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Goals

• We will
• Formalize the problem of learning with spatio-temporal

data acquired in real-time through a number of
(wireless) remote sensors

• Clarify the role of various form of correlation
• Spatial-, temporal, multivariate- correlation

• Establish links with descriptive and predictive tasks
• Summarization, interpolation, forecasting, anomaly detection)
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Goals

• We will:
• Point to important results

• Algorithmic/experimental

• Applications

• Describe algorithms and techniques

• Present open problems
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Assumed Background

• We assume a basic knowledge of machine learning
methods for clustering, classification and regression
tasks
• For background, please see Mitchell (1997)

• Basic knowledge of spatial statistics, time series
analysis
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Outline

• Data and tasks

• Issues and challenges

• Univariate learning
• Summarization, interpolation, anomaly/change

detection, forecasting

• Beyond the univariate case – multivariate case
• Summarization vs interpolation

• Open challenges
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Sensor networks

• A set of (wireless) sensor stations K which monitor
an environment by collecting geophysical data
(temperature, humidity, light,…)

• Each node in a sensor network can be imagined as
a small computer, equipped with the basic capacity
to sense, process, and act

• Sensors act in dynamic environments, often under
adverse conditions
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From sensor networks to
geophysical time series

• A sensor network is scattered in a (possibly large)
region where it is meant to collect data through its
sensor nodes

• Every sensor kK measures a space of geophysical
fields Z=(Z1,…,Zm) repeatedly at the time points of T

• It feeds a time series of data snapshots (Z,t1,K),
(Z,t2,K), …
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Applications

• Typical applications of sensor networks include
monitoring, tracking, and controlling

• Some of the specific applications are photovoltaic
plant controlling, habitat monitoring, traffic
monitoring, and ecological surveillance
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Online data

• Sensor networks for climate data
• National Oceanic and Atmospheric Administration (NOAA) data

(http://www.ncdc.noaa.gov/)

• Sensor networks for ecology
• Nature serve data (http://www.natureserve.org/biodiversity-

science/conservation-topics/data)

• Sensor networks for energy markets
• National Renewable Energy Lab data (http://www.nrel.gov/)

• PVGIS (http://photovoltaic-software.com/pvgis.php)

07.09.2016 MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data 9

http://www.ncdc.noaa.gov/
http://www.natureserve.org/biodiversity-science/conservation-topics/data
http://www.nrel.gov/
http://photovoltaic-software.com/pvgis.php


Data scenario

• Time series of data that are measured repeatedly
over a set of sensor stations.
• The spatial location of a sensor station is modeled by

means of point coordinates (e.g., latitude and
longitude).

• The spatial locations of the sensors are known, distinct
and invariant, while the number of recording sensors
may change in time: a sensor may be inactive and
transmit no data for a time interval.

• Active sensors transmit measurements for a number of
numeric variables (multi-variate data) and they are
synchronized in the transmission time.
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Tasks

• Training on (incomplete) past data snapshots
(Z,t1,K), (Z,t2,K), …, (Z,tn,K), in order to
• Predict on missing data in some data snapshot (Z,ti,K)

with 1≤i≤n -- INTERPOLATION

• Forecast some next data snapshot (Z,ti,K) with i>n --
FORECASTING

• Perform anomaly/change detection in the last data
snapshot (Z,tn,K) -- ANOMALY/CHANGE DETECTION
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Issues & challenges

• Spatial dimension:
 Inferences on spatial correlation: how data taken at a
relatively close location behave similarly to each other
(proximity relation, network structure, local & global
indexes, non stationariety)

• Temporal dimension:
 Inferences on the temporal correlation: how many
future observations can be predicted from past behavior
(stationariety vs variation, concept drift, anomalies)

• Multivariate data:
 Inferences on cross-correlation of variables measured
at the same site, as well as at close sites
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Additional issues & challenges

• Huge volume of data which cannot be entirely
recorded for future analysis.
• Computing data aggregates, discarding real data, using

data aggregates in future analysis.

• Sensed data must be processed on-line (patterns
are computed in (near) real time).

