
Probabilistic Machine Learning

Clustering: k-means and Mixtures of Gaussians
The EM Algorithm and (perhaps some) Factor Analysis

Joaquin Quiñonero Candela
joaquinc@microsoft.com

Applied Games Group
Microsoft Research Cambridge, UK

PASCAL Bootcamp in Machine Learning
Vilanova i la Geltrú, July 5 and 6, 2007

Three Types of Learning

Imagine an organism or machine which experiences a series of sensory inputs:

x1, x2, x3, x4, . . .

Supervised learning: The machine is also given desired outputs y1, y2, . . ., and its goal is
to learn to produce the correct output given a new input.

Unsupervised learning: The goal of the machine is to build a model of x that can be
used for reasoning, decision making, predicting things, communicating etc.

Reinforcement learning: The machine can also produce actions a1, a2, . . . which affect
the state of the world, and receives rewards (or punishments) r1, r2, Its goal is to learn
to act in a way that maximises rewards in the long term.

Datasets

Some simple datasets in R2:

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y 2

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y 2

A slightly less boring dataset in R2:

A Very Simple Model

Univariate Gaussian Density y ∈ R:

p(y|µ, σ) =
1√

2πσ2
exp

(
−(y − µ)2

2σ2

)

A very simple model

Univariate Gaussian density (y ∈ IR):

p(y|µ,σ) =
1√

2πσ2
exp

{
−(y − µ)2

2σ2

}

!4 !2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y
p

(y
)

Univariate Gaussian density

This model has parameters θ = {µ,σ} which model the mean and standard deviation of
the data, respectively.

This model has parameters θ = {µ, σ}, which model the mean and the standard deviation
of the data, respectively.

A Less Simple Model

Multivariate Gaussian Density y ∈ RD:

p(y|µ,Σ) = |2πΣ|−1
2 exp

{
−1

2
(y − µ)>Σ−1(y − µ)

}

A slighly more complicated model

Multivariate Gaussian density (y ∈ IRD):

p(y|µ,Σ) = |2πΣ|−1
2 exp

{
−1

2
(y − µ)"Σ−1(y − µ)

}

µ =

»
0
0

–
Σ =

»
1 0
0 1

–

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

!2

0

2

!2

0

2

0

0.1

0.2

0.3

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

This model has parameters θ = {µ,Σ} which model the mean and covariance matrix of
the data.

This model has parameters θ = {µ,Σ}, which model the mean and covariance matrix

A Less Simple Model: A Multivariate Gaussian
The multivariate Gaussian density

µ =

»
0
0

–
Σ =

»
1 0.9

0.9 1

–

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

!2

0

2

!2

0

2

0

0.2

0.4

0.6

0.8

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

µ =

»
−1
1

–
Σ =

»
1 0.9

0.9 1

–

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

!2

0

2

!2

0

2

0

0.2

0.4

0.6

0.8

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

Generating Samples from a Multivariate Gaussian

We know how to generate independent samples: z ∼ N (0, I).
How do we generate samples with covariance Σ? Find the appropriate rotation.

Take the eigen-decomposition of the covariance matrix Σ = U D U>.

U contains the eigenvectors as columns: U>U = I. Orthogonal base: L = UD
1
2.

Sample independently and then rotate:

z ∼ N (0, I) and y = Lz; , ⇒ cov(y) = E(yy>) = LL> = Σ .

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y 2

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

y
1

y 2

Fitting the Model to Data

Assuming the data were generated independently, the likelihood of the model is:

p(D|θ) =
n∏

i=1

p(yi|θ)

From left to right: clearly the 3rd model is the best fit to the data

log p(D|θ1) = −55.38

log p(D|θ2) = −238.29

log p(D|θ3) = −22.14

The Likelihood Function

The likelihood p(D|θ) = p({y1, . . . ,yn}|µ,Σ) =
∏n

i=1 p(yi|µ,Σ) is a function of the
model parameters θ

The maximum likelihood (ML) procedure finds parameters θ = {µ,Σ} such that:

θML = argmaxθ p(D|θ)

The likelihood function

Data set D = {y1, . . . ,yN}, the likelihood: p(D|µ,Σ) =
N∏

n=1

p(yn|µ,Σ) is a function of

the model parameters

The maximum likelihood (ML) procedure finds parameters θ = {µ,Σ} such that:

θML = argmaxθ p(D|θ)

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

Maximum Likelihood Estimate for a Gaussian

Likelihood is p(data|model): p(D|µ,Σ) =
N∏

n=1

p(yn|µ,Σ)

