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Overview

Rough plan of the lectures, might change as we go along:

1. Intuition and basic algorithms

2. Advanced algorithms (in particular spectral clustering)

3. What is clustering, after all? How can we define it? Some
theoretic approaches

4. The number of clusters: different approaches in theory and
practice
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Clustering: intuition
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What is clustering, intuitively?

Given:

• Data set of “objects”
• Some relations between those objects (similarities, distances,

neighborhoods, connections, ... )

Intuitive goal: Find meaningful groups of objects such that

• objects in the same group are “similar”

• objects in different groups are “dissimilar”

Reason to do this:

• exploratory data analysis

• reducing the complexity of the data

• many more
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Example: Clustering gene expression data
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Clustering Gene Expression Data

M. Eisen et al., PNAS, 1998
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Example: Social networks

Corporate email communication (Adamic and Adar, 2005)



U
lr
ik

e
vo

n
L
u
xb

u
rg

:
C
lu

st
er

in
g

J
u
ly

2
0
0
7

6

Example: Image segmentation

Figure 6: Automatic image segmentation. Fully automatic intensity based image segmen-
tation results using our algorithm.

More experiments and results on real data sets can be found on our web-page
http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html

5 Discussion & Conclusions

Spectral clustering practitioners know that selecting good parameters to tune the cluster-
ing process is an art requiring skill and patience. Automating spectral clustering was the
main motivation for this study. The key ideas we introduced are three: (a) using a local
scale, rather than a global one, (b) estimating the scale from the data, and (c) rotating the
eigenvectors to create the maximally sparse representation. We proposed an automated
spectral clustering algorithm based on these ideas: it computes automatically the scale and
the number of groups and it can handle multi-scale data which are problematic for previous
approaches.

Some of the choices we made in our implementation were motivated by simplicity and are
perfectible. For instance, the local scale σ might be better estimated by a method which
relies on more informative local statistics. Another example: the cost function in Eq. (3) is
reasonable, but by no means the only possibility (e.g. the sum of the entropy of the rows
Zi might be used instead).
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5 Discussion & Conclusions

Spectral clustering practitioners know that selecting good parameters to tune the cluster-
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main motivation for this study. The key ideas we introduced are three: (a) using a local
scale, rather than a global one, (b) estimating the scale from the data, and (c) rotating the
eigenvectors to create the maximally sparse representation. We proposed an automated
spectral clustering algorithm based on these ideas: it computes automatically the scale and
the number of groups and it can handle multi-scale data which are problematic for previous
approaches.
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Example: Genetic distances between mammals
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Figure 2: The evolutionary tree built from complete
mammalian mtDNA sequences using block size k = 7
and d′.

each of the positions in the DNA sequence, and take out
the k bases covered by the 1s to form a length-k word. The
number of those distinct words is then used to define the
distances d′ and d∗ in Formula (6.2) and (6.2).

We applied the new defined distances to the 20 mam-
mal data. The performance is slightly bettern than the per-
formance of the distances defined in (6.2) and (6.2). The
modified d′ and d∗ can correctly construct the mammal tree
when 7 ≤ k ≤ 13 and 6 ≤ k ≤ 13, respectively.

Compression: To achieve the best approximation of
Kolmogorov complexity, and hence most confidence in the
approximation of ds and d, we use a new version of the Gen-
Compress program, [9], which achieves the currently best
compression ratios for benchmark DNA sequences. Gen-
Compress finds approximate matches (hence edit distance
becomes a special case), approximate reverse complements,
among other things, with arithmetic encoding when neces-
sary. Online service of GenCompress is at UCSB Bioin-
formatics Lab website: http://cytosine.cs.ucsb.edu:8080/.
We computed d(x, y) between each pair of mtDNA x and
y, using GenCompress to heuristically approximate K(x|y),
K(x), and K(x, y), and constructed a tree (Figure 3) using
the neighbor joining [32] program in the MOLPHY package
[1]. The tree is identical to the maximum likelihood tree of
Cao, et al. [8]. For comparison, we used the hypercleaning
program [7] and obtained the same result. The phylogeny in
Figure 3 re-confirms the hypothesis of (Rodents, (Primates,
Ferungulates)). Using the ds measure gives the same result.

