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Outline 

• Image and specific object retrieval 
• Clustering, min-Hash 
• Geometry in image retrieval 
• Beyond visual nearest neighbour search 
• Retrieval for 3D 
• Retrieval with CNN 
• Advertisement 



IMAGE RETRIEVAL 
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Video Google 

• Feature detection and description 
• Vector quantization 
• Bag of Words representation 
• Scoring 
• Verification 

Sivic & Zisserman – ICCV 2003 
Video Google: A Text Retrieval Approach to Object Matching in Videos 
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Local Features 

aka feature points, key points, anchor points, distinguished regions, … 

• Repeatable features 
• Detect features in images independently, local = robust to occlusions 
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Local Features 

aka feature points, key points, anchor points, distinguished regions, … 

• Repeatable features 
• Feature descriptor: patch to a vector 
• Similar features have similar descriptors – nearest neighbour search 
• Retrieval – matching millions of images at the same time 

• Detect features in images independently, local = robust to occlusions 
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Results (ordered): 

precision = #relevant / #returned 
recall = #relevant / #total relevant 
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Bag-of-Words (BoW): Off-line Stage 
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Bag-of-Words : On-line Stage 
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Feature Distance Approximation 

Partition the feature space 
(k – means clustering) 

Feature distance 
0  : features in the same cell 
∞ : features in different cells 

+ most of the features are not 
considered (infinitely distant) 

+ near-by descriptors accessible 
instantly – storing a list of 
features for each cell 
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Feature Distance Approximation 

- quantization effects 
- large (even unbounded) cells 

Feature distance 
0  : features in the same cell 
∞ : features in different cells 
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Vector Quantization via k-Means 

Initialize cluster 
centres 

Find nearest cluster to each 
datapoint (slow) O(N k) 

 

Re-compute cluster 
centres as centroids 

Iterate 
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Bags of Words Image Representation 
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Term-frequency (tf) – visual word D is twice in the image 

sparse 
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Efficient Scoring 

bag of words representation 
(up to 1,000,000 D) 
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1 2 3 4 5 6 7 8 9 10 

BoW and Inverted File 

6 7 7 … 

1 3 6 … 

5 6 8 … 

query visual word 1 
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1 2 3 4 5 6 7 8 9 10 

BoW and Inverted File 

Efficient (fast) 
Linear complexity (in # documents) 
Can be interpreted as voting 
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Geometric Re-ranking 

1. Perform ranking without geometric information 
- BoW 
- VLAD 
- Fischer vectors 
- CNN descriptors 

2. Re-rank top ranked images (removing false positives) 
- RANSAC 

Sivic, Zisserman: Video Google, ICCV 2003 
 

Philbin, Chum, Isard, Sivic, Zisserman: Object retrieval with large vocabularies and 
fast spatial matching, CVPR’07 



Visual Words and 
Vector Quantization 
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Vector Quantization 

• k-means 
• Fixed quantization [Tuytelaars and Schmid ICCV 2007] 

• Agglomerative [Leibe, Mikolajczyk and Schiele BMVC 2006] 

• Hierarchical k-means 
• Approximate k-means 
• Hamming embedding 
• Learning fine vocabularies 
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Hierarchical k-means 

+ fast   O(N log k) 
+ incremental construction 

- not so good quantization 
- often imbalanced 

Nistér & Stewénius: Scalable recognition with a vocabulary tree. CVPR 2006 
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Approximate k-means 

+ fast   O(N log k) 
+ reasonable quantization 
- Can be inconsistent when ANN fails 

Philbin, Chum, Isard, Sivic, and Zisserman – CVPR 2007  
Object retrieval with large vocabularies and fast spatial matching 

Initialize cluster 
centres Find  approximate nearest  

cluster to each datapoint 
Re-compute cluster 
centres as centroids 

Iterate 
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Hamming Embedding 

+ good quantization 
+ elegant idea 
- huge memory footprint 0 1 0 

1 

1  
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1  
1  
2  

Jegou, Douze, and Schmid – ECCV 2008  
Hamming embedding and weak geometric consistency for large scale image search 

random projections 
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Soft Assignment 