Goal: find µ and Σ that maximise log likelihood:

L = log
N∏

n=1

p(yn|µ,Σ) = −N

2
log |2πΣ| − 1

2

∑
n

(yn − µ)>Σ−1(yn − µ)

Note: equivalently, minimise −L, which is quadratic in µ
Procedure: take derivatives and set to zero:

∂L
∂µ

= 0 ⇒ µ̂ =
1
N

∑
n

yn (sample mean)

∂L
∂Σ

= 0 ⇒ Σ̂ =
1
N

∑
n

(yn − µ̂)(yn − µ̂)> (sample covariance)

Dangers of the Maximum Likelihood Procedure

What is the ML estimate of the model parameters for this dataset?

Two very simple data sets

What are the maximum likelihood estimates of θ for these data sets?

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

Does this make sense?Is this reasonable?

Bayesian Learning

We make prior assumptions on the value of the parameters before we see the data.
We then apply the basic rules of probability theory.

• Prior distribution over the parameters: p(θ)

• Model of the data given the parameters,
likelihood function: p(D|θ)

• Posterior distribution of model parameters:

p(θ|D) =
p(D|θ)p(θ)

p(D)

Two very simple data sets

What are the maximum likelihood estimates of θ for these data sets?

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

!3 !2 !1 0 1 2 3
!3

!2

!1

0

1

2

3

Does this make sense?

Limitations of Multivariate Gaussians

Gaussians are fundamental and widespread, but not all datasets conform to a Gaussian
distribution.

• Restriction to linear relations plus Gaussian noise

• There might exist outliers in the data (heavy-tailed noise)

• The data might have non-linear structure

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

• Even if data is Gaussian, if D is large the full multivariate Gaussian model might be
difficult to handle: D(D + 1)/2 parameters! dimensionality reduction

Factor Analysis

Model the observed data y as a linear combination of a smaller number of generating,
latent factors x. Factor Analysis

YDY1 Y2

X1 KX

!
µ = 0

Σ ≈ ΛΛ! + Ψ

• ML learning for FA aims to fit Λ and Ψ given data. There is no closed form solution for
ML parameters.

• Number of free parameters (corrected for symmetries):

DK + D − K(K − 1)
2

<
D(D + 1)

2

• A Bayesian treatment would start with priors over Λ and Ψ and infer their posterior
given the data.

p(Λ,Ψ|D) =
p(D|Λ,Ψ)p(Λ,Ψ)

p(D)

Linear generative model: yd =
K∑

k=1

Λdk xk + εd

• xk are independent N (0, 1) Gaussian factors
• εd are independent N (0,Ψdd) Gaussian noise
• K <D

Properties:
• p(x) ∼ N (0, I) and y = Λx + ε

• Since p(ε) = N (0,Ψ), we get p(y|x) = N (Λx,Ψ)

• p(y) =
∫

p(x)p(y|x)dx = N (0,ΛΛ> + Ψ) where Λ is a D × K matrix, and Ψ is
diagonal.

latent = hidden = unobserved = missing

Digesting Factor Analysis

y = Λx + ε

y is one D × 1 observed vector from our dataset D = {y1, . . . ,yn}.
x is a K × 1 vector of latent factors with K < D.

The prior over factors is p(x) = N (0, I).

The noise is independent across dimensions: ε ∼ N (0,Ψ), where Ψ is diagonal.
Therefore the conditional likelihood given the factors is:

p(y|x,Λ,Ψ) = N (Λx, Ψ)

The (marginal) likelihood is obtained by integrating over the unknown factors:

p(y|Λ,Ψ) =
∫

p(y|x,Λ,Ψ)p(x)dx = N (0,ΛΛ> + Ψ)

This is the likelihood we would use to learn the parameters θ = {Λ,Ψ}.

Digesting Factor Analysis (2)

The posterior distribution over the factor x, given an observation yi is given by:

p(x|yi,Λ,Ψ) =
p(yi|x,Λ,Ψ)p(x)

p(yi|Λ,Ψ)
= N (βyi, I − βΛ)

where β = Λ>(ΛΛ> + Ψ)−1.

Ways of Thinking about Factor Analysis (FA)

• FA models high dimensional data in terms of a linear transformation of a smaller number
(K) of latent factors (white sources of randomness)

• FA is a way of parameterizing a covariance matrix in terms of a smaller number of
parameters: Σ = ΛΛ>+ Ψ (K ×D + D instead of D×D). This allows modelling high
dimensional data.

