#### **Probabilistic Machine Learning**

Day 1: Introduction, Probability Theory, Information Theory and Bayesian Inference

Joaquin Quiñonero Candela

joaquinc@microsoft.com

Applied Games Group Microsoft Research Cambridge, UK

PASCAL Bootcamp in Machine Learning Vilanova i la Geltrú, July 5 and 6, 2007

## Why Probabilistic Models for Learning?

Probabilities can be used to quantify information gained from the training set

Probability theory gives a framework for computing with such quantities

- A probabilistic model can be used to
  - make predictions (with an indication of uncertainty)
  - make decisions (which minimize expected loss)
  - make inferences about missing inputs
  - find good representations of data
  - phantasize data (generative model)
- Probabilistic models are equivalent to other views of learning:
  - information theoretic: find a compact representation of the data
  - physical analogies: minimizing free energy of corresponding statistical mechanical system

#### **Probabilities and Ensembles**

An ensemble is a triple  $(x, \mathcal{A}_{\mathcal{X}}, \mathcal{P}_{\mathcal{X}})$ :

- the outcome x is the value of a random variable,
- x takes values from set  $\mathcal{A}_{\mathcal{X}} = \{a_1, a_2, \dots, a_L\},\$
- with probabilities  $\mathcal{P}_{\mathcal{X}} = \{p_1, p_2, \dots, p_L\}.$
- $P(x=a_i)=p_i$ ,  $p_i \ge 0$
- $\sum_{a_i \in \mathcal{A}_{\mathcal{X}}} P(x = a_i) = \sum_{i=1}^L p_i = 1.$

Simpler notation:

$$P(x = a_i) = P(x) = P(a_i)$$

| i        | $a_i$ | $p_i$  |   |   |
|----------|-------|--------|---|---|
| 1        | a     | 0.0575 | a |   |
| 2        | b     | 0.0128 | Ъ |   |
| 3        | с     | 0.0263 | с |   |
| 4        | d     | 0.0285 | d |   |
| <b>5</b> | е     | 0.0913 | е |   |
| 6        | f     | 0.0173 | f |   |
| 7        | g     | 0.0133 | g |   |
| 8        | h     | 0.0313 | h |   |
| 9        | i     | 0.0599 | i |   |
| 10       | j     | 0.0006 | j |   |
| 11       | k     | 0.0084 | k | - |
| 12       | 1     | 0.0335 | 1 |   |
| 13       | m     | 0.0235 | m |   |
| 14       | n     | 0.0596 | n |   |
| 15       | 0     | 0.0689 | 0 |   |
| 16       | р     | 0.0192 | р |   |
| 17       | q     | 0.0008 | q | • |
| 18       | r     | 0.0508 | r |   |
| 19       | s     | 0.0567 | S |   |
| 20       | t     | 0.0706 | t |   |
| 21       | u     | 0.0334 | u |   |
| 22       | v     | 0.0069 | v | • |
| 23       | v     | 0.0119 | W |   |
| 24       | х     | 0.0073 | х |   |
| 25       | У     | 0.0164 | У |   |
| 26       | z     | 0.0007 | Z |   |
| 27       | _     | 0.1928 | _ |   |
|          |       |        |   |   |

(from David MacKay)

#### **Basic Rules of Probability**

Probabilities are non-negative  $p(x) \ge 0 \ \forall x$ .

Probabilities normalise:  $\sum_{x \in \mathcal{X}} P(x) = 1$  (discrete) or  $\int_{-\infty}^{+\infty} p(x) dx = 1$  (continuous)

The joint probability of x and y is: P(x, y).

The marginal probability of x is:  $P(x) = \sum_{y} P(x, y)$ , assuming y is discrete.

The conditional probability of x given y is: P(x|y) = P(x,y)/P(y)

Bayes Rule:

$$p(x,y) = p(x)p(y|x) = p(y)p(x|y) \Rightarrow p(y|x) = \frac{p(x|y)p(y)}{p(x)} \propto p(x|y)p(y)$$

#### **Expectation and Variance (Moments)**

The expectation (mean, average) of a random variable is:

$$\mu = \mathbb{E}[x] = \int x p(x) \, \mathrm{d}x = \langle x \rangle_{p(x)} \, .$$

The variance (or second central moment) is:

$$\sigma^2 = \mathbb{V}[x] = \int (x-\mu)^2 p(x) \, \mathrm{d}x = \mathbb{E}[x^2] - \mathbb{E}[x]^2$$

The covariance between x and y:

$$\operatorname{cov}(x,y) = \mathbb{E}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])].$$