(Approximate) k-means 
- database side 
- query side 

Hierarchical k-means 

Philbin, Chum, Isard, Sivic, and Zisserman – CVPR 2008 
 Lost in Quantization 

Nistér & Stewénius – CVPR 2006 Scalable 
recognition with a vocabulary tree 
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Learning Fine Vocabularies 

Fine vocabulary (16 million visual words) 
Using wide-baseline stereo matches on 6 million images to learn what is similar 

Mikulik, Perdoch, Chum, and Matas: Learinig a Fine Vocabulary, ECCV 2010 



min-Hash 



min-Hash 
min-Hash is an efficient representation of a set Ai 

min-Hash is a locality sensitive hashing (LSH) function m that 
selects an element (visual word) m(Ai) from each set Ai  of visual 
words detected in image i so that 

set of visual words hash function visual word 

Image similarity 



min-Hash 

1 4 5 2 6 3 

A C D E B F 

Vocabulary 

A C B C D B 

F F 
4 5 3 6 2 1 A B 
5 4 6 1 2 3 C C 

Set I1 Set I2 

Random orderings min-Hash 

sim (I1, I2) = 1/2 

E F F 

m1 : 

m2 : 

m3: 

Estimated similarity of I1 and I2 from 3 min-Hashes = 2/3 



min-Hash 

1 4 5 2 6 3 
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Random orderings min-Hash 

sim (I1, I2) = 1/2 
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m1 : 

m2 : 

m3: 

vocabulary of 1 M  
visual words 

~ 2000 words 
 per image 

fixed size 
 image 

representation 
~100 

Estimated similarity of I1 and I2 from 3 min-Hashes = 2/3 



Set Overlap and min-Hash 
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min-Hash 
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min-Hash 
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k hash tables 

a sketch  = s-tuple of  
min-Hashes 

Sketch collision I1 I2 

P{collision} = sim(I1,I2)s 

P{retrieval} =  
                   1 – (1 - sim(I1 , I2 )s)k 

 

collision: 
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Probability of Retrieving an Image Pair 

similarity (set overlap) 

Near duplicate Images 
Images of the same object 

and unrelated images 

8.9 % (sim = 0.057) 

5.1% (sim = 0.047) 

13.9 % (sim = 0,066) 
100% (sim = 0.746) 

100% (sim = 0.322) 

99.5% (sim = 0,217) 
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s = 3, k = 512 
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Weighted min-Hash 

all words Xw have the same chance to be a min-Hash 

For hash function (set overlap similarity) 

For hash function 

the probability of Xw being a min-Hash is proportional to dw 

A Q V E R J C Z I1 U I2 : Y 
dA dC dE dV dJ dQ dY dZ dR 

Chum, Philbin, Zisserman: Near Duplicate Image Detection: min-Hash and tf-idf Weighting, BMVC 2008  



Image Clustering via min-Hash 
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Image Clusters as Connected Components 

Standard Approach (using image retrieval): 
 
Quadratic method in the size of database D -- O(D2) 
the multiplicative constant at the quadratic term ~ 1 – quadratic even for small D 

1. Take each image in turn 
2. Use a image retrieval system to retrieve related images 
3. Compute connected components of the graph 
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Image Clusters as Connected Components 

Proposed method: 
 
1.    Seed Generation – hashing (fast, low recall) 
       characterize images by pseudo-random numbers stored in a hash table  
       time complexity equal to the sum of second moments of Poisson random 
       variable -- linear for database size D up to 250 

      
2.    Seed Growing – retrieval (thorough – high recall) 
       complete the clusters only for cluster members c << D, complexity  O(cD)  
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Probability of Retrieving an Image Pair 

similarity (set overlap) 

Near duplicate Images 
Images of the same object 

and unrelated images 

8.9 % (sim = 0.057) 

5.1% (sim = 0.047) 

13.9 % (sim = 0,066) 
100% (sim = 0.746) 

100% (sim = 0.322) 

99.5% (sim = 0,217) 
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Spatially Related Images 