• FA is a method for finding correlations between the observed variables.

• FA is a model for linear regression, where the inputs are hidden (latent)

• FA performs dimensionality reduction: the posterior distribution over factors is
probabilistic low-dimensional projection of high dimensional data that captures the
correlation structure of the data:

p(x|y) =
p(y|x)p(x)

p(y)
= N (βy, I − βΛ) where β = Λ>(ΛΛ> + Ψ)−1

More on Factor AnalysisFactor Analysis

YDY1 Y2

X1 KX

!
µ = 0

Σ ≈ ΛΛ! + Ψ

• ML learning for FA aims to fit Λ and Ψ given data. There is no closed form solution for
ML parameters.

• Number of free parameters (corrected for symmetries):

DK + D − K(K − 1)
2

<
D(D + 1)

2

• A Bayesian treatment would start with priors over Λ and Ψ and infer their posterior
given the data.

p(Λ,Ψ|D) =
p(D|Λ,Ψ)p(Λ,Ψ)

p(D)

Relation to Multivariate Gaussian y ∼ N (µ,Σ)

• µ = 0

• Σ ≈ ΛΛ> + Ψ

• The covariance of the data does not change if we rotate the sources Λ → ΛR, where
RR> = I. We can only hope to find Λ up to a rotation of the factors.

• Number of free parameters (corrected for symmetries):

DK + D − K(K − 1)
2

<
D(D + 1)

2

• A Bayesian treatment of FA would start with priors over Λ and Ψ and infer their
posterior given the data.

p(Λ,Ψ|D) =
p(D|Λ,Ψ)p(Λ,Ψ)

p(D)

Latent Variable Models

Explain correlations in y by assuming some latent variables x

Latent Variable Models

Explain correlations in y by assuming some latent variables x

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

x ∼ p(x|θx)

y|x ∼ p(y|x,θy)

p(x,y|θx,θy) = p(y|x,θy)p(x|θx)

p(y|θx,θy) =
∫

dx p(y|x,θy)p(x|θx)

x ∼ p(x|θx)

y ∼ p(y|x,θy)

p(x,y|θx,θy) = p(y|x,θy)p(x|θx)

p(y|θx,θy) =
∫

p(y|x,θy)p(x|θx)dx

Gradient Methods of Learning FA

Write down negative log likelihood:

1
2

log |2π(ΛΛ> + Ψ)|+ 1
2
y>(ΛΛ> + Ψ)−1y

Optimize w.r.t. Λ and Ψ (need matrix calculus) subject to constraints

There is an easier way to learn latent variable models...

... the Expectation-Maximization (EM) algorithm we will study tomorrow!

Probabilistic Principal Components Analysis (PPCA)
Factor Analysis

YDY1 Y2

X1 KX

!
µ = 0

Σ ≈ ΛΛ! + Ψ

• ML learning for FA aims to fit Λ and Ψ given data. There is no closed form solution for
ML parameters.

• Number of free parameters (corrected for symmetries):

DK + D − K(K − 1)
2

<
D(D + 1)

2

• A Bayesian treatment would start with priors over Λ and Ψ and infer their posterior
given the data.

p(Λ,Ψ|D) =
p(D|Λ,Ψ)p(Λ,Ψ)

p(D)

Linear generative model: yd =
K∑

k=1

Λdk xk + εd

• xk are independent N (0, 1) Gaussian factors
• εd are independent N (0, σ2) Gaussian noise
• K <D
PPCA is factor analysis with isotropic noise: Ψ = σ2I
Finds the same principal subspace as PCA but provides a well-defined probabilistic model.

(Mike Tipping and Chris Bishop, J. of the Royal Statistical Society, Series B, 1999)

Principal Components Analysis Factor Analysis

YDY1 Y2

X1 KX

!
µ = 0

Σ ≈ ΛΛ! + Ψ

• ML learning for FA aims to fit Λ and Ψ given data. There is no closed form solution for
ML parameters.

• Number of free parameters (corrected for symmetries):

DK + D − K(K − 1)
2

<
D(D + 1)

2

• A Bayesian treatment would start with priors over Λ and Ψ and infer their posterior
given the data.

p(Λ,Ψ|D) =
p(D|Λ,Ψ)p(Λ,Ψ)

p(D)

Noise variable becomes infinitesimal compared to the scale of the data: Ψ = lim
σ2→0

σ2I

Equivalently: reconstruction cost becomes infinite compared to the cost of coding the
hidden units under the prior.

p(x|y) = N (βy, I − βΛ)

β = lim
σ2→0

ΛT (ΛΛT + σ2I)−1 = (ΛTΛ)−1ΛT

In PCA we choose the columns of Λ to be orthonormal, Λ>Λ = I, therefore:

β = Λ>

Eigenvalues and Eigenvectors

λ is an eigenvalue and x is an eigenvector of A if:

Ax = λx

and x is a unit vector (x>x = 1).