If x and y are independent, then their covariance is zero, since:

$$p(x, y) = p(x) p(y) .$$

#### **Example of Joint Probability - Bigrams**

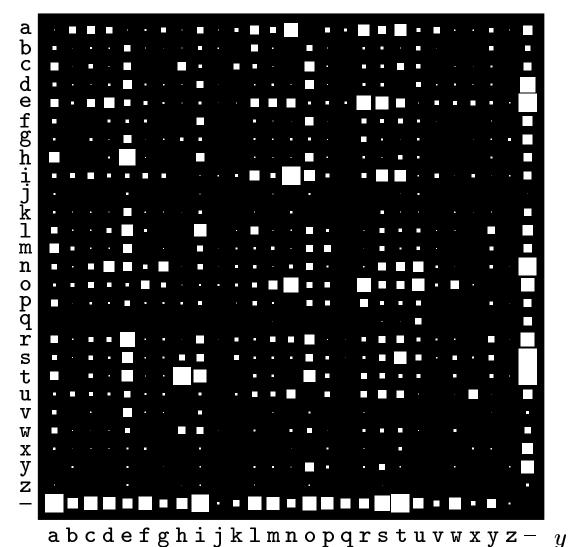
x

- Bigrams: probability of letter x followed by leter y
- Marginal probability from joint:

$$P(x = a_i) = \sum_{y \in \mathcal{A}_{\mathcal{Y}}} P(x = a_i, y) .$$

• Similarly

$$P(y) = \sum_{x \in \mathcal{A}_{\mathcal{X}}} P(x, y) .$$



(figure from David MacKay)

# An Exercise on Mammographies

#### The facts:

- 1% of scanned women have breast cancer
- 80% of women with breast cancer get positive mammography
- 9,6% of women without breast cancer also get positive mammography

#### The question:

A woman has a positive mammography. What is the probability that she has breast cancer?

#### Quick guess:

- a) less than 1%
- **b)** somewhere between 1% and 70%
- **c)** between 70% and 80%
- d) more than 80%

# Solving the Mammography Exercise Writing Down Probabilities

Write down the probabilities of everything (Steve Gull):

- Define: C = presence of breast cancer,  $\bar{C}$  = no cancer
- Define:  $M = \text{positive mammography}, \ \bar{M} = \text{negative mammography}$
- The **prior** probability of cancer for scanned women is p(C) = 1%
- If there is cancer, the probability of a positive mammography is p(M|C) = 80%
- If there is no cancer, we still have  $p(M|\bar{C}) = 9,6\%$

The question is: what is p(C|M)?

# Solving the Mammography Exercise Playing with Concrete Numbers

With a little help from concrete numbers: consider 10000 subjects of screening

- p(C) = 1%, therefore 100 of them have cancer, of which
  - p(M|C) = 80%, therefore 80 get a positive mammography
  - 20 get a negative mammography
- p(C) = 1%, therefore 9900 of them do not have cancer, of which
  - $p(M|\bar{C}) = 9,6\%$ , therefore 950 get a positive mammography
  - 8950 get a a negative mammography

Let us see where our 10000 subjects fall:

|           | M   | $\bar{M}$ |
|-----------|-----|-----------|
| C         | 80  | 20        |
| $\bar{C}$ | 950 | 8950      |

# Solving the Mammography Exercise Apply Bayes' Rule

• A very natural way of obtaining Bayes' Rule:

|           |   | M   | $\bar{M}$ |
|-----------|---|-----|-----------|
| C         | , | 80  | 20        |
| $\bar{C}$ |   | 950 | 8950      |

- Marginal: total number of positive mammographies  $p(M) = p(C, M) + p(\overline{C}, M)$
- p(C|M) is the proportion of all positive mammographies for which there is breast cancer:

$$p(C|M) = \frac{p(C,M)}{p(M)} = \frac{p(C,M)}{p(C,M) + p(\bar{C},M)} = \frac{80}{80 + 950} \approx 7,8\%$$

Bayes' rule

$$p(C|M) = \frac{P(M,C)}{P(M)} = \frac{P(M|C)P(C)}{P(M)}$$

## Do you trust your doctor?

Although the probability of a positive mammography given cancer is 80%, the probability of cancer given a positive mammography is 7.8%.

85% of the doctors would have said: c) between 70% and 80% This is totally wrong!

#### **Common mistakes**

- "the probability that a woman with positive mammography has cancer" is not at all the same as "the probability that a woman with cancer has a positive mammography".
- One must also consider the original fraction of women with breast cancer, and those without breast cancer who receive false positives.

from http://yudkowsky.net/bayes/bayes.html:

An Intuitive Explanation of Bayesian Reasoning

Bayes' Theorem for the curious and bewildered; an excruciatingly gentle introduction.

By Eliezer Yudkowsky

## Information, Probability and Entropy

Information is the reduction of uncertainty:

How much information do we gain by observing the outcome  $x = a_i$  of a random variable? As much as the corresponding reduction of the uncertainty.

How do we measure uncertainty?

Some axioms (informal):

- if something is certain its uncertainty = 0
- uncertainty should be maximum if all choices are equally probable
- uncertainty (information) should add for independent sources

**Exercise:** Consider 12 balls of equal weight, one of which is either lighter or heavier. You have a two-pan balance that outputs *left* is heavier, *right* is heavier, or *balanced*. How many uses of the balance do you need to find the odd ball?