To further assure our results, we have extracted only
the coding regions from the mtDNAs of the above species,
and performed the same computation. This resulted in the
same tree.

Evaluation: This new method for whole genome com-
parison and phylogeny does not require gene identification
nor any human intervention, in fact, it is totally automatic.
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Marsupials and monotremes

Figure 3: The evolutionary tree built from complete
mammalian mtDNA sequences.

It is mathematically well-founded being based on general in-
formation theoretic concepts. It works when there are no
agreed upon evolutionary models, as further demonstrated
by the successful construction of a chain letter phylogeny [5]
and when individual gene trees do not agree (Cao et al., [8])
as is the case for genomes. Next step would be to apply
this method to larger genomes such as cpDNA and bacteria
genomes.

7 The Language Tree
Normalized information distance is a totally general univer-
sal tool, not restricted to a particular application area. We
show that it can also be used to successfully classify nat-
ural languages. Let us borrow from biology the “nature”
(acquired by genetic mixture) versus “nurture” (acquired in
the life of the individual) terminology. Any language tree
built by only analyzing contemporary natural text corpora is
partially corrupted by historical “nurture” contaminations.
While according to Darwinism the genomes only change by
inheritance (nature), languages acquire their characteristic
by descent but also by interaction (nurture). Thus, while En-
glish is a Germanic Anglo-Saxon language, it has absorbed a
great deal of French-Latin components. Similarly, Hungar-
ian, often considered a Finn-Ugric language, which consen-
sus currently happens to be open to debate in the linguistic
community, is known to have absorbed many Turkish and
Slavic components. Thus, an automatic construction of a
language tree based on contemporary text corpora, exhibits
current linguistic relations (based on both nature and nur-
ture) which do not necessarily coincide completely with the
historic language family tree (based on nature). According
to a linguistic expert, only vocabulary is normally borrowed
between languages, and inflectional morphology is the best
indicator of linguistic descent. This may be the most im-
portant factor distorting the results. The misclassification
of English as Romance language must have something to do

cf. Chen/Li/Ma/Vitanyi (2004)
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Two classes of algorithms
I “Flat clustering”: Clustering as a partition of the data space.

Want to construct “the most meaningful” partition of the data
set into a fixed number of partitions.

I Hierarchical clustering:
try not only to construct one partition, but a nested hierarchy
of partitions.
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The standard algorithm
for “flat” clustering:

K -means
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K -means – the algorithm

• Given data points X1, ..., Xn ∈ R
d .

• Want to cluster them based on Euclidean distances.

Main idea of the K -means algorithm:
• Start with randomly chosen centers.

• Assign all points to their closest center.

• This leads to preliminary clusters.

• Now move the starting centers to the true centers of the current
clusters.

• Repeat this until convergence.
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K -means – the algorithm (2)
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K -means – the algorithm (3)
The K -means algorithm:
Input: Data points X1, ..., Xn ∈ R

d , number K of clusters to
construct.

1. Randomly initialize the centers m
(0)
1 , ..., m

(0)
K .

2. Iterate until convergence:

2.1 Assign each data point to the closest cluster center, that is

define the clusters C
(i+1)
1 , ...,C

(i+1)
K by

Xs ∈ C
(i+1)
k ⇐⇒ ‖Xs −m

(i)
k ‖2 ≤ ‖X −m

(i)
l ‖2, l = 1, ...,K

2.2 Compute the new cluster centers by

m
(i+1)
k =

1

|C (i+1)
k |

∑
s∈Ck

Xs

Output: Clusters C1, ..., CK
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K -means – the algorithm (4)

matlab demo: demo kmeans()

demo_kmeans()
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Justifying K -means

• Clustering as “data quantization”

• Tries to fit a mixture of Gaussians using a simplified
EM-algorithm (this is what Joaquin showed you)

• Want to show now: K -means solves a more general problem

Find K groups C1, ..., CK of points such that points in the same
cluster are close together.
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Minimizing within-cluster distances