18.9 % (sim = 0,074) 5.1 % (sim = 0,047) 

similarity (set overlap) 
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13.9 % 

8.9 % 5.1 % 

9.8 % 7.2 % 

8.9 % 

13.9 % 

16.3 % 

10.7 % 
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10% 7% 

4% 

5% 4% 

Seed Generation 

P (no seed) = 

6% 

68.88 % 
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Seed Generation 

P (no seed) = 1.94 % 
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At Least One Seed in Cluster 

cluster size (v) 

P
(n

o 
se

ed
) 

similarity 
0.05 
0.06 
0.07 

= probability of retrieval 
6.2% 

10.4% 
16.1% 

Estimate of the probability of failure plot against the size of the cluster 
assumption used in this plot: all images in the cluster are related 
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Summary of the Method 

Unknown structure 
min-Hash seeds 

x 

Spatial verification 
Query Expansion 

Rejected seed 

Missed cluster 

Seed 

Cluster skeleton 

Failed retrieval 

Images 
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UKY Dataset 

Cluster of 4 images = 6 image pairs 
Are the probabilities of retrieval (close to) independent? 

computed exactly from the 
images descriptors 



Application 
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Learning Fine Vocabularies 

Fine vocabulary (16 million visual words) 
Using wide-baseline stereo matches on 6 million images to learn what is similar 

Mikulik, Perdoch, Chum, and Matas: Learinig a Fine Vocabulary, ECCV 2010 
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Appearance Variance of a Single Feature 

Mikulik, Perdoch, Chum, Matas: Learning Vocabularies over a Fine Quantization, IJCV 2012 
 

• over 5 million images  
• almost 20k clusters of 750k images (visual word based) 
• 733k successfully matched in WBS matching (raw descriptor based) 
• over 111 M  feature tracks established (12.3 M with 6+ features)  
• 564 M features in the tracks (319.5 M in tracks of 6+ features) 



50  

http://cmp.felk.cvut.cz/~qqmikula/publications/ijcv2012/index.html 



Geometric min-Hash 
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Geometric min-Hash algorithm 

1. Keep features with unique visual word in the image 
2. Obtain the “central feature” by min-Hash 
3. Select scale and spatial neighbourhood of the central feature 
4. Select secondary min-Hash(es) from the neighbourhood 
5. Relative pose of the sketch features is a geometric invariant (as in 

geometric hashing) 

E B F 

Sketch of GmH: s-tuple of visual 
words + geometric invariant 



53  

Object Discovery 

Verification by co-segmentation 
critical for small objects 

 

[Cech, Matas, Perdoch CVPR 08], code available on WWW  
[Ferrari, Tuytelaars,Van Gool, ECCV 2004] 

Geometric min-Hash 
sketch collision 
s = 2, k = 256 
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Object Discovery 

Other instances of the discovered object by (sub)image retrieval  



Unsupervised Discovery of Co-occurrence 
in Sparse High Dimensional Data 
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Over-counting 

71 features 

3700 features 1960 features 

929 features 

474 features 

155 features 

Chum and Matas: 
Unsupervised Discovery of Co-occurrence in Sparse High Dimensional Data, CVPR 2010 

http://ptak.felk.cvut.cz/Search/V3/input.php?input_string=1583599
http://ptak.felk.cvut.cz/Search/V3/input.php?input_string=2213146
http://ptak.felk.cvut.cz/Search/V3/input.php?input_string=1935280
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Independence Assumption Violation 

Query Results (water) 

Results (Stockholm town hall) 

• Over-counting of dependent observations 
• Detect co-occurring visual words 

• Interchange the role of images and visual words 
• Use min-Hash  to obtain sets of co-occurring visual words 

• Down-weight / eliminate co-occurring features 
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Examples of Co-occurring Features 
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More Examples 
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More Examples 

Flickr images 
= 

lots of faces 



61  

Visual Word Frequency 

co-oc sets 

frequency 

all visual words 

frequency 

co-occurring visual words do not have to be frequent  
greedy algorithms (such as a-Priori) fail 



GEOMETRY IN IMAGE RETRIEVAL 
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Robust Estimation: Hough vs. RANSAC 

Voting: 
 

• discretized parameter space 
• votes for parameters consistent  

with the measurements 
• more votes higher support 
 
+ multiple models 
+ can be very fast 
- memory demanding 
- distances measured in the 

parameter space 

RANSAC: 
 

• hypothesize and verify loop 
 
- randomized (unless you try it all) 
- typically slower than voting 
+ no extra memory required 
+ measures distances in pixels! 