(exercise 4.1 in David MacKay's book)

#### Entropy

Let X be a random variable X whose outcome x takes values in  $\{a_1, \ldots, a_L\}$  with probabilities  $\{p_1, \ldots, p_L\}$ 

The Shannon information content of the outcome  $x = a_i$  is:

$$h(x = a_i) = \log_2 \frac{1}{p_i}$$

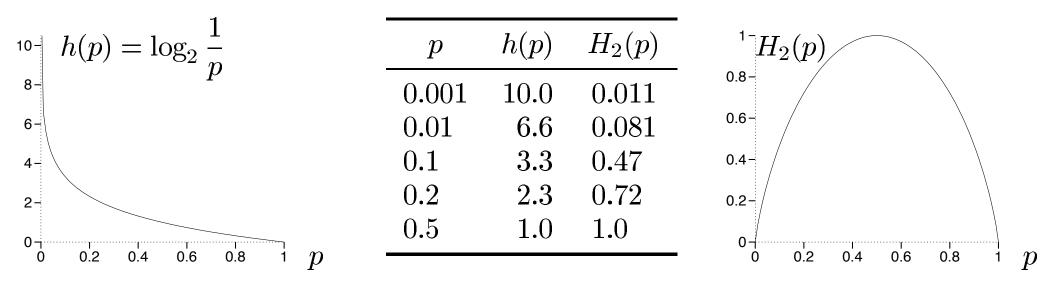
The entropy of the random variable X is the average information content:

$$H(X) = \sum_{i} p_i \log \frac{1}{p_i} = -\sum_{i} p_i \log p_i$$

measured in *bits* (**bi**nary digits): base 2 log or *nats* (**na**tural digits): natural (base e) log.

## **Entropy of a Binary Random Variable**

Consider a binary random variable, that can take two values with probabilities p and 1 - p.



(fig 4.1 in David MacKay's book)

Improbable events are more informative, but less frequent on average.

The entropy satisfies the two first axioms

- observation of a certain event carries no information
- maximum information is carried by uniformly probable events

#### **Information Between Two Random Variables**

• Joint entropy H(X,Y):

If X and Y are independent, then p(x,y) = p(x)p(y) and the Shannon information content

$$h(x,y) = \log \frac{1}{p(x,y)} = \log \frac{1}{p(x)} + \log \frac{1}{p(y)}$$

is additive. As a consequence H(X,Y) = H(X) + H(Y) and the third axiom is satisfied.

• Conditional entropy: average uncertainty remaining about x if we have observed y

$$H(X|Y) = -\sum_{x} \sum_{y} p(x, y) \log_2 p(x|y) = H(X, Y) - H(Y)$$

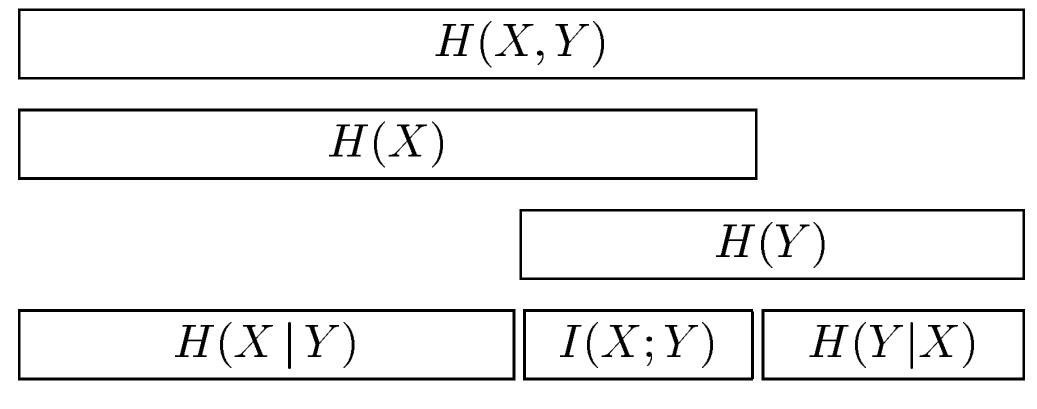
(if X and Y are independent H(X|Y) = H(X))

• Mutual information: average reduction in uncertainty about x if we observe y

I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = H(X) + H(Y) - H(X,Y)

or vice versa. (if X and Y are independent I(X;Y) = 0)

#### Information Between Two Random Variables (2)



(from David MacKay's book)

H(X,Y) is the joint entropy of X,Y

H(X|Y) is the **conditional entropy** of X given Y

I(X;Y) is the **mutual information** between X and Y

## **Kullback-Leibler Divergence**

Kullback-Leibler divergence (relative entropy)

$$KL(p(x)||q(x)) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

Note that this is not a distance, since it is not necessarily symmetric:

In general  $KL(p(x)||q(x)) \neq KL(q(x)||p(x))$ 

The KL divergence is very important in probabilistic machine learning. We will encounter it often again, for example in the expectation-maximization (EM) algorithm.