For example we could choose the following objective function:

min
{C1,...,CK}

K∑
k=1

1

|Ck |2
∑

i∈Ck ,j∈Ck

‖Xi − Xj‖2 (OPT1)

How can we solve it?
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Minimizing within-cluster distances (2)
Let’s try to rewrite the optimization problem:

The optimization problem (OPT1) is equivalent to

min
{C1,...,CK}

K∑
k=1

∑
i∈Ck

‖Xi −mk‖2 (OPT2)

where mk := 1
|Ck |
∑

j∈Ck
Xj is the mean of cluster Ck .
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Minimizing within-cluster distances (3)
Proof:

∑
i∈Ck

‖Xi −mk‖2 =

=
∑
i∈Ck

‖ 1

|Ck |
∑
j∈Ck

(Xi − Xj)‖2

=
1

|Ck |2
〈
∑
j∈Ck

(Xi − Xj),
∑
s∈Ck

(Xi − Xs)〉

=
1

|Ck |2
(∑

i

〈Xi , Xi〉 −
∑
i ,s

〈Xi , Xs〉 −
∑
j ,i

〈Xj , Xs〉+
∑
j ,s

〈Xj , Xs〉
)

=
1

|Ck |2
(∑

i

〈Xi , Xi〉 −
∑
i ,j

〈Xi , Xj〉
)

=
1

2

1

|Ck |2
∑
i ,j

‖Xi − Xj‖2
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Minimizing within-cluster distances (4)
Ok, now want to solve:

min
{C1,...,CK}

K∑
k=1

∑
i∈Ck

‖Xi −mk‖2 (OPT2)

where mk := 1
|Ck |
∑

j∈Ck
Xj is the mean of cluster Ck .

Is it easier than (OPT1) we started with?
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Minimizing within-cluster distances (5)
Not yet....

• Instead of optimizing over all possible partitions C1, ..., CK

(discrete!) would like to optimize over the means (continuous!).

• But at this stage: no rule how we can recompute the clusters
from centers.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

• Could “cheat” and only consider convex clusters

• The good and surprising news: this is not cheating.
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Minimizing within-cluster distances (6)
Definition: Voronoi partition of a metric space into K cells:

• choose K points m1, ..., mK in the space
• the k-th Voronoi cell is the set of points which are closer to mk

than to any other ml
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Minimizing within-cluster distances (7)
The clusters which solve optimization problem (OPT2) form a
Voronoi partition of Rk , and the centers of the cells coincide with
the cluster means mk .

Proof:

I Assume contrary, i.e. cluster Ck is not a Voronoi cell.

I Then there exists a point X ∈ Ck and index ` 6= k such that
‖X −m`‖ ≤ ‖X −mk‖

I Now want to show that moving X to cluster C` decreases the
objective function.

I Note that moving X also changes the centers of the clusters!
So this is not trivial (and in fact only works for squared
Euclidean distances!)
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Minimizing within-cluster distances (8)
I Will need following fact (*): the minimizer m∗ of the problem

min
m

∑
i∈Ck

‖Xi −m‖2

is given by the mean m∗ = mk , the cluster mean of cluster Ck .
I To see this, take the derivative with respect to m and set it to

0.
I Note that here it is crucial that we use the squared norm, not

the un-squared norm!

I Introduce the notation C̃` := C` ∪ {X}
C̃k := Ck \ {X}
mk , m` : centers of clusters Ck , C`

m̃k , m̃` centers of clusters C̃k , C̃`
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Minimizing within-cluster distances (9)
Now calculate: After moving point X the objective function is:∑

i∈Ck\{X}

‖Xi − m̃k‖2 +
∑

i∈C`∪{X}

‖Xi − m̃`‖2

≤ [using (*) ]
∑

i∈Ck\{X}

‖Xi −mk‖2 +
∑

i∈C`∪{X}

‖Xi −m`‖2

=
∑

i∈Ck\{X}

‖Xi −mk‖2 +
∑
i∈C`

‖Xi −m`‖2 + ‖X −m`‖2

<
∑

i∈Ck\{X}

‖Xi −mk‖2 +
∑
i∈C`

‖Xi −m`‖2 + ‖X −mk‖2

=
∑
i∈Ck

‖Xi −mk‖2 +
∑
i∈C`

‖Xi −m`‖2

This was the objective function before moving the point. 2
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Minimizing within-cluster distances (10)
• Have seen: solution of (OPT2) is always a Voronoi partition

induced by the cluster centers.