• Computation can be distributed in-network
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Tasks
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Summarization

Interpolation

Forecasting

Anomaly & change  
detection

Descriptive task Predictive task

• Associative classification (B. Liu et al., KDD 1998; M. Ceci & A. Appice, J.
Intell. Inf. Syst, 2006, J. Yuan et al, Intelligent Data Analysis 2015)

• Predictive clustering (H. Blockeel et al., ICML 1998; D. Stojanova et al.,
Ecologial Informatics 2013; S. Dzeroski et al., KDID 2006)



Summarization
“Derive a compact representation of data for 
storage”
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Summarization

• Sampling (uniform vs stratified): (S. Acharya et al., SIGMOD
2000)

• Discrete Fourier Transform: signal processing technique (Y.
Zhu & D. Shasha, VLDB 2002)

• Histograms (optimal, equal-width, end-biased): summary
structures used to capture the distribution of values (A.C.
Gilbert, STOC 2002; M. Greenwald & S. Khanna,
ACMSIGMOD Rec 2001; F. Furfaro et al., Knowl Inf Syst.
2008)
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Summarization

• Sketches: approximation algorithms which allow the
estimation of frequency moments and aggregates over joins
(N. Alon et al., STOC 1996; J. Hershberger et al., Algoritmica
2006)

• Wavelets: projection of a sequence of data onto an
orthogonal set of basis vectors (N. Alon, STOV 1996, Y.
Matias, VLDB 2000)

• SAX: reduction of a numeric time series to a string of
arbitrary length (J. Lin et al., Data Min Knowl Discov, 2007)

• Cluster analysis (S. Nassar & J. Sander, SSDBM 2007, M.
Kontaki et al, DAWAK 2008)
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Summarization in sensor
network anaysis

• Centric summarization: deployed on the server station of
networks by aggregating (spatial and/or temporal)
correlated data.
• Spatial cluster analysis snapshot by snapshot (X. Ma et al.,

APWeb/WAIM 2007)

• Temporal cluster analysis sensor by sensor (P.P. Rodrigues et al.,
ECMLPKDD 2008)
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Summarization in sensor
network anaysis

• In-network summarization: sensor on-board summarization
of data, only the summary is transferred to the centralized
station  data communication and energy usage can be
minimized

• sampling, k-means or wavelet computed on the sensor 
(R. Chiky and G. Hébrail, DaWaK 2008)

• simple aggregates (sum, count, histogram), computed
along a tree-coordinating schema (Z. Chen, WTS 2010)

• Spatio-temporal clustering (data which are
autocorrelated both in space and time computed along
a tree-coordinating schema (S. Yoon and C. Shahabi,
ACM Trans Sens Netw 2007)
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Trend cluster (spatial+temporal)

A trend cluster (Ciampi et  al, KES 2010)is a triple:

[ W;C; T ]

where:

1. W is a time horizon along which field data were 
collected;

2. C is a cluster of spatially close sensors which transmitted 
values whose temporal variation was similar along the 
time horizon of the window;

3. T is the time series which represents the trend of the 
clustered measures as they were collected at the 
transmission time points comprised in W.
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Trend cluster discovery
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Trend cluster discovery

• Count-based window model - SUMATRA (Appice et 
al., DAMI 2015)

http://www.di.uniba.it/~appice/software/SUMATRATRECI/index.htm
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South-America air climate
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• Monthly mean temperature: 6477 sensors



Intel Berkeley Lab
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• Temperature every 31 secs: 54 sensors
• W=256, =2.5



Further work

• Trend compression (A. Ciampi et al., CIDM 2011) by:
• Discrete Fourier Transform

• Haar Wavelets

• Sampling

• Least Square regression

• On-line selection of a trend compression technique (A. 
Appice et al., DAMI 2015)
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In-network trend cluster 
discovery

• SUMATRA on the bottom-level sink nodes of a tree-
based WSN 

• metaSUMATRA on the top-level sink nodes

• A top-level sink:
1. receives trend clusters from its child sinks

2. gathers together received trend clusters 

3. propagates (meta) trend clusters to the parent sink

(A. Appice et al., DAMI 2015)
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South-America air climate
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Interpolation
“Supplement, smooth and standardize
observational data”
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Interpolation - spatial

• Inverse distance weighting: to calculate an unknown field
value in a geographic location based on the degree of
similarity in a neighbourhood (D. Shepard, ACM 1968 )

• Radial basis functions: to calculate an unknown field value
in a geographic location based on the degree of smoothing
in a neighbourhood (G.F. Lin & L.H. Chen, Journal of
Hydrology, 2004)

• Kriging (N. Cressie, 1993): to calculate an unknown field
value in a geographic location based on a linear combination
of data in a neighbourhoods. Weights are based on the
computation of a variogram. The variogram represents an
approximate measure of the spatial dissimilarity of the
observed data
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Interpolation - spatial

• Kriging is more complex than IDW,
• The variogram computation cost scales as the cube of the number

of observed data

• Kriging is highly dependent on a reliable estimation of the
variogram

• but it has the undeniable advantage of computing the best
linear unbiased estimator of the correlation model