Relation between mutual information and KL:

I(X;Y) = KL(p(x,y)||p(x)p(y))

(this is symmetric)

#### Shannon's Source Coding Theorem

A discrete random variable X, distributed according to p(x) has entropy equal to:

$$H(X) = -\sum_{x} p(x) \log p(x)$$

**Shannon's source coding theorem:** n independent samples of the random variable X, with entropy H(X), can be compressed into minimum expected code of length  $n\mathcal{L}$ , where

$$H(X) \le \mathcal{L} < H(X) + \frac{1}{n}$$

If each symbol is given a code length  $l(x) = -\log_2 q(x)$  then the expected per-symbol length  $\mathcal{L}_q$  of the code is

$$H(X) + KL(p||q) \le \mathcal{L}_q < H(X) + KL(p||q) + \frac{1}{n},$$

where the relative-entropy or Kullback-Leibler divergence is

$$KL(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)} \ge 0$$

# What is Probability?

Two possible interpretations:

- long run frequencies (frequentist, classical)
- subjective degrees of **belief** (Bayesian)

# How can we represent the **beliefs** of a **learning agent** (robot)?

"Is Luke going to need that light saber right now?"

"Am I being too rude to C3P0?"

"How sure am I about my present location?"



We want to represent the **strength** of beliefs numerically in the brain of the robot, and we want to know what rules (calculus) we should use to manipulate those beliefs.

## **Beliefs and Probability**

Let b(x) be the degree of belief in proposition x. The degree of belief in a conditional proposition, 'x, assuming that y is true' is b(x|y), and

 $0 \le b(x) \le 1$ , b(x) = 0 [x is definitely **not true**], b(x) = 1 [x is definitely **true**]

Degrees of belief can be mapped onto probabilities if they satisfy simple consistency rules: Cox axioms (Cox, 1946):

- 1. Degrees of belief can be ordered. If b(z) is greater than b(y) and b(y) is greater than b(x), then b(z) is greater than b(x).
- 2. The degree of belief in x and in its negation  $\bar{x}$  are related:  $b(x) = f[b(\bar{x})]$ .
- 3. The degree of belief in x AND y is related to the degree of belief in the conditional proposition x|y and the degree of belief in the proposition y.

**Consequence:** Belief functions (e.g. b(x), b(x|y), b(x,y)) must satisfy the rules of probability theory, including Bayes rule. (Jaynes, *Probability Theory: The Logic of Science*)

#### **Bayesian Learning**

Apply the basic rules of probability to learning from data.

Data set:  $\mathcal{D} = \{x_1, \dots, x_n\}$  Models: m, m' etc. Model parameters:  $\theta$ Prior probability of models: P(m), P(m') etc. Prior probabilities of model parameters:  $P(\theta|m)$ Model of data given parameters (likelihood model):  $P(x|\theta, m)$ 

If the data are independently and identically distributed then:

$$P(\mathcal{D}|\theta, m) = \prod_{i=1}^{n} P(x_i|\theta, m)$$

Posterior probability of model parameters:

$$P(\theta|\mathcal{D}, m) = \frac{P(\mathcal{D}|\theta, m)P(\theta|m)}{P(\mathcal{D}|m)}$$

Posterior probability of models:

$$P(m|\mathcal{D}) = \frac{P(m)P(\mathcal{D}|m)}{P(\mathcal{D})}$$

#### Bayesian Learning: A coin toss example

The likelihood of the parameters given the data is the probability of the observed data given the parameters.

• Parameter:  $\theta = \pi$  (probability of heads), data: tail x = 0, heads x = 1. Given  $\pi$ , independent Bernoulli likelihood:

$$p(x|\pi) = \pi^x (1-\pi)^{1-x}$$

- Observations:  $\mathcal{D} = \{x_i \in \{T, H\} | i = 1, ..., n\}$ , summary: n and number of heads k
- Likelihood of the parameter given the data  $\mathcal{D}$ :

$$p(\mathcal{D}|\pi) = \pi^k (1-\pi)^{n-k}$$

• Maximum Likelihood estimation:

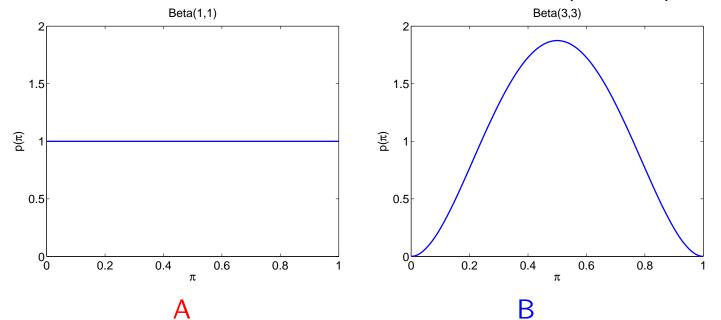
$$\frac{\partial \log p(\mathcal{D}|\pi)}{\partial \pi} = 0 \Rightarrow \pi = \frac{k}{n}$$

Is this always a good answer?

## **Priors for Coin Tossing**

Compare two different models (priors):

- Learner A believes all values of  $\pi$  are equally plausible.
- Learner B believes that it is more plausible that the coin is "fair" ( $\pi \approx 0.5$ ) than "biased".



• We can write these prior beliefs using a Beta distribution

$$p(\pi | \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \pi^{\alpha - 1} (1 - \pi)^{\beta - 1}$$

for A:  $\alpha = \beta = 1.0$  and B:  $\alpha = \beta = 3.0$ .