 



RANSAC 
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Fitting a Line 

Least squares fit 
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RANSAC 

• Select sample of m points 
at random 
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RANSAC 

• Select sample of m points at 
random 
 

• Calculate model 
parameters that fit the data 
in the sample 
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RANSAC 

• Select sample of m points at 
random 
 

• Calculate model parameters 
that fit the data in the sample 
 

• Calculate error function 
for each data point 
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RANSAC 

• Select sample of m points at 
random 
 

• Calculate model parameters 
that fit the data in the sample 
 

• Calculate error function for 
each data point 
 

• Select data that support 
current hypothesis 
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RANSAC 

• Select sample of m points at 
random 
 

• Calculate model parameters 
that fit the data in the sample 
 

• Calculate error function for 
each data point 
 

• Select data that support 
current hypothesis 
 

• Repeat sampling 
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RANSAC 

• Select sample of m points at 
random 
 

• Calculate model parameters 
that fit the data in the sample 
 

• Calculate error function for 
each data point 
 

• Select data that support 
current hypothesis 
 

• Repeat sampling 
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RANSAC 

• Select sample of m points at 
random 
 

• Calculate model parameters 
that fit the data in the sample 
 

• Calculate error function for 
each data point 
 

• Select data that support 
current hypothesis 
 

• Repeat sampling 
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RANSAC 

k  … number of samples 
 drawn 
m … minimal sample size 
N … number of data points 
I … time to compute a 
 single model 
p … confidence in the  
             solution (.95) 

 log (1-      )  

log(1 – p) 

I m 

Nm 

k = 
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How Many Samples 

I / N [%] 

Si
ze

 o
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m
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e 
m
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RANSAC [Fischler, Bolles ’81] 

In: U = {xi}  set of data points, |U| = N 

       function f computes model parameters p given a sample S from U 

      the cost function for a single data point x 

Out: p*   p*, parameters of the model maximizing the cost function 

k := 0 

Repeat until P{better solution exists} <  η (a function of C* and no. of steps k) 

k := k + 1 

I. Hypothesis 

(1) select randomly set               , sample size 

(2) compute parameters  

II. Verification 

(3) compute cost  

(4) if C* < Ck then C* := Ck, p* := pk 

end 
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Advanced RANSAC 

In: U = {xi}  set of data points, |U| = N 

       function f computes model parameters p given a sample S from U 

      the cost function for a single data point x 

Out: p*   p*, parameters of the model maximizing the cost function 

k := 0 

Repeat until P{better solution exists} <  η (a function of C* and no. of steps k) 

k := k + 1 

I. Hypothesis 

(1) select randomly set               , sample size 

(2) compute parameters  

II. Verification 

(3) compute cost  

(4) if C* < Ck then C* := Ck, p* := pk 

end 

Non-uniform sampling 

Error scale estimation 

Potential degeneracy tests 

Randomized verification 

Preemptive scoring 

Improving precision 
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*SAC 

RANSAC [Fischler’81], MLESAC [Torr’00], R-RANSAC [Chum’02], 
NAPSAC [Myatt’02], Guided MLESAC [Tordoff’02], LO-RANSAC 
[Chum’03], Preemtive RANSAC [Nister’03], PROSAC [Chum’05], 
RANSAC with bail-out [Capel’05], DegenSAC [Chum’05], WaldSAC 
[Matas’05], QDEGSAC [Frahm‘06], GASAC [Rodehorst’06], ARRSAC 
[Raguram’08]  GroupSAC [Ni’09], Cov-RANSAC [Raguram’09], … 