Interpretation: the operation of A in direction x is a scaling by λ.

The K Principal Components are the K eigenvectors with the largest eigenvalues of the
data covariance matrix (i.e. K directions with the largest variance).

Note: Σ can be decomposed:
Σ = USU>

where S is diag(σ2
1, . . . , σ

2
D) and U is a an orthonormal matrix.

Example of PCA: Eigenfaces

from www.media.mit.edu

Another View on PCA

PCA finds the optimal linear projection, that minimizes a linear reconstruction mean
squared error:

E =
1
n

n∑
i=1

‖yi −Axi‖2 xi = P>yi

Spring model (Roweis, NIPS*98)

• project the data onto the current estimate of the subplane

• fix the subplane at the origin so that it still can rotate

• attach springs between the projected points and the original samples and relax the
system: it will equilibrate at the newly estimated position of the subplane.

Mutual Information and PCA

Problem: Given y, find x = Ay with columns of A unit vectors, s.t. I(x;y) is maximised
(assuming that P (y) is Gaussian).

I(x;y) = H(x) + H(y)−H(x,y) = H(x)

So we want to maximize the entropy of x. What is the entropy of a Gaussian?

H(z) = −
∫

dz p(z) ln p(z) =
1
2

ln |Σ|+ D

2
(1 + ln 2π)

Therefore we want the distribution of x to have largest volume (i.e. det of covariance
matrix).

Σx = AΣyA
> = AUSyU

>A>

So, A should be aligned with the columns of U which are associated with the largest
eigenvalues (variances).

FA vs PCA

• PCA is rotationally invariant; FA is not

• FA is measurement scale invariant; PCA is not

• FA defines a probabilistic model; PCA does not

Limitations of Gaussian, FA and PCA models

• Gaussian, FA and PCA models are easy to understand and use in practice.

• They are a convenient way to find interesting directions in very high dimensional data
sets, eg as preprocessing

• Their problem is that they make very strong assumptions about the distribution of the
data, only the mean and variance of the data are taken into account.

The class of densities which can be modelled is too restrictive.

By using mixtures of simple distributions, such as Gaussians, we can expand the class of
densities greatly...

Clustering

Clustering

(thanks to Josh Tenenbaum)

Prologue to Mixtures of Gaussians

Clustering: put a set of N objects into K groups that are similar to each other.
(things that are brown and run away, and things that are green and don’t run away)

Why cluster?:
• predictive power: better description of our data, better actions
• compression for communications (vector quantization, K-means clustering)
• detection of relevant (surprising) objects
• models for learning processes in neural systems

Measure of expected distorsion

D =
∑
y

p(y)‖mk(y) − y‖2

where k(y) ∈ {1, . . . ,K} is the cluster y is assigned to, and mk(y) its mean.

Note that we could use other distances, and other prototypes.

The K-Means Algorithm

Initialization: set the K means mk to random values.

Assignment step: Assign each data point i to the nearest mean.

k(i) = argmink ‖yi −mk‖2

Update the responsibility indicators rij of cluster j for point i:

rij =
{

1 if k(i) = j
0 if k(i) 6= j

Update step: Compute the means of the clusters

mk =
∑n

i=1 rikyi∑n
i=1 rik

where
∑n

i=1 rik = R(k) is the total number of points assigned to cluster k.

Oranges and Lemons (thanks to Iain Murray)
Oranges and Lemons
Thanks to Iain Murray

Two Dimensional Data Space

10

8

6

4

1086

h
ei

gh
t/

cm

width/cm

Oranges:
Lemons:

K-Means Clustering

10

8

6

4

1086

h
ei

gh
t/

cm

width/cm

K-Means Clustering

10

8

6

4

1086

h
ei

gh
t/

cm

width/cm

K-Means Clustering

10

8

6

4

1086

h
ei

gh
t/

cm

width/cm

K-Means Clustering

10

8

6

4

1086

h
ei

gh
t/

cm

width/cm

K-Means Clustering

10

8

6

4

1086

h
ei

gh
t/

cm

width/cm

K-Means Clustering

10

8

6

4

1086

h
ei

gh
t/

cm

width/cm

Limitations of K-Means Clustering

• Solution depends heavily on initialization

• Why are the cluster means equal to the empirical means of the assigned points?