#### **Posterior for Coin Tossing**

Two possible outcomes:

$$p(\mathsf{heads}|\pi) = \pi$$
  $p(\mathsf{tails}|\pi) = 1 - \pi$ 

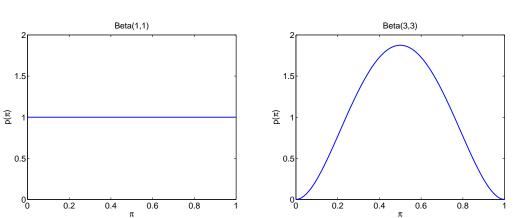
**Imagine we observe a single coin toss and it comes out** *heads* The probability of the observed data (likelihood) is:

 $p(\mathsf{heads}|\pi) = \pi$ 

Using Bayes Rule, we multiply the prior,  $p(\pi)$  by the likelihood and renormalise to get the posterior probability:

$$p(\pi|\mathsf{heads}) = \frac{p(\pi)p(\mathsf{heads}|\pi)}{p(\mathsf{heads})} \propto \pi \operatorname{Beta}(\pi|\alpha,\beta)$$
$$\propto \pi \pi^{(\alpha-1)}(1-\pi)^{(\beta-1)} = \operatorname{Beta}(\pi|\alpha+1,\beta)$$

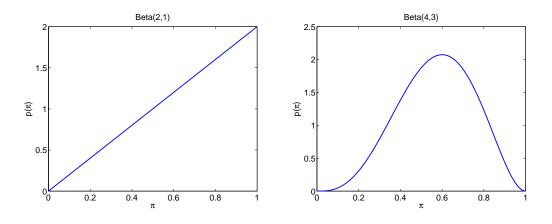
#### Before and After Observing One Head



Prior







Posterior

## **Making Predictions**

As opposed to the Maximum Likelihood approach, **average** over all possible parameter settings:

$$p(x = 1|\mathcal{D}) = \int p(x = 1|\pi) p(\pi|\mathcal{D}) d\pi$$

Learner A predicts  $p(x = 1 | D) = \frac{2}{3}$ Learner B predicts  $p(x = 1 | D) = \frac{4}{7}$ 

## **Some Terminology**

**Maximum Likelihood (ML) Learning**: Does not assume a prior over the model parameters. Finds a parameter setting that maximises the likelihood of the data:  $P(\mathcal{D}|\theta)$ .

**Maximum a Posteriori (MAP) Learning**: Assumes a prior over the model parameters  $P(\theta)$ . Finds a parameter setting that maximises the posterior:  $P(\theta|\mathcal{D}) \propto P(\theta)P(\mathcal{D}|\theta)$ .

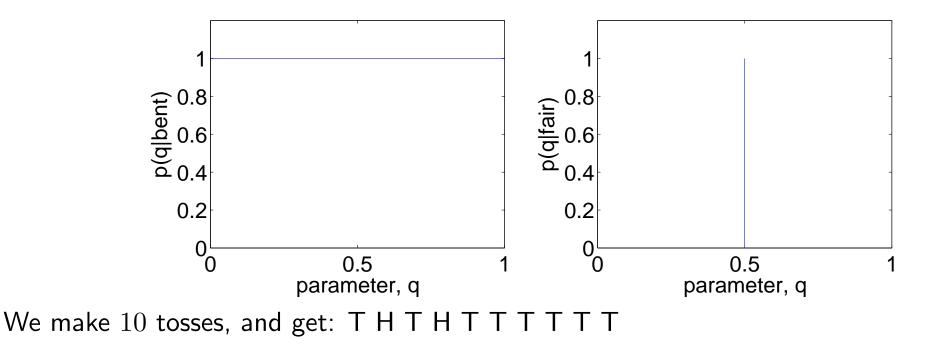
**Bayesian Learning**: Assumes a prior over the model parameters. Computes the posterior distribution of the parameters:  $P(\theta|\mathcal{D})$ .

## Learning about a coin II

Consider two alternative models of a coin, "fair" and "bent". A priori, we may think that "fair" is more probable, eg:

$$p(fair) = 0.8, \qquad p(bent) = 0.2$$

For the bent coin, (a little unrealistically) all parameter values could be equally likely, where the fair coin has a fixed probability:



#### Learning about a coin. . .

The evidence for the fair model is:  $p(\mathcal{D}|\text{fair}) = (1/2)^{10} \simeq 0.001$ and for the bent model:

$$p(\mathcal{D}|\text{bent}) = \int d\pi \ p(\mathcal{D}|\pi, \text{bent}) p(\pi|\text{bent}) = \int d\pi \ \pi^2 (1-\pi)^8 = B(3,9) \simeq 0.002$$

The posterior for the models, by Bayes rule:

$$p(\text{fair}|\mathcal{D}) \propto 0.0008, \qquad p(\text{bent}|\mathcal{D}) \propto 0.0004,$$

ie, two thirds probability that the coin is fair. **How do we make predictions?** By weighting the predictions from each model by their probability. Probability of Head at next toss is:

$$\frac{2}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{3}{12} = \frac{5}{12}.$$

## **Bayesian Classification**

Example: Linear Classification (example from Radford Neal's NIPS\*04 tutorial)