• Great simplification: Instead of optimizing over all (exponentially
many) partitions we “only” have to optimize over all Voronoi
partitions of the sample.

• Side remark: for fixed K , the number of Voronoi partitions of n
sample points is only polynomial in n!

So in principle could search through all of them in polynomial
time. But “polynomial” can still take pretty long ...

• But even better: we got a continuous parameterization of the
optimization problem in terms of cluster means.
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Minimizing within-cluster distances (11)
We can conclude:

Optimization problems (OPT1) and (OPT2) are equivalent to

min
m1,...,mK∈Rd

K∑
k=1

∑
i∈Ck

‖Xi −mk‖2 (OPT3)

• Instead of solving a discrete optimization problem such as
(OPT2) we have a continuous one. Promising.

• Promising. We could use standard optimization techniques such
as gradient descent.

• However, it is not convex / (Why?)

• So still need heuristics ... K -means
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K -means — properties of the algorithm

The algorithm terminates after a finite number of iterations.

Proof:

• In each step, the objective function is decreasing.

• There are only finitely many solutions we can inspect.

... exercise ...
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K -means — properties of the algorithm (2)
The algorithm only ends in a local optimum. This can be arbitrarily
worse than the global one.

41

a b c
Data set: four points on the real line: 

m1 m2 m3

Optimal solution: (initialization: X1, X2, X3; value of solution: c^2 / 2 ) 

m1 m2 m3

Bad solution: (initialization: X1, X3, X4;  value of solution:  a^2 / 2 )

X2 X X3X

By adjusting a and b and c we can achieve an arbitrarily bad ratio
of global and local solution.



U
lr
ik

e
vo

n
L
u
xb

u
rg

:
C
lu

st
er

in
g

J
u
ly

2
0
0
7

28

K -means — Implementation issues

Random initialization:

I Most common: randomly choose some data points as starting
centers.

I Draw starting points randomly from R
d .

I Initialize the centers using the solution of an even simpler
clustering algorithm.

I Ideally have prior knowledge, for example that certain points
are in different clusters.

Common problem for all those methods: empty clusters (centers to
which no data point is assigned). Then best solution: restart...
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K -means — Implementation issues (2)
Heuristics for improving the local minimum:

I Restart many times with different initializations.

I Swap individual points between clusters.

I Remove a cluster center, and introduce a completely new
center instead.

I Merge clusters, and additionally introduce a completely new
cluster center.

I Split a cluster in two pieces (preferably, one which has a very
bad objective function). Then reduce the number of clusters
again, for example by randomly removing one.
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K -means — Implementation issues (3)
More efficient implementations:

• The bottleneck of the K -means algorithm is the computation of
the nearest neighbors.

• This can be very costly, in particular if the dimension d of the
space and the number K of clusters are high (e.g., data mining
applications)

• Improvement: use more efficient data structures, for example
kd-trees ...
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More variants of K -means
I K -median: here the centers are always data points. Can be

used if we only have distances, but no coordinates of data
points.

I weighted K -means: introduce weights for the individual data
points

I kernel-K -means: the kernelized version of K -means (note that
all boundaries between clusters are linear)

I soft K -means: no hard assignments, but “soft” assignments
(often interpreted as “probability” of belonging to a certain
cluster)

I Note: K -means is a simplified version of an EM-algorithm
fitting a Gaussian mixture model.
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The standard algorithm for
hierarchical clustering: single

linkage
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Hierarchical clustering

Goal: obtain a complete hierarchy of clusters and sub-clusters in
form of a dendrogram

Horse

WhiteRhino

HarborSeal

GreySeal

Cat

BlueWhale

Cow

FinbackWhale

Gibbon

Gorilla

Human

PygmyChimpanzee

Chimpanzee

Orangutan

SumatranOrangutan

HouseMouse

Rat

Opossum

Wallaroo

Platypus

Figure 2: The evolutionary tree built from complete
mammalian mtDNA sequences using block size k = 7
and d′.

each of the positions in the DNA sequence, and take out
the k bases covered by the 1s to form a length-k word. The
number of those distinct words is then used to define the
distances d′ and d∗ in Formula (6.2) and (6.2).