• However, the accuracy of an IDW interpolator often
approaches the accuracy of a Kriging interpolator, especially
for smooth fields (G.Y. Lu & D.W. Wong, Journal of
Computers and Geosciences, 2008)
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Interpolation – spatio-temporal

• First performing spatial interpolation and then reducing
temporal interpolation to the application of simple methods
(such as linear or spline interpolation) to the sequence of
snapshots of spatially interpolated data (L. Li et al., SARA
2011)

• First interpolating time series of data for each relevant
location and then using them as sampled observations for
the application of a traditional spatial interpolator (L. Li, GIS:
Exploring Data for Decision Making, 2009)
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Interpolation – spatio-temporal

• The true integration of the spatial and temporal data
component essentially based on the application of a
dynamic model, like the Kalman filter or the Markov
Random field, to consecutive snapshots of data

• e.g. Kriging + Kalman Filter (W.S. Kerwin & J.L. Prince, 
IEEE Transactions on Signal Processing, 1999)

• Non-stationary time series analysis (trend and armonic
component + spatiotemporal model of log-transformed data
are computed. The model consists of trend and noise and
represents the spatiotemporal variations (R. Romanowicz et
al., Environmental Modeling Software , 2006)
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Interpolation – trend cluster
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• For each trend cluster (A. Appice et al., J. Spatial Information
Science 2013),
• Extract a shape-dependent (quadtree-based) sample of clustered

sensors (key sensors)

• Determine a (polynomial) regression model of the time law
underlying the trend time series

• Key sensors and regression coefficients (trend) are stored



Interpolation – trend cluster

07.09.2016 MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data 34

• IDW applied to regression polyline-based predictions
determined for the key sensors, at the time t

http://www.di.uniba.it/~appice/software/SUMATRATRECI/index.htm



Interpolation – trend cluster

• Trend cluster + Kriging (Guccione et al.,
MSM/MUSE 2011)
• Trend cluster discovery to reduce the amount of data to 

mine for the variogram estimation

• Trend cluster discovery + transfer learning to adapt the 
variogram learned at a time along the trend time series
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South America air climate
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SUMATRA Sumatra + 

Sampling

TRECI

average D 5

size (Kbytes) 548.6 200.1 168.8

rmse 1.25 1.86 1.97

Baseline 50%Sensors 

switching-off

50% Time points 

jumping-on

50 %Sensors 

switching-off and 

50% time points 

jumping-on

TC+IDW 1.97 2.48 2.72 2.90

TC+Kriging 1.94 2.08 - -



Anomaly/Change detection
“Detect exceptional (anomaly) or stable (change)
abnormal behaviour in data”
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Anomaly detection

• Time series analysis (M. Gupta et al., IEEE Trans. Knowl. Data
Eng., 2013): semi-supervised, supervised, unsupervised
learning

• Spatio-temporal data mining: spatial neighbourhood+ time
window (S. Subramaniam, VLDB 2006, Franke et al., ACM
2009, Appice et al., Springer Briefs in Computer Science
2014)
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Change detection

• Gradual changes (drift) vs and abrupt changes (shift) in the
data distribution

• Incremental learning strategy + Gradual forgetting
mechanisms (E. Lughofer et al., Appl. Soft Comput. 2011);
(adaptive) window methods (R. Klinkenberg, IDA 2004,
Gama et al., SBIA 2004); Page–Hinkley test (R. Sebastiao et
al., SensorKDD 2008)
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Anomaly and change detection

• A local polynomial fitting method + forward and backward
prediction errors, (Z. Li et al., PAKDD 2007)

• Model fitting + outlier detection + quarantene to identify
changes (M. Pechenizkiy et al., SIGKDD Explor. 2009)

• A change is alerted in the presence of outliers detected
simultaneously in a snapshot (Bakker et al., KDD 2009)

07.09.2016 MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data 40



Anomaly and change detection -
trend cluster

• Performing an incremental modeling phase of a
geophysical data stream by accounting for spatial and
temporal autocorrelation of data

• Detecting outliers (data which do not conform the
model)

• Classifying outliers in anomalies and change points
1. Correcting anomalies

2. Changing the data model when change points are met

(Appice et al., Information Science 2014)

http://www.di.uniba.it/~appice/software/SWOD/index.htm
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Anomaly and change detection -
trend cluster
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Anomaly and change detecion -
trend cluster
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South American Climate network (SACN): monthly-mean
temperature ([-7.6 to 32.9]°C) form 6477 sensors between 1960
and 1990 .

Intel Berkeley Lab network (IBLN): temperature ([9.75–
34.6]°C) every 31s from 54 sensors irregularly deployed in the
Intel Berkeley Research lab between February 28th and April
5th 2004.