- Binary classification in 2D input space  $y \in \{-1, +1\}$
- Model: linear decision function, "Hard" likelihood:

$$p(y = +1|x, w, M) = \operatorname{sign}(u(w^{\top}x - ||w||^2))$$

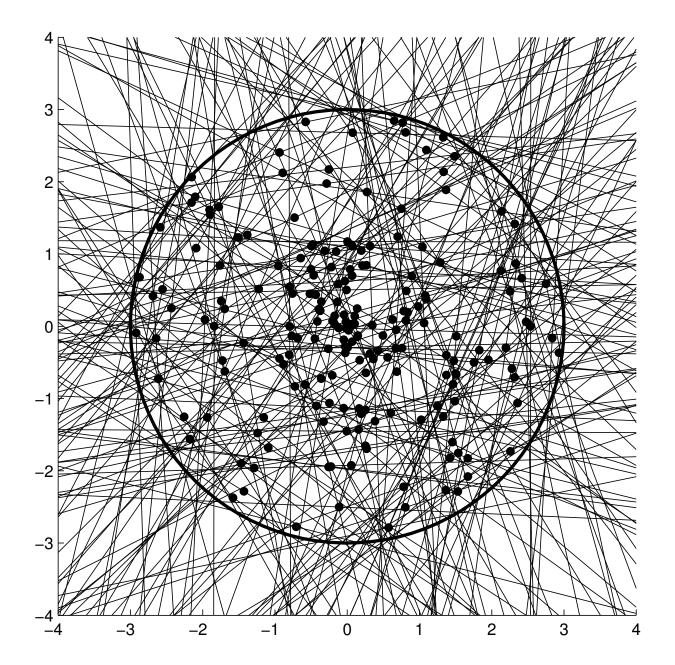
(where  $w = [w_1, w_2]^{\top}$  and  $u \in \{-1, +1\}$  are model parameters)

• Prior: decision boundary anywhere distant at most 3 from origin:

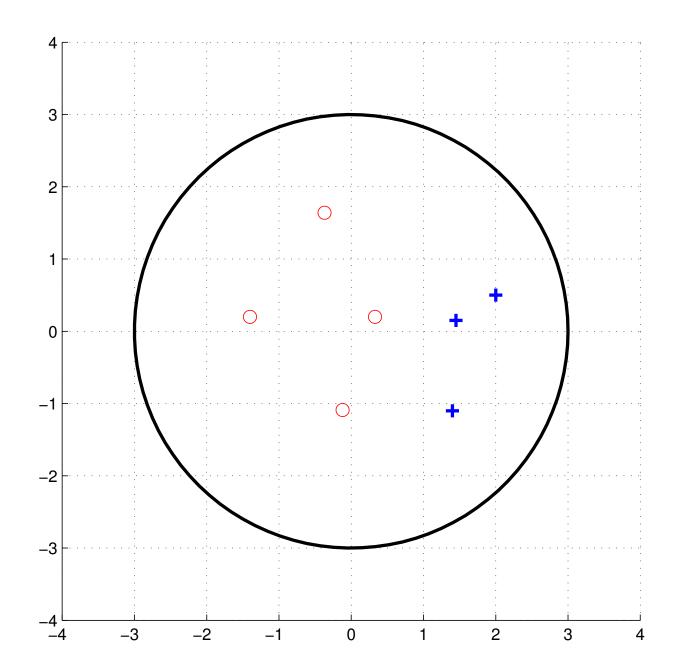
$$w = r \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
,  $r \sim \text{Uniform}(0,3)$ ,  $\theta \sim \text{Uniform}(0,2\pi)$ 