We applied the new defined distances to the 20 mam-
mal data. The performance is slightly bettern than the per-
formance of the distances defined in (6.2) and (6.2). The
modified d′ and d∗ can correctly construct the mammal tree
when 7 ≤ k ≤ 13 and 6 ≤ k ≤ 13, respectively.

Compression: To achieve the best approximation of
Kolmogorov complexity, and hence most confidence in the
approximation of ds and d, we use a new version of the Gen-
Compress program, [9], which achieves the currently best
compression ratios for benchmark DNA sequences. Gen-
Compress finds approximate matches (hence edit distance
becomes a special case), approximate reverse complements,
among other things, with arithmetic encoding when neces-
sary. Online service of GenCompress is at UCSB Bioin-
formatics Lab website: http://cytosine.cs.ucsb.edu:8080/.
We computed d(x, y) between each pair of mtDNA x and
y, using GenCompress to heuristically approximate K(x|y),
K(x), and K(x, y), and constructed a tree (Figure 3) using
the neighbor joining [32] program in the MOLPHY package
[1]. The tree is identical to the maximum likelihood tree of
Cao, et al. [8]. For comparison, we used the hypercleaning
program [7] and obtained the same result. The phylogeny in
Figure 3 re-confirms the hypothesis of (Rodents, (Primates,
Ferungulates)). Using the ds measure gives the same result.

To further assure our results, we have extracted only
the coding regions from the mtDNAs of the above species,
and performed the same computation. This resulted in the
same tree.

Evaluation: This new method for whole genome com-
parison and phylogeny does not require gene identification
nor any human intervention, in fact, it is totally automatic.

Platypus

Wallaroo

Opossum

Rat

HouseMouse

Cat

HarborSeal

GreySeal

WhiteRhino

Horse

FinbackWhale

BlueWhale

Cow

Gibbon

Gorilla

Human

PygmyChimpanzee

Chimpanzee

Orangutan

SumatranOrangutan

Rodents

Ferungulates

Primates

Marsupials and monotremes

Figure 3: The evolutionary tree built from complete
mammalian mtDNA sequences.

It is mathematically well-founded being based on general in-
formation theoretic concepts. It works when there are no
agreed upon evolutionary models, as further demonstrated
by the successful construction of a chain letter phylogeny [5]
and when individual gene trees do not agree (Cao et al., [8])
as is the case for genomes. Next step would be to apply
this method to larger genomes such as cpDNA and bacteria
genomes.

7 The Language Tree
Normalized information distance is a totally general univer-
sal tool, not restricted to a particular application area. We
show that it can also be used to successfully classify nat-
ural languages. Let us borrow from biology the “nature”
(acquired by genetic mixture) versus “nurture” (acquired in
the life of the individual) terminology. Any language tree
built by only analyzing contemporary natural text corpora is
partially corrupted by historical “nurture” contaminations.
While according to Darwinism the genomes only change by
inheritance (nature), languages acquire their characteristic
by descent but also by interaction (nurture). Thus, while En-
glish is a Germanic Anglo-Saxon language, it has absorbed a
great deal of French-Latin components. Similarly, Hungar-
ian, often considered a Finn-Ugric language, which consen-
sus currently happens to be open to debate in the linguistic
community, is known to have absorbed many Turkish and
Slavic components. Thus, an automatic construction of a
language tree based on contemporary text corpora, exhibits
current linguistic relations (based on both nature and nur-
ture) which do not necessarily coincide completely with the
historic language family tree (based on nature). According
to a linguistic expert, only vocabulary is normally borrowed
between languages, and inflectional morphology is the best
indicator of linguistic descent. This may be the most im-
portant factor distorting the results. The misclassification
of English as Romance language must have something to do

cf. Chen/Li/Ma/Vitanyi (2004)
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Simple idea