Lebeda, Matas, and Chum: Fixing the Locally Optimized RANSAC, BMVC 2012 
images, data, executables: 
http://cmp.felk.cvut.cz/software/LO-RANSAC/index.xhtml 

Raguram, Chum, Pollefeys, Matas, Frahm: 
   “USAC: A Universal Framework for Random Sample Consensus”, PAMI 2013 

code, data: 
http://cs.unc.edu/~rraguram/usac/ 



BEYOND VISUAL NEAREST NEIGHBOR SEARCH 
RETRIEVAL WITH (GEOMETRIC) CONSTRAINTS 
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Retrieval for Browsing 

What is this? … and what is that? 

Let’s query! 
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Retrieval for Browsing 

Query 1 

Query 2 

Mikulik, Chum, Matas: Image Retrieval for Online Browsing in Large Image Collections, SISAP 2013. 
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New Problem Formulation 

Retrieve relevant images subject to a constraint 
 
• Geometric 

– Maximize number of relevant pixels 
– Maximize scale change 
– Change of viewpoint 

• Other 
– High photometric change (day / night) 
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New Problem Formulation 

Results 
• Low rank in standard similarity measure 

– Geometry for verification and constraint enforcement 
– Geometry in the inverted file (DAAT) 

• Standard similarity measure can be 0 
– Matching through a path of images (query expansion) 
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“Where is this” example 
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Query Image 

What is interesting here? 
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All Details on the Landmark 

Mikulik, Radenovic, Chum, and Matas : Efficient Image Detail Mining, ACCV 2014 
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Highest Resolution Transform 

Given a query and a dataset, for every pixel in the query image: 
Find the database image with the maximum resolution depicting the pixel 

37.3x 27.0x 22.8x 21.9x 21.6x 
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Highest Details 
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Level of Interest Transform 

Given a query and a dataset, for every pixel in the query image: 
Find the frequency with which it is photographed in detail 

0 – 1 % 1 – 3 % 3 – 10 % 

de
ta

il 
siz

e 



FROM SINGLE IMAGE QUERY TO 
DETAILED 3D RECONSTRUCTION 



Retrieval and SfM 

k-NN search often find small 
connected components 
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Tight Coupling of Retrieval and SfM 

Schoenberger, Radenovic, Chum, and Frahm:  
From Single Image Query to Detailed 3D Reconstruction , CVPR’15 



Beyond Nearest Neighbour 

Looking around the corner 

• Zoom out – getting a context of the image 
• All details – getting transition to the object details 
• Sidewise crawl 



Some Results … 



FROM DUSK TILL DOWN 
MODELLING IN THE DARK 



Separate Day & Night Dense Reconstructions 

Standard Dense 

Day Dense 

Night Dense 

Day & Night Images 



Separate Day & Night Dense Reconstructions 

Standard Dense 

Day Dense 

Night Dense 

Day & Night Images 

Artifacts 

Clear 

Clear 



Separate Day & Night Dense Reconstructions 

Standard Dense Day Dense Night Dense 



Separate Day & Night Dense Reconstructions 

Standard Dense Day Dense Night Dense 

Artifacts 



Separate Day & Night Dense Reconstructions 

Standard Dense Day Dense Night Dense 

Artifacts 



Separate Day & Night Dense Reconstructions 

Standard Dense Day Dense Night Dense 

Artifacts 



Day & Night Dense Models 

Day Model Night Model 



Fused Geometry 

Geometric Fusion of Day & Night Models 



Recoloring of Day & Night Models 

Fused Geometry Night Illumination 



Image Dataset 

SfM Clustering 

Day/Night Images Scene  
Graph Sparse Model 

Clustering into Day & Night 



Clustering into Day & Night 
Image Dataset 

SfM Clustering 

Day/Night Images Scene  
Graph Sparse Model 

 
• Images and 3D points in sparse scene graph 

 



Clustering into Day & Night 
Image Dataset 

SfM Clustering 

Day/Night Images Scene  
Graph Sparse Model 

 
• Images and 3D points in sparse scene graph 
• Train SVM on a single model (Colosseum) 
 

