company stopped using the system “vears
ago.”

Google June 2014

What is using Google right now?

“We don’t really use MapReduce anymore,”

The company stopped using the system “vears
ago.”

“Cloud Dataflow is the result of over a decade

of experience in analytics,” “It will run faster

and scale better than pretty much any other
system out there.”

Google Cloud Data Flow

The processing model of Google Cloud Dataflow is based upon
technology from

« FlumeJava(2010): Java library that makes it easy to develop,
test, and run efficient data parallel pipelines.

» MillWheel(2013): framework for building low-latency
data-processing applications

Google Cloud Data Flow

Cloud Dataflow consists of :

- A set of SDKs that you use to define data processing jobs:
- PCollection: specialized collection class to represent pipeline
data.
- PTransforms: powerful data transforms, generic frameworks that
apply functions across an entire data set
< 1/0 APIs: pipeline read and write data to and from a variety of
formats and storage technologies.

« A Google Cloud Platform managed service:

« Google Compute Engine VMs, to provide job workers.
- Google Cloud Storage, for reading and writing data.
- Google BigQuery, for reading and writing data.

Google Cloud Data Flow Paper

The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale,
Unbounded, Out-of-Order Data Processing

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills,
Frances Perry, Eric Schmidt, Sam Whittle
Google
{takidau, robertwb, chambers, chernyak, rfernand,
relax, sgmc, millsd, fip, cloude, samuelw}@google.com

ABSTRACT

Unbounded, unordered, global-scale datasets are increas-
ingly common in day-to-day business (c.g. Web logs, mobile
usage statistics, and sensor networks). At the same time,
consumers of these datasets have evolved sophisticated re-
quirements, such as event-time ordering and windowing by
features of the data themselves, in addition to an insatiable
hunger for faster answers. Meanwhile, practicality dictates
that one can never fully optimize along all dimensions of cor-
rectness, latency, and cost for these types of input. As a re-
sult, data processing practitioners are left with the quandary
of how to reconcile the tensions between these seemingly
competing propositions, often resulting in disparate imple-
mentations and systems.

1. INTRODUCTION

Modern data processing is a complex and exciting field
From the scale enabled by MapReduce [16] and its successors
(e.g Hadoop [4], Pig [18], Hive [2
body of work on streaming within the SQL comtmunity (e.g
query systems [1, 14, 15], windowing [22], data streams [24],
time domains [28], semantic models [9]), to the more recent
forays in low-latency processing such as Spark Streaming
(34], MillWheel, and Storm [5], modern consumers of data
wield remarkable amounts of power in shaping and tam-
ing massive-scale disorder into organized structures with far
greater value. Yet, existing models and systems still fall
short in a number of common use cases.

Consider an initial example: a streaming video provider

Figure: VLDB 2015

Google Cloud Data Flow

4. CONCLUSIONS

The future of data processing is unbounded data. Though
bounded data will always have an important and useful
place, it is semantically subsumed by its unbounded counter-
part. Furthermore, the proliferation of unbounded data sets
across modern business is staggering. At the same time,
consumers of processed data grow savvier by the day, de-
manding powerful constructs like event-time ordering and
unaligned windows. The models and systems that exist to-
day serve as an excellent foundation on which to build the
data processing tools of tomorrow, but we firmly believe
that a shift in overall mindset is necessary to enable those
tools to comprehensively address the needs of consumers of
unbounded data.

Figure: Conclusions of the VLDB 2015 paper

Apache Beam

Google Cloud Dataflow

47

Apache Beam

 Apache Beam code can run in:

 Apache Flink g _

e Apache Spark
* Google Cloud Dataflow
« Google Cloud Dataflow replaced MapReduce:

o |tis based on Flumedava and MillWheel, a stream engine as
Storm, Samza

|t writes and reads to Google Pub/Sub, a service similar to Kafka

48

Architectures

Lambda Architecture

Kafka Cluster

/‘,l processing_job |\

input_topic)(

Hadoop

N

processing_job

Figure: Nathan Marz

Storm Serving DB(s)

| speed_table l

App

e]

Kappa Architecture

Stream Processing "
Kafka Cluster System Serving DB

queries

App

- - | [
job_version_n output_table_n
input_topic — J L
[~ | |
J |

‘I job_version_n+1

Figure: Questioning the Lambda Architecture by Jay Kreps

http://samoa-project.net

SAMOA

G. De Francisci Morales, A. Bifet: “SAMOA: Scalable Advanced Massive Online Analysis”. JMLR (2014)

Data
Da
Classifier | Clustering Fg;%‘-;fgt

Methods Methods Mining

Non

Distributed Distributed

Storm, S4,
Samza

53

Thanks!

@abifet

	Motivation MapReduce
	MapReduce
	Apache Hadoop
	MapReduce Algorithms