Agglomerative (bottom-up) strategy:
• Start: each point is its own cluster

• Then check which points are closest and “merge” them to form
a new cluster

• Continue, always merge two “closest” clusters until we are left
with one cluster only

The original article: S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 2:241 -
254, 1967.
A complete book on the topic: N. Jardine and R. Sibson. Mathematical taxonomy. Wiley,
London, 1971.
Nice overview with application in biology: J. Kim and T. Warnow. Tutorial on phylogenetic
tree estimation. ISMB 1999.
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Simple idea (2)
To define which clusters are “closest”:

Single linkage: dist(C , C ′) = minx∈C ,y∈C ′ d(x , y)

X

X

X
X

X
X

X
X X X

X

Average linkage: dist(C , C ′) =
P

x∈C ,yinC ′ d(x ,y)

|C |·|C ′|

X

X

X
X

X
X

X
X X X

X

Complete linkage: dist(C , C ′) = maxx∈C ,y∈C ′ d(x , y)

X

X

X
X

X
X

X
X X X

X
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Linkage algorithms – basic form

Input:
• Distance matrix D between data points (size n × n)

• function dist to compute a distance between clusters (usually
takes D as input)

Initialization: Clustering C(0) = {C (0)
1 , ..., C

(0)
n } with C

(0)
i = {i}.

While the current number of clusters is > 1:

◦ find the two clusters which have the smallest distance to
each other

◦ merge them to one cluster

Output: Resulting dendrogram
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Examples

... show matlab demos ...
demo linkage clustering by foot()

demo linkage clustering comparison()

demo_linkage_clustering_by_foot()
demo_linkage_clustering_comparison()
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Comments on linkage algorithms
I Single linkage tends to generate long “chains”

I Complete linkage tends to produce more “compact” clusters

I Linkage algorithms are very vulnerable to outliers

I one cannot “undo” a bad link

I Single linkage can also be described using the minimal
spanning tree of data points (e.g., cutting the longest edge of
an MST gives the first two single linkage clusters)

I Advantage of hierarchical clustering: do not need to decide on
“the right” number of clusters

I There exist many more ways of generating different trees from
a given distance matrix ...
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Summary so far

We have seen the two most widely used clustering algorithms:
• K -means and variants: tries to maximize within-cluster similarity

• Single linkage: builds a dendrogram

In 95% of all applications, one of those two algorithms is used...

Both are ...

• simple heuristics, pretty ad hoc

• very easy to implement
• in practice, both algorithms often work “reasonable”, are

baseline for more advanced algorithms
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Spectral Clustering
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Spectral clustering on one slide

• Given: data points X1, ..., Xn, pairwise similarities sij = s(Xi , Xj)

• Build similarity graph: vertices = data points, edges = similarities

• clustering = find a cut through the graph

◦ define a cut objective function

◦ solve it

; spectral clustering
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Graph notation

Always assume that similarities sij are symmetric, non-negative
Then graph is undirected, can be weighted

• S = (sij) similarity matrix

• di =
∑

j sij degree of a vertex

• D = diag(d1, . . . , dn) degree matrix

• |A| = number of vertices in A

• vol(A) =
∑

i∈A di

In the following: vector f = (f1, ..., fn) interpreted as function on
the graph with f (Xi) = fi .
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Unnormalized graph Laplacian

Defined as
L = D − S

Key property: for all f ∈ R
n

f ′Lf = f ′Df − f ′Sf

=
∑

i

di f
2
i −

∑
i ,j

fi fjsij

=
1

2

(∑
i

(
∑

j

sij)f
2
i − 2

∑
ij

fi fjsij +
∑

j

(
∑

i

sij)f
2
j

)

=
1

2

∑
ij

sij(fi − fj)
2
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Unnormalized graph Laplacian (2)
Where does the name “graph Laplacian” come from?

