The Multi-Armed Bandit Problem

Nicolò Cesa-Bianchi

Università degli Studi di Milano

The bandit problem

K slot machines

- Rewards X_{i,1}, X_{i,2}, . . . of machine i are i.i.d. [0, 1]-valued random variables
- An allocation policy prescribes which machine I_t to play at time t based on the realization of $X_{I_1,1}, \ldots, X_{I_{t-1},t-1}$
- Want to play as often as possible the machine with largest reward expectation

$$\mu^* = \max_{i=1,\ldots,K} \mathbb{E} \, X_{i,1}$$

- Choose the best content to display to the next visitor of your website
- Goal is to elicit a response from the visitor (e.g., click on a banner)
- Content options = slot machines
- Response rate = reward expectation
- Simplifying assumptions:
 - fixed response rates
 - 2 no visitor profiles

Definition (Regret after n plays)

$$\mu^* n - \sum_{t=1}^n \mathbb{E} X_{I_t,t}$$

Theorem (Lai and Robbins, 1985)

There exist allocation policies satisfying

$$\mu^* n - \sum_{t=1}^n \mathbb{E} X_{I_t,t} \leqslant c \, K \ln n \qquad \textit{uniformly over } n$$

Constant c roughly equal to $1/\Delta^*$, where

$$\Delta^* = \mu^* - \max_{j\,:\,\mu_j < \mu^*} \mu_j$$

- $\overline{X}_{i,t}$ is the average reward obtained from machine i
- $T_{i,t}$ is number of times machine i has been played

Theorem (Auer, C-B, and Fisher, 2002)

At any time n, the regret of the UCB policy is at most

 $\frac{8K}{\Delta^*}\ln n + 5K$

Upper confidence bounds

 $\sqrt{(2\ln t)/T_{i,t}}$ is the size (using Chernoff-Hoeffding bounds) of the one-sided confidence interval for the average reward within which μ_i falls with probability $1-\frac{1}{t}$

Input parameter: schedule $\varepsilon_1, \varepsilon_2, \dots$ where $0 \le \varepsilon_t \le 1$ At each time t:

- with probability $1 \varepsilon_t$ play the machine I_t with the highest average reward
- 2 with probability ε_t play a random machine

Is there a schedule of ε_t guaranteeing logarithmic regret?

Theorem (Auer, C-B, and Fisher, 2002)

If $\varepsilon_t = \frac{12}{(d^2t)}$ where d satisfies $0 < d \le \Delta^*$ then the *instantaneous regret* at any time n of tuned ε -greedy is at most

 $O\left(\frac{K}{dn}\right)$

- Optimally tuned ε-greedy performs almost always best unless there are several nonoptimal machines with wildly different response rates
- Performance of *ε*-greedy is quite sensitive to bad tuning
- UCB TUNED performs comparably to a well-tuned ε-greedy and is not very sensitive to large differences in the response rates

The nonstochastic bandit problem

[Auer, C-B, Freund, and Schapire, 2002]

What if probability is removed altogether?

Nonstochastic bandits

Bounded real rewards $x_{i,1}, x_{i,2}, \ldots$ are deterministically assigned to each machine i

- Analogies with repeated play of an unknown game [Baños, 1968; Megiddo, 1980]
- Allocation policies are allowed to randomize

Definition (Regret)

$$\max_{i=1,\ldots,K} \left(\sum_{t=1}^{n} x_{i,t} \right) - \mathbb{E} \left[\sum_{t=1}^{n} x_{\mathbf{I}_{t},t} \right]$$

Competing against arbitrary policies

0	1	0	0	7	9	9	8	9	0	0	1
5	7	9	6	0	0	2	2	0	0	0	1
										-	_
0	2	0	1	0	1	0	0	8	9	8	7

Regret against an arbitrary and unknown policy $(j_1, j_2, ..., j_n)$

$$\sum_{t=1}^{n} x_{j_{t},t} - \mathbb{E}\left[\sum_{t=1}^{n} x_{I_{t},t}\right]$$

Theorem (Auer, C-B, Freund, and Schapire, 2002)

For all fixed S, the regret of the weight sharing policy against any policy $\mathbf{j} = (\mathbf{j}_1, \mathbf{j}_2, \dots, \mathbf{j}_n)$ is at most

$\sqrt{S nK ln K}$

where *S* is the number of times *j* switches to a different machine