• Why are distances computed the way they are?

• How do we find K?

• Responsibilities assign points to clusters in a hard way.

K-Means Clustering as a Mixture of Gaussians

Think of a cluster as of one Gaussian distribution with mean mk and unit variance:

p(y|mk) = (2π)−
D
2 exp

(
−1

2
‖y −mk‖2

)
We define a Gaussian mixture model with equal mixing proportions πk = 1/K:

p(y) =
K∑

k=1

πkp(y|mk)

If we knew the responsibilities rij of cluster j for point i, the likelihood of the model would
be:

p({yi}, {rij}|{mk}) =
n∏

i=1

[πkp(yi|mk)]rij

K-Means Clustering as a Mixture of Gaussians (2)

If we knew the responsibilities rij of cluster j for point i, the likelihood of the model would
be:

p({yi}, {rij}|{mk}) =
n∏

i=1

[πkp(yi|mk)]rij

Taking logarithms:

log p({yi}, {rij}|{mk}) = −1
2

n∑
i=1

rik‖yi −mk‖2 + Constant

Maximizing this expression is equivalent to minimizing the K-Means cost function.
It is better to treat the rik as latent variables.

Mixture of Gaussians (MoG)

The discrete indicator variable si = k means that data point i is assigned to cluster k.

The prior probability of being assigned to cluster k is πk = p(s = k).

Model: latent variables si assign points to one of L Gaussian components:

p(yi|θ) =
K∑

k=1

p(si = k) p(yi|si = k,µk,Σk) =
K∑

k=1

πk Pik

with Pik = p(yi|si = k, µk,Σk) = N (yi|µk,Σk).

Goal: learn the parameters {πk} and {µk, Σk}.

Maximum Likelihood for MoG

Assuming independent data D = {y1, . . . ,yn}:

p(D|θ) =
n∏

i=1

K∑
k=1

πk p(yi|si = k, µk,Σk)

Taking the logarithm:

L =
n∑

i=1

log
K∑

k=1

πk p(yi|si = k, µk,Σk)

Maximum Likelihood for MoG (2)

Remember, log likelihood is L =
∑n

i=1 log
∑K

k=1 πk Pik.

Derivative with respect to θ = {µ,Σ}

∂L
∂θk

=
n∑

i=1

πk∑K
j=1 πjPij

∂Pik

∂θk
=

n∑
i=1

πkPik∑K
j=1 πjPij

∂ log Pik

∂θk
=

n∑
i=1

rik
∂ log Pik

∂θk

We have used the identity ∂p/∂θ = p× ∂ log p/∂θ, and defined the responsibilities rik:

rik =
p(yi, si = k|µk,Σk)

p(yi|µk,Σk)
= p(si = k|yi,µk,Σk)

which are posterior class-membership probabilities, that normalize
∑K

k=1 rik = 1.

Maximum Likelihood for MoG (3)

Derivative with respect to the πk:
We need to add λ(1−

∑K
k=1 πk) to the objective function: L̃ = L+ λ(1−

∑K
k=1 πk)

∂L̃
∂πk

=
n∑

i=1

Pik∑n
j=1 πj Pij

− λ = 0 ⇐⇒
n∑

i=1

rik − λπk = 0

∂L̃
∂λ

= 1−
K∑

i=k

πK = 0

Using the fact that
∑

k=1

∑n
i=1 rik − λπk = n− λ = 0 we get λ = n and

πk =
1
n

n∑
i=1

rik

(what is
∑n

i=1

∑K
k=1 rik?)

Maximum Likelihood for MoG (4)

Derivative with respect to the mean:

∂L
∂µk

=
n∑

i=1

rikΣ−1
k (yi − µk)

Derivative with respect to the inverse covariance:

∂L
∂Σ−1

k

=
n∑

i=1

rik[Σk − (yi − µk)(yi − µk)
>]

Setting to zero we get the update equations:

µk =
∑n

i=1 rikyi∑n
i=1 rik

and Σk =
∑n

i=1 rik(yi − µk)(yi − µk)>∑n
i=1 rik

Notice that the denominators
∑n

i=1 rik = nπk are the effective total number of points
assigned to cluster k.