and u chosen from  $\{-1, +1\}$  with equal probability

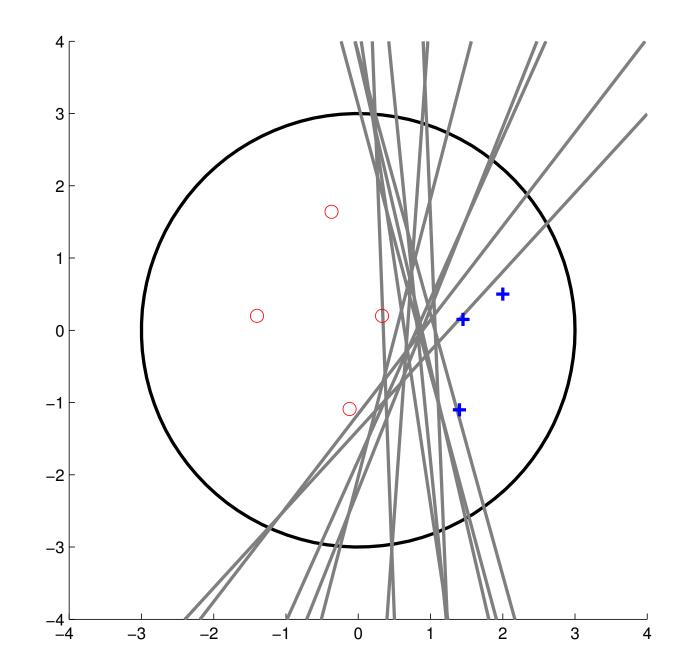
# Verifying the Prior



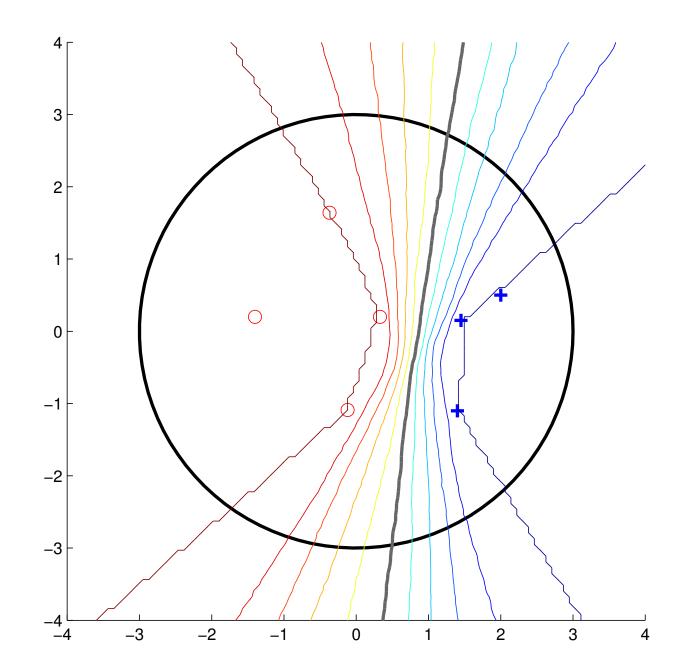
# **Observing Some Data**



# **Posterior Samples**



# **Bayesian Predictions**



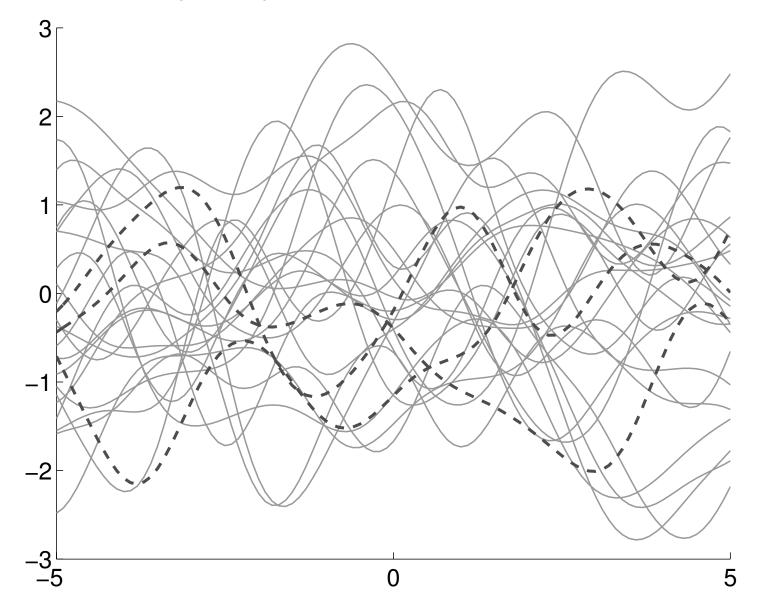
## The Evidence or Marginal Likelihood Revisited

$$p(D|M) = \int p(D|w, M) p(w|M) dw$$

- Probability of the data given M and  $p(w \vert M) \text{, it's an average likelihood}$
- Volume of the unnormalized posterior: agreement of prior with likelihood
- Let's compute it for the previous example: The likelihood of a given line is 1 if it separates the data and 0 otherwise. We draw 10000 posterior samples, of which only 513 separate the data.
- The evidence is the fraction of the lines drawn from the prior that are compatible with the data: 513/10000 = 0.0513