 



Clustering into Day & Night 

day day night night 

Image Dataset 

SfM Clustering 

Day/Night Images Scene  
Graph Sparse Model 

 
• Images and 3D points in sparse scene graph 
• Train SVM on a single model (Colosseum) 
• Graph-cut  

 



day day night night 

Separate Dense Reconstruction of Day & Night 
Day/Night Clusters 

Day 

Night 

Dense Model 

Image Dataset 

SfM Clustering 

Day/Night Images Scene  
Graph Sparse Model 

 
• Images and 3D points in sparse scene graph 
• Train SVM on a single model (Colosseum) 
• Graph-cut  

 



Day Model Night Model 

Geometric Fusion of Structure & Recoloring 
Day/Night Clusters 

Day 

Night 

Dense Model 

Image Dataset 

SfM Clustering 

Day/Night Images Scene  
Graph Sparse Model 



Geometric Fusion of Structure & Recoloring 

 
• Merge point clouds 

Day/Night Clusters 

Day 

Night 

Dense Model 

Image Dataset 

SfM Clustering 

Day/Night Images Scene  
Graph Sparse Model 



Fused Geometry Night Illumination 

Geometric Fusion of Structure & Recoloring 

 
• Merge point clouds 

Day/Night Clusters 

Day 

Night 

Dense Model 

Image Dataset 

SfM Clustering 

Day/Night Images Scene  
Graph Sparse Model 



• Automatic separation of day and night images 
 

 
• Geometric fusion of day & night dense models 

 
 
• Color transfer to recolor unreconstructed areas 

Summary 
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Some Results 
Day Image Day Model Night Model Fused Night Model Night Image 

Radenovic, Schoenberger, Ji, Frahm, Chum, and Matas: 
From Dusk till Dawn: Modeling in the Dark , CVPR 2016 



CNN IMAGE RETRIEVAL LEARNS FROM BOW 

… Max pooling 
+ L2-norm 

K x 1 
MAC 
vec. 

𝑤×ℎ× 3 𝑊×𝐻×𝐾 𝐾× 1 



Retrieval Challenges 

Significant viewpoint and/or scale change 
Significant illumination change 
Severe occlusions 
Visually similar but different objects 
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Retrieval Challenges 

Significant viewpoint and/or scale change 
Significant illumination change 
Severe occlusions 
Visually similar but different objects 



 
• Image representation created from CNN activations 

of a network pre-trained for classification task 
  

[Gong et al. ECCV’14, Razavian et al. arXiv’14, Babenko et al. 
ICCV’15, Kalantidis et al. arXiv’15, Tolias et al. ICLR’16] 

 

 
+ Retrieval accuracy suggests generalization of CNNs 

- Trained for image classification, NOT retrieval task 

CNN Image Retrieval 

Image from ImageNet.org 



 
• Image representation created from CNN activations 

of a network pre-trained for classification task 
  

[Gong et al. ECCV’14, Razavian et al. arXiv’14, Babenko et al. 
ICCV’15, Kalantidis et al. arXiv’15, Tolias et al. ICLR’16] 

 

 
+ Retrieval accuracy suggests generalization of CNNs 

- Trained for image classification, NOT retrieval task 

CNN Image Retrieval 

Same Class 

Image from ImageNet.org 



CNN Image Retrieval 

 
• CNN network re-trained using a dataset that contains 

landmarks and buildings as object classes.  
  

[Babenko et al. ECCV’14] 

 

 
+ Training dataset closer to the target task 

- Final metric different to the one actually optimized 

- Constructing training datasets requires manual effort 
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Geo-tagged dataset for weakly supervised fine-tuning. 
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- Training dataset requires geo-tags  



CNN Image Retrieval 

 
• NetVLAD: end-to-end fine-tuning for image retrieval. 

Geo-tagged dataset for weakly supervised fine-tuning. 
  