Jensen’s Inequality

If f(x) is convex then λf(x1) + (1− λ)f(x2) ≥ f
[
λx1 + (1− λ)x2

]
with λ ∈ [0, 1]

x1 x2x� = �x1 + (1� �)x2f(x�)�f(x1) + (1� �)f(x2)
If f(x) is concave then λf(x1) + (1− λ)f(x2) ≤ f

[
λx1 + (1− λ)x2

]

The Expectation Maximization (EM) algorithm

Assume a model with observed (visible) variables y, unobserved (hidden / latent / missing)
variables x, and model parameters θ

Goal: Maximize the log likelihood (i.e. ML learning) wrt θ:

L(θ) = log p(y|θ) = log
∫

p(x,y|θ)dx,

Any distribution, q(x), over the hidden variables can be used to obtain a lower bound on
the log likelihood:

L(θ) = log
∫

q(x)
p(x,y|θ)

q(x)
dx ≥

∫
q(x) log

p(x,y|θ)
q(x)

dx def= F(q, θ),

This lower bound is called Jensen’s inequality and comes from the fact that the log function
is concave (“log of average is greater than average of logs”).

In the EM algorithm, we alternately optimize F(q, θ) wrt q(x) and θ, and we can prove
that this will never decrease L(θ).

The E and M steps of EM

The lower bound on the log likelihood:

F(q, θ) =
∫

q(x) log
p(x,y|θ)

q(x)
dx =

∫
q(x) log p(x,y|θ)dx +H(q),

where H(q) = −
∫

q(x) log q(x)dx is the entropy of q(x). EM alternates between:

E step: optimize F(q, θ) wrt distribution over hidden variables holding parameters fixed:

q(k)(x) := argmax
q(x)

F
(
q(x), θ(k−1)

)
.

M step: maximize F(q, θ) wrt parameters holding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(x), θ

)
= argmax

θ

∫
q(k)(x) log p(x,y|θ)dx.

The second equality comes from the fact that the entropy of q(x) does not depend
directly on θ.

EM as Coordinate Ascent in FEM as Coordinate Ascent in F

copyright Zoubin Ghahramani

The Intuition Behind EM

E step: fill in values for the hidden variables according to their posterior probabilities

M step: learn model as if hidden variables were not hidden

• EM is useful because in many models, if the hidden variables were no longer hidden,
learning would be easy (e.g. consider a mixture of Gaussians).

• EM breaks up a hard learning problem into a sequence of easy learning problems.

The EM algorithm never decreases the log likelihood

The difference between the log likelihood and the lower bound:

L(θ)−F(q, θ) = log p(y|θ)−
∫

q(x) log
p(x,y|θ)

q(x)
dx

= log p(y|θ)−
∫

q(x) log
p(x|y, θ)p(y|θ)

q(x)
dx

= −
∫

q(x) log
p(x|y, θ)

q(x)
dx = KL

(
q(x), p(x|y, θ)

)
,

This is the Kullback-Liebler divergence; it is zero if and only if q(x) = p(x|y, θ).
Therefore, the E step simply sets q(x)← p(x|y, θ).
The E and M steps together increase the log likelihood:

L
(
θ(k−1)

)
=

E step
F
(
q(k), θ(k−1)

)
≤

M step
F
(
q(k), θ(k)

)
≤

Jensen
L
(
θ(k)

)
,

where the first equality holds because of the E step, and the first inequality comes from
the M step and the final inequality from Jensen.

EM converges to a local optimum of L(θ).

The KL
(
q(x), p(x)

)
is non-negative and zero iff ∀x : p(x) = q(x)

First let’s consider discrete distributions; the Kullback-Liebler divergence is:

KL(q, p) =
∑

i

qi log
qi

pi
.

To find the distribution q which minimizes KL(q, p) we add a Lagrange multiplier to enforce
the normalization constraint:

E
def= KL(q, p) + λ

(
1−

∑
i

qi

)
=
∑

i

qi log
qi

pi
+ λ
(
1−

∑
i

qi

)
We then take partial derivatives and set to zero:

∂E

∂qi
= log qi − log pi + 1− λ = 0⇒ qi = pi exp(λ− 1)

∂E

∂λ
= 1−

∑
i

qi = 0⇒
∑

i

qi = 1

⇒ qi = pi.

Why KL(q, p) is non-negative and zero iff p(x) = q(x) . . .

Check that the curvature (Hessian) is positive (definite), corresponding to a minimum:

∂2E

∂qi∂qi
=

1
qi

> 0,
∂2E

∂qi∂qj
= 0,

showing that qi = pi is a genuine minimum.