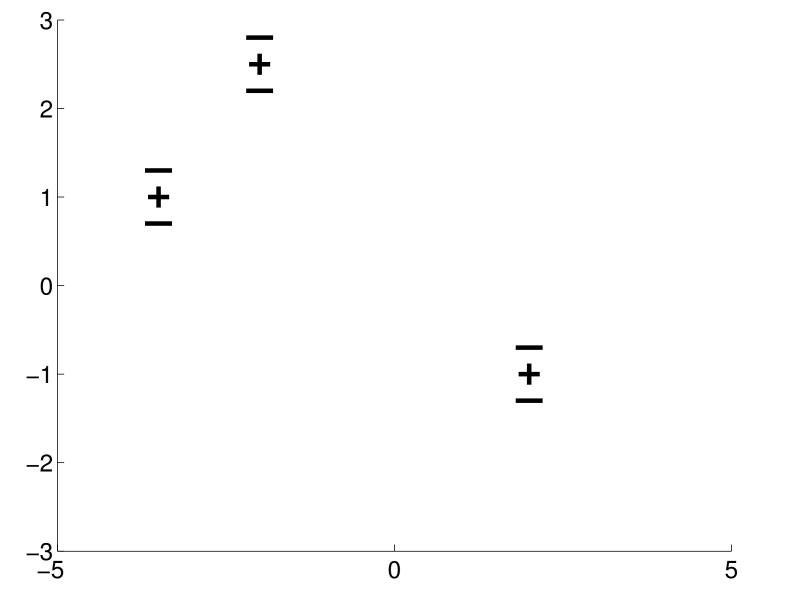
## **Bayesian Regression**

Assume we were able to impose a prior over functions, we could draw some samples



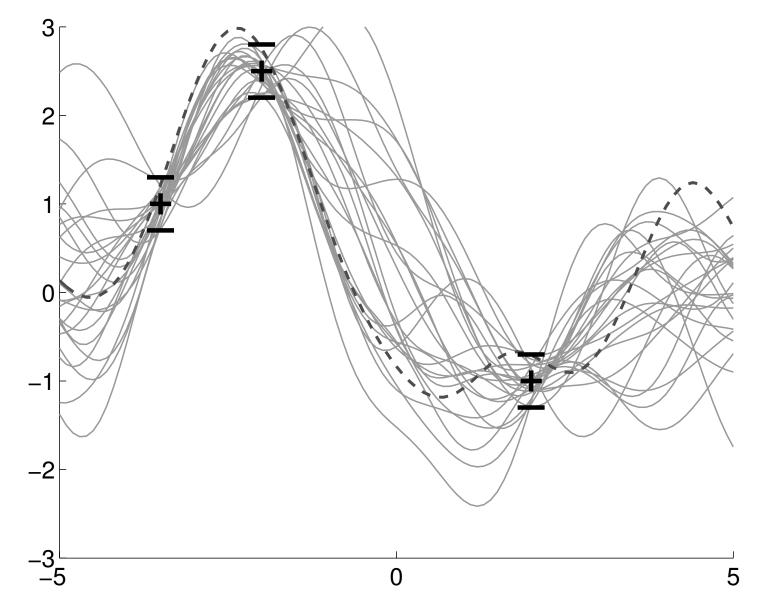
#### **Bayesian Regression - Observe Some Data**

Now let us assume we observe three data points, and decide to define take a uniform noise model. This gives us the likelihood of the function values given the observed data:



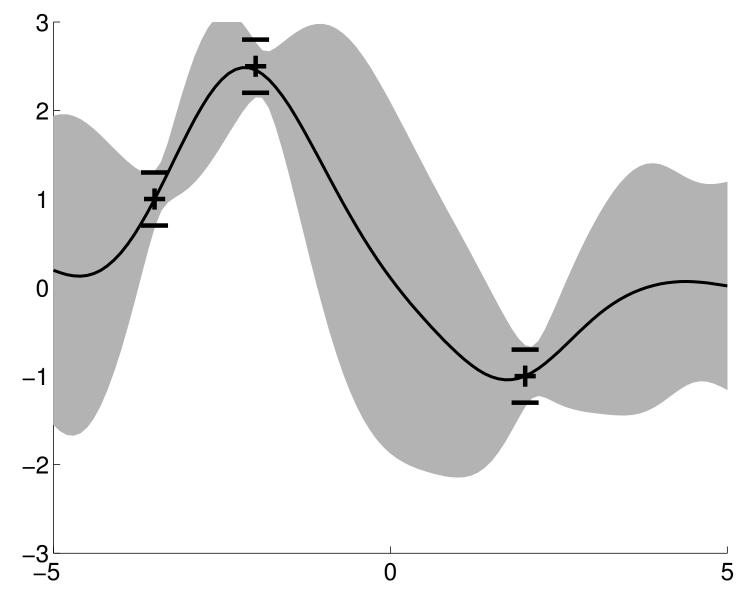
## **Bayesian Regression - Posterior Distribution**

Given the prior and the likelihood we can now draw samples from the posterior distribution:

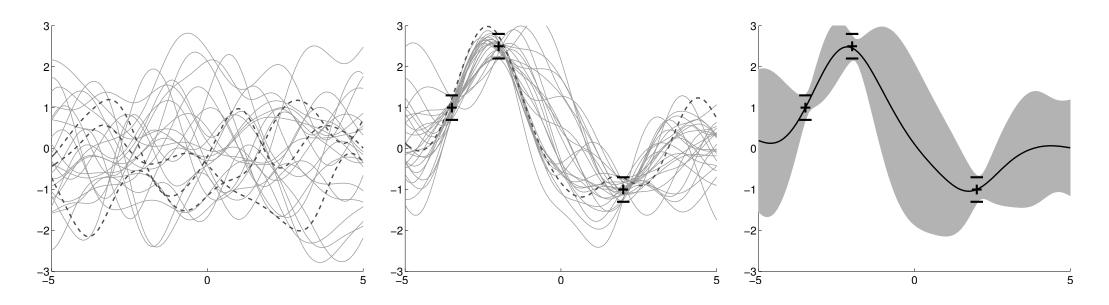


## **Bayesian Regression - Predictive Distribution**

If are now asked to make predictions, we average over the posterior distribution to obtain the predictive distribution:



#### **Bayesian Regression - Summary**



left samples from our the prior (could be all of you!)

- middle samples from the posterior, data observed (crosses) and uniform noise model (horizontal bars)
- **right** predictive distribution, empirically computed from the posterior samples. Here mean and 2 std dev given
- parameters of the prior? Either specify hyperprior on, or learn the parameters of the prior by maximizing the evidence