[Arandjelovic et al. CVPR’16] 

 

 
+ Training dataset corresponds to the target task 
  

+ Final metric corresponds to the one actually optimized 

- Training dataset requires geo-tags  

query 

Camera Orientation Unknown 

unknown 



CNN learns from BoW – Training Data 

 
Input: Large unannotated dataset 

 
1. Initial clusters created by grouping of spatially 

related images [Chum & Matas PAMI’10] 

2. Clustered images used as queries for a retrieval-
SfM pipeline [Schonberger et al. CVPR’15] 

 
Output: Non-overlapping 3D models 
 551 (134k) training / 162 (30k) validation 



CNN learns from BoW – Training Data 

 
Input: Large unannotated dataset 

 
1. Initial clusters created by grouping of spatially 

related images [Chum & Matas PAMI’10] 

2. Clustered images used as queries for a retrieval-
SfM pipeline [Schonberger et al. CVPR’15] 

 
Output: Non-overlapping 3D models 
 551 (134k) training / 162 (30k) validation 

Camera Orientation Known 
Number of Inliers Known 



CNN learns from BoW – Positives 

1. Descriptor distance: Image with the lowest global 
descriptor distance is chosen (NetVLAD use this) 

2. Maximum inliers: Image with the highest number of     
co-observed 3D points with the query image is chosen 

3. Relaxed inliers: Random image close to the query, with 
enough inliers and not an extreme scale change is chosen 

query m 1 m 2 m 3 



CNN learns from BoW – Negatives 

K-nearest neighbors of the query image are selected from 
all non-matching clusters, using different methods: 
1. No constraint: chosen images often near identical.  
2. At most one image per cluster: higher variability. 

query hardest negative N 1 N 2 



CNN Siamese Learning 

… Max pooling 
+ L2-norm 

K x 1 
MAC 
vec. 

Query Convolutional Layers MAC Layer Descriptor 

𝑤×ℎ× 3 𝑊×𝐻×𝐾 𝐾× 1 

MAC – Maximum Activations of Convolutions 
𝑤 × ℎ – image width and height  
𝑊 × 𝐻 – number of activations for feature map 𝑘 ∈ {1 …𝐾} 
𝐾 – number of feature maps in the last convolutional layer  

… Max pooling 
+ L2-norm 

K x 1 
MAC 
vec. 

Positive Convolutional Layers MAC Layer Descriptor 

𝑤×ℎ× 3 𝑊×𝐻×𝐾 𝐾× 1 

Contrastive 
Loss 

1 – positive 
0 – negative 

Pair Label 

MATCHING PAIR 



CNN Siamese Learning 

… Max pooling 
+ L2-norm 

K x 1 
MAC 
vec. 

Query Convolutional Layers MAC Layer Descriptor 

𝑤×ℎ× 3 𝑊×𝐻×𝐾 𝐾× 1 

MAC – Maximum Activations of Convolutions 
𝑤 × ℎ – image width and height  
𝑊 × 𝐻 – number of activations for feature map 𝑘 ∈ {1 …𝐾} 
𝐾 – number of feature maps in the last convolutional layer  

… Max pooling 
+ L2-norm 

K x 1 
MAC 
vec. 

Negative Convolutional Layers MAC Layer Descriptor 

𝑤×ℎ× 3 𝑊×𝐻×𝐾 𝐾× 1 

Contrastive 
Loss 

1 – positive 
0 – negative 

Pair Label 

NON-MATCHING PAIR 



Contrastive Loss 

𝐿 𝑖, 𝑗 =
1
2
𝑌 𝑖, 𝑗 𝒇� 𝑖 − 𝒇� 𝑗 2 + 1 − 𝑌(𝑖, 𝑗 max 0, 𝜏 − 𝒇� 𝑖 − 𝒇� 𝑗

2
 

𝒇� 𝑖  – MAC vector for image 𝑖 
𝑌 𝑖, 𝑗  – Label for image pair 𝑖, 𝑗 , 1 – positive, 0 – negative  
𝜏 – defining when a negative pair is far enough not to influence the loss 