At the minimum is it easily verified that KL(p, p) = 0.

A similar proof holds for KL between continuous densities, the derivatives being substituted
by functional derivatives.

The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point y is:

p(y|θ) =
K∑

k=1

p(s = k|θ)p(y|s = k, θ) ∝
K∑

k=1

πk

σk
exp

{
− 1

2σ2
k

(
y − µk)2

}
,

where θ is the collection of parameters: means µk, variances σ2
k and mixing proportions

πk = p(s = k|θ).

The hidden variable si indicates which component observation yi belongs to.
The E-step computes the posterior for si given the current parameters:

q(si) = p(si|yi, θ) ∝ p(yi|si, θ)p(si|θ)

rik
def= q(si = k) ∝ πk

σk
exp

{
− 1

2σ2
k

(yi − µk)2
}

(responsibilities)

with the normalization such that
∑

k r
(c)
k = 1.

The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):

E =
∑

q(s) log[p(s|θ) p(y|s, θ)] =
∑
i,k

rik

[
log πk − log σk −

1
2σ2

k

(yi − µk)2
]
.

Optimization is done by setting the partial derivatives of E to zero:

∂E

∂µk
=
∑

i

rik
(yi − µk)

2σ2
k

= 0⇒ µk =
∑

i rikyi∑
i rik

,

∂E

∂σk
=
∑

i

rik

[
− 1

σk
+

(yi − µk)2

σ3
k

]
= 0⇒ σ2

k =
∑

i rik(yi − µk)2∑
i rik

,

∂E

∂πk
=
∑

i

rik
1
πk

,
∂E

∂πk
+ λ = 0⇒ πk =

1
n

∑
i

rik,

where λ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.

EM for Factor Analysis
Factor Analysis

YDY1 Y2

X1 KX

!
µ = 0

Σ ≈ ΛΛ! + Ψ

• ML learning for FA aims to fit Λ and Ψ given data. There is no closed form solution for
ML parameters.

• Number of free parameters (corrected for symmetries):

DK + D − K(K − 1)
2

<
D(D + 1)

2

• A Bayesian treatment would start with priors over Λ and Ψ and infer their posterior
given the data.

p(Λ,Ψ|D) =
p(D|Λ,Ψ)p(Λ,Ψ)

p(D)

The model for y:
p(y|θ) =

∫
p(x|θ)p(y|x, θ)dx = N (0,ΛΛ> + Ψ)

Model parameters: θ = {Λ,Ψ}.

E step: For each data point yn, compute the posterior distribution of hidden factors given
the observed data: qn(x) = p(x|yn, θt).

M step: Find the θt+1 that maximises F(q, θ):

F(q, θ) =
∑

n

∫
qn(x) [log p(x|θ) + log p(yn|x, θ)− log qn(x)] dx

=
∑

n

∫
qn(x) [log p(x|θ) + log p(yn|x, θ)] dx + c.

The E step for Factor Analysis

E step: For each data point yn, compute the posterior distribution of hidden factors given
the observed data: qn(x) = p(x|yn, θ) = p(x,yn|θ)/p(yn|θ)

Tactic: write p(x,yn|θ), consider yn to be fixed. What is this as a function of x?

p(x,yn) = p(x)p(yn|x)

= (2π)−
K
2 exp{−1

2
x>x} |2πΨ|−1

2 exp{−1
2
(yn − Λx)>Ψ−1(yn − Λx)}

= c× exp{−1
2
[x>x + (yn − Λx)>Ψ−1(yn − Λx)]}

= c’× exp{−1
2
[x>(I + Λ>Ψ−1Λ)x− 2x>Λ>Ψ−1yn]}

= c”× exp{−1
2
[x>Σ−1x− 2x>Σ−1µ + µ>Σ−1µ]}

So Σ = (I + Λ>Ψ−1Λ)−1 = I − βΛ and µ = ΣΛ>Ψ−1yn = βyn. Where β = ΣΛ>Ψ−1.
Note that µ is a linear function of yn and Σ does not depend on yn.

The M step for Factor Analysis

M step: Find θt+1 maximising F =
∑

n

∫
qn(x) [log p(x|θ) + log p(yn|x, θ)] dx + c

log p(x|θ)+ log p(yn|x, θ) = c− 1
2
x>x− 1

2
log |Ψ| − 1

2
(yn − Λx)>Ψ−1(yn − Λx)

= c’− 1
2

log |Ψ| − 1
2
[yn

>Ψ−1yn − 2yn
>Ψ−1Λx + x>Λ>Ψ−1Λx]

= c’− 1
2

log |Ψ| − 1
2
[yn

>Ψ−1yn − 2yn
>Ψ−1Λx + tr(Λ>Ψ−1Λxx>)]

Taking expectations over qn(x). . .