Forecasting
“Predict the future”
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Time series analysis

• Exponential smoothing model: averages a time series up to
the current sample by Brown (more weight to recent data),
Holt (correcting a linear tendency in the trend part), Winters
(assuming the seasonality) models (A.C. Harvey, 1989)

• ARIMA – family model: linear combinations are determined
through the estimation of the autocorrelation function of
the time series (ar, arma, arima, auto.arima) (G. E. P. Box
and G. M. Jenkins, 1994)

• Multi-variate AR model: linear model of multiple time series
used to forecast the target (var) (Lutkerpohl, 2005)
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Spatial-aware forecasting

• Pokrajac and Obradovic (2001) have extended ARIMA by
adding a term of auto-regressive disturbance, in order to
model spatial-temporal correlation of residuals over defined
neighborhood structures.

• Kamarianakis et al. (2005) have extended ARIMA, in order to
account for the property of spatial correlation by expressing
each data point at the time point t and the location (x;y) as a
linearly weighted combination of data lagged both in space
and time.

• Saengseedam and Kantanantha (2014) have used linear
mixed models (LMMs) with spatial effects under a Bayesian
framework.
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Spatial-aware forecasting

• Luna and Genton (2005), as well as Barbosa et al. (2006)
have explored the possibility of learning a VAR model from a
vector of variables composed of the same variable observed
at neighboring sites.
• Sites are grouped in neighborhoods according to user-defined

specifications.

• Pravilovic et al (2013, 2014) addressed the forecasting task
with ARIMA-family models by dealing with spatial and
temporal correlation when choosing parameters p,d and q
and determining coefficients  and 

• Pravilovic et al (2014) integrated the spatio-temporal
clustering analysis and forecasting in the same learning
process
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Spatial-aware ARIMA
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Spatial-aware forecasting

• Time-series clustering + Predictive clustering
• Temporal-based power wind forecasting (S. Pravilovic et

al., DS 2014)

• Spatial neighborhood + ARIMA
• Spatio-temporal power wind forecasting (V. Almeida &

J. Gama, ICAIS 2014)

• Spatio-temporal adaptive neighborhood+ Knn
• Spatio-temporal based power wind forecasting (A.

Appice et al., DS 2015)
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Spatial-aware forecasting

• A distributed system for storing huge amounts of data,
gathered from energy production plants and weather
prediction services
• HBase over Hadoop framework

• One-day ahead forecast of PV energy production based on
Artificial Neural Networks (with both structured and non-
structured output prediction) (M. Ceci et al., IDEAS 2015)
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Multivariate case
“Dealing with cross-correlation of various
geophisical fields”
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State of the art - spatial

• Stojanova et al. (2013) propose computing the mean of
global measures (Moran I and global Getis C), computed for
distinct variables of a vector, as a global indicator of spatial
autocorrelation of the vector by blurring cross-correlations
between separate variables

• Dray et al. (2006) explore the theory of the principal
coordinates of neighbour matrices and develop the
framework of Moran’s eigenvector maps
• They demonstrate that their framework can be linked to spatial

autocorrelation structure functions also in multivariate domains
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State of the art -spatial

• Dray and Jombart (2011) propose:
• a two-step procedure, where data are first summarized with PCA.

In a second step, any univariate (either global or local) spatial
measure can be applied to PCA scores for each axis separately

• An approach that finds coefficients to obtain a linear combination
of variables, which maximizes the product between the variance
and the global Moran measure of the scores

• Appice & Malerba (2014): interpolative clustering
• Model the spatial autocorrelation when collecting the data records

of multiple geophysical variables in a sensor network

• Use this model to compute compact tree-based summaries of
actual data that are discarded

• Inject computed summaries into predictive (IDW-based) inferences
to yield accurate estimations of geophysical data at any space
location
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State of the art – spatio-
temporal

• Time-evolving interpolative clustering (A. Appice & D. 
Malerba, DAMI 2014)
• We look for the interpolative clusters, which manifest change in the

property (mean and variance) of the spatial autocorrelation of the
clustered data

• We build again only sub-tree of the existence tree, which do not
cluster the new records appropriately (i.e. leaf conditions are not
satisfied on the new data snapshot)
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Time-evolving interpolative
clustering
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Open challenges

• Designing in-network spatio-temporal algorithms

• Integrating big data technologies

• Dealing with the covariance in autocorrelation measures of
several variables

• Dealing with multivariate case in spatio-temporal
forecasting, as well as in anomaly/change detection task

• Completing the bridge between time series analysis and
stream data mining

07.09.2016 MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data 56



Thank you for the attention
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