𝐿 𝑖, 𝑗 =
1
2

𝒇� 𝑖 − 𝒇� 𝑗 2
 

POSITIVE PAIR 

𝐿 𝑖, 𝑗  

𝒇� 𝑖 − 𝒇� 𝑗  
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𝑌 𝑖, 𝑗 𝒇� 𝑖 − 𝒇� 𝑗 2 + 1 − 𝑌(𝑖, 𝑗 max 0, 𝜏 − 𝒇� 𝑖 − 𝒇� 𝑗

2
 

𝒇� 𝑖  – MAC vector for image 𝑖 
𝑌 𝑖, 𝑗  – Label for image pair 𝑖, 𝑗 , 1 – positive, 0 – negative  
𝜏 – defining when a negative pair is far enough not to influence the loss 

𝐿 𝑖, 𝑗 =
1
2

max 0, 𝜏 − 𝒇� 𝑖 − 𝒇� 𝑗 2
 

NEGATIVE PAIR 

𝜏 

𝐿 𝑖, 𝑗  

𝒇� 𝑖 − 𝒇� 𝑗  



Whitening and dimensionality reduction 

1. PCAw – PCA of an independent set of descriptors used for 
whitening and dimensionality reduction 
[Babenko et al. ICCV’15, Tolias et al. ICLR’16] 
 

2. Lw – We propose to learn whitening using labeled training data 
and linear discriminant projections 
[Mikolajczyk & Matas ICCV’07] 
 
• Whitening part is the inverse of the square-root of the intraclass 

(matching pairs) covariance matrix 𝐶𝑆−1/2 
𝐶𝑆 = � 𝒇� 𝑖 − 𝒇� 𝑗 𝒇� 𝑖 − 𝒇� 𝑗

⊺

𝑌 𝑖,𝑗 =1

 

• Rotation part is the PCA of the interclass (non-matching pairs) covariance 
matrix in the whitened space 𝑒𝑖𝑒 𝐶𝑆−1/2𝐶𝐷𝐶𝑆−1/2  

𝐶𝐷 = � 𝒇� 𝑖 − 𝒇� 𝑗 𝒇� 𝑖 − 𝒇� 𝑗
⊺

𝑌 𝑖,𝑗 =0

 

• Dimensionality reduction is done by using only D largest eigenvalues 



Experiments – datasets 

• Oxford 5k dataset (1024 x 768) [Philbin et al. CVPR’07] 
• 55 queries, 5.062 database images 

 
• Paris 6k dataset (1024 x 768) [Philbin et al. CVPR’08] 

• 55 queries, 6.300 database images 
 

• Holidays dataset (1024 x 768) [Jegou et al. ECCV’10] 
• 500 queries, 1.491 database images 

 
• Oxford 100k dataset (1024 x 768) [Philbin et al. CVPR’07] 

Combined with previous datasets to create: 
• Oxford 105k: 55 queries, 104.844 database images 
• Paris 106k: 55 queries, 106.082 database images 
• Holidays 101k: 500 queries, 101.273 database images 

 
• Protocol: mean Average Precision (mAP) 



Experiments – Learning (AlexNet) 

• Careful choice of positive and negative training 
images makes a difference 



Experiments – Dataset variability (AlexNet) 

• More 3D models leads to higher performance 
• Remarkable improvements even with 10 models 



Experiments – Dimensionality reduction (VGG) 

• Our 32D comparable with previous state-of-the-art on 256D 
• Oxford5k: Our 32D MAC 69.2 vs. 256D NetVLAD 63.5 mAP 
• Paris6k: Our 32D MAC 69.5 vs. 256D NetVLAD 73.5 mAP 



Experiments – Overfitting / Generalization 

 
• We added Oxford and Paris landmarks as 3D 

models and repeated fine-tuning  
• Negligible difference in the performance of the 

network on Oxford and Paris evaluation results 
 

 

Only +0.3 mAP on average over all 
testing datasets 



State-of-the-art 



State-of-the-art 
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Summary 

• Introduction to image retrieval and BoW 
• Discovering image clusters and co-occurring 

features with min-Hash 
• Retrieval with geometric constraints helps to get 

better 3D reconstruction 
– more details 
– more stable – less mismatched structures 

• Automated 3D models provide great training data 
for CNN retrieval 
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