= c’− 1
2

log |Ψ| − 1
2
[yn

>Ψ−1yn − 2yn
>Ψ−1Λµn + tr(Λ>Ψ−1Λ(µnµn

> + Σ))]

Note that we don’t need to know everything about q, just the expectations of x and xx>

under q (i.e. the expected sufficient statistics).

The M step for Factor Analysis (cont.)

F = c’− N

2
log |Ψ| − 1

2

∑
n

[
yn

>Ψ−1yn − 2yn
>Ψ−1Λµn + tr(Λ>Ψ−1Λ(µnµn

> + Σ))
]

Taking derivatives w.r.t. Λ and Ψ−1, using ∂tr(AB)
∂B = A> and ∂ log |A|

∂A = A−>:

∂F
∂Λ

= Ψ−1
∑

n

ynµn
> −Ψ−1Λ

(
NΣ +

∑
n

µnµn
>

)
= 0

Λ̂= (
∑

n

ynµn
>)

(
NΣ+

∑
n

µnµn
>

)−1

∂F
∂Ψ−1

=
N

2
Ψ− 1

2

∑
n

[
ynyn

> − Λµnyn
> − ynµn

>Λ> + Λ(µnµn
> + Σ)Λ>

]
Ψ̂ =

1
N

∑
n

[
ynyn

> − Λµnyn
> − ynµn

>Λ> + Λ(µnµn
> + Σ)Λ>

]
Ψ̂= ΛΣΛ>+

1
N

∑
n

(yn − Λµn)(yn − Λµn)> (squared residuals)

Note: we should actually only take derivarives w.r.t. Ψdd since Ψ is diagonal.
When Σ→ 0 these become the equations for linear regression!

Appendix: Coding Interpretation of Factor Analysis:
Coding Under a Gaussian

Remember, from Shannon’s source coding theorem:

l(x) = − log P (x) ≈ − log[p(x)∆] = − log p(x)− log ∆

=
(x− µ)2

2σ2
+

1
2

log 2π + log σ − log ∆

Note as ∆⇒ 0 then l(x)⇒∞.

Coding Interpretation of Factor Analysis

Multivariate: l(y) =
1
2

∑
d

(yd − µd)2

σ2
d

+
D

2
log 2π +

∑
d

log σd −D log ∆

Alternative, two-stage code...

First code the K factors: l(x) =
1
2

∑
k

x2
k +

K

2
log 2π −K log ∆

Then code the data given the factors:

l(y|x) =
1
2

∑
d

(yd −
∑

k Λdkxk)2

Ψ2
d

+
D

2
log 2π +

∑
d

log Ψd −D log ∆

How should we choose the x ?
Deterministic vs stochastic codes and “bits back”

Coding Interpretation of PCA

First code the K factors:

l(x) =
1
2

∑
k

x2
k +

K

2
log 2π −K log ∆

Then code the data given the factors:

l(y|x) =
1
2

∑
d

(yd −
∑

k Λdkxk)2

σ2
+

D

2
log 2π + D log σ −D log ∆

Since σ → 0 the cost of coding the factors is negligible
compared to the cost of coding the data.

Additional Suggested Readings

• David MacKay’s Textbook Chapters 20 and 22 http://www.inference.phy.cam.ac.uk/mackay/itprnn/

• Hinton and Zemel (1994) Autoencoders, minimum description length, and the Helmholtz free

energy. In Advances in Neural Information Processing Systems 6. Morgan Kaufmann. See

http://www.cs.toronto.edu/∼hinton/absps/cvq.html

• Minka, T. Tutorial on linear algebra.

http://www.stat.cmu.edu/∼minka/papers/matrix/

• Roweis and Ghahramani (1999) A Unifying Review of Linear Gaussian Models. Neural

Computation 11(2). Sections 1-5.3 and 6-6.1. See also Appendix A.1-A.2.

http://www.gatsby.ucl.ac.uk/∼zoubin/papers/lds.ps.gz

• Wallace, C. S. and Dowe, D. L. (1999) Minimum message length and Kolmogorov complexity. The

Computer Journal 42(4):270–283.

• Welling, M. (2000) Linear models. class notes.

http://www.gatsby.ucl.ac.uk/∼zoubin/course01/PCA.ps