f ′Lf =
1

2

∑
sij(fi − fj)

2

Interpret sij ∼ 1/d(Xi , Xj)
2

f ′Lf =
1

2

∑
((fi − fj)/dij)

2

looks like a discrete version of the standard Laplace operator

〈f , ∆f 〉 =

∫
|∇f |2dx

Hence the graph Laplacian measures the variation of the function f
along the graph: f ′Lf is low if close points have close function
values fi -



U
lr
ik

e
vo

n
L
u
xb

u
rg

:
C
lu

st
er

in
g

J
u
ly

2
0
0
7

45

Unnormalized graph Laplacian (3)
Spectral properties:
• L is symmetric (by assumption) and positive semi-definite (by

key property)

• Smallest eigenvalue of L is 0, corresponding eigenvector is 1

• Thus eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

First relation between spectum and clusters:
• Multiplicity of eigenvalue 0 = number k of connected

components A1, ..., Ak of the graph.

• eigenspace is spanned by the characteristic functions 1A1 , ..., 1Ak

of those components (so all eigenvecotrs are piecewise constant).

Proof: Exercise
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Normalized graph Laplacians

Row sum (random walk) normalization:

Lrw = D−1L = I − D−1S

Symmetric normalization:

Lsym = D−1/2LD−1/2 = I − D−1/2SD−1/2

Spectral properties similar to L:

• Positive semi-definite, smallest eigenvalue is 0
• Attention: For Lrw, eigenspace spanned by 1Ai

(piecewise const.)
but for Lsym, eigenspace spanned by D1/2

1Ai
(not piecewise

const).
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Normalized graph Laplacians (2)

w eig of Lsym ⇐⇒ Lsymw = λw | · D−1/2

⇐⇒ D−1/2D−1/2LD−1/2w = λD−1/2w

⇐⇒ v = D−1/2w eig of Lrw
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Spectral clustering - main algorithms

Input: Similarity matrix S , number k of clusters to construct

• Build similarity graph

• Compute the first k eigenvectors v1, . . . , vk of the problem matrix{
L for unnormalized spectral clustering

Lrw for normalized spectral clustering

• Build the matrix V ∈ R
n×k with the eigenvectors as columns

• Interpret the rows of V as new data points Zi ∈ R
k

• Cluster the points Zi with the k-means algorithm in Rk .
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Toy example with three clusters

−2 −1 0 1 2 3 4 5
−1

0

1

2

3

4

5
Data set

• Data set in R2

• similarity function s(xi , xj) = exp(−‖xi − xj‖2/σ2) with σ = 0.5

• Use completely connected similarity graph

• Want to look at clusterings for k = 2,...,5 clusters
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Toy example with three clusters (2)
Compute first 5 eigenvectors of L.

0.1054 -0.1445 0.0188 -0.0006 0.0017
0.1054 -0.1449 0.0191 -0.0023 -0.0039
0.1054 -0.1452 0.0193 -0.0043 -0.0112
0.1054 0.0987 0.0664 -0.0086 -0.0221
0.1054 -0.1429 0.0176 0.0029 0.0084
0.1054 0.0513 -0.1878 -0.1289 0.0082
0.1054 0.0986 0.0657 -0.0057 -0.0123
0.1054 0.0986 0.0658 -0.0055 -0.0102
0.1054 0.0511 -0.1820 0.0028 -0.0299
0.1054 0.0988 0.0667 -0.0099 -0.0266
0.1054 0.0984 0.0651 -0.0015 0.0048
0.1054 0.0509 -0.1830 0.0237 -0.0585
0.1054 0.0508 -0.1837 0.0497 -0.0951
0.1054 0.0974 0.0611 0.0113 0.0481
0.1054 0.0514 -0.1893 -0.2036 0.0565
0.1054 -0.1446 0.0189 -0.0010 0.0008
0.1054 0.0511 -0.1873 -0.0151 -0.1170
0.1054 0.0504 -0.1807 0.0681 -0.0640
0.1054 0.0986 0.0661 -0.0066 -0.0147
0.1054 0.0508 -0.1812 0.0444 -0.0509
0.1054 -0.1447 0.0190 -0.0021 -0.0040
0.1054 -0.1454 0.0195 -0.0053 -0.0148
0.1054 0.0987 0.0664 -0.0082 -0.0200
0.1054 0.0989 0.0671 -0.0123 -0.0358
0.1054 -0.1449 0.0191 -0.0021 -0.0025
0.1054 0.0518 -0.1171 0.2080 0.2655
0.1054 -0.1446 0.0189 -0.0008 0.0015
0.1054 -0.1449 0.0191 -0.0022 -0.0025
0.1054 -0.1457 0.0197 -0.0084 -0.0289
0.1054 0.0983 0.0649 -0.0017 0.0021
0.1054 0.0989 0.0671 -0.0124 -0.0364
0.1054 0.0976 0.0623 0.0049 0.0178
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Toy example with three clusters (3)
Each eigenvector is interpreted as a function on the data points:
xj 7→ j-th coordinate of the eigenvectors
This mapping is plotted in a color code:
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Toy example with three clusters (4)
The spectral embedding:

0

0.1

0.2

−0.2−0.15−0.1−0.0500.050.10.15
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Spectral embedding using three data points (blue=true, red=jittered)

Resulting clustering using kmeans on embedded points (k=2,...,5):
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6
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spectral,k=4

Data points and the spectral clustering (sigma=0.500000)
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Toy example with three clusters (5)
The eigenvalues (plotted i vs. λi):

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1
Eigenvalues
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Toy example with three clusters (6)
... show matlab demo ...
demo spectral clustering fancy()

demo_spectral_clustering_fancy()
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Graph cut explanation of spectral clustering

Clustering: within-similarity high, between similarity low
minimize cut(A, B) :=

∑
i∈A,j∈B sij

Balanced cuts:
RatioCut(A, B) := cut(A, B)( 1

|A| + 1
|B|)

Ncut(A, B) := cut(A, B)( 1
vol(A)

+ 1
vol(B)

)

Mincut can be solved efficiently, but RatioCut or Ncut is NP hard.

Spectral clustering: relaxation of RatioCut or Ncut, repectively.
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Graph cut explanation of spectral clustering (2)
Relaxation for simple balanced cuts:

minA,B cut(A, B) s.t. |A| = |B|

Choose f = (f1, ..., fn)
′ with fi =

{
1 if Xi ∈ A

−1 if Xi ∈ B

• cut(A, B) =
∑

i∈A,j∈B sij = 1
4

∑
i ,j sij(fi − fj)

2 = 1
4
f ′Lf

• |A| = |B| =⇒
∑

i fi = 0 =⇒ f t
1 = 0 =⇒ f ⊥ 1

• ‖f ‖ =
√

n ∼ const.

minf f ′Lf s.t. f ⊥ 1, fi = ±1, ‖f ‖ =
√

n

Relaxation: allow fi ∈ R

By Rayleigh: solution f is the second eigenvector of L
Reconstructing solution: Xi ∈ A ⇐⇒ fi >= 0, Xi ∈ B otherwise
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Graph cut explanation of spectral clustering (3)
Similar relaxations work for the other balanced cuts:

• Relaxing RatioCut ; eigenvectors of L ; unnormalized spectral
clustering

• Relaxing Ncut ; eigenvectors of Lrw ; normalized spectral
clustering

• Case of k > 2 works similar, results in a trace min problem
minV Tr H ′LH where V is a n × k orthonormal matrix. Then
again Rayleigh-Ritz.
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Graph cut explanation of spectral clustering (4)
Notes on the relaxation approach:

• spectral clustering solves a relaxed version of graph cut problems.

• No guarantee whatsoever on the quality of the relaxation.

• using kmeans on new representation just for convenience, any
other algorithm would work, too

• but Euclidean distance is “meaningful” im embedding space
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Random walk explanations

General observation:

• Random walk on the graph has transition matrix P = D−1S .

• note that Lrw = I − P

Specific observation about Ncut (Meila/Shi 2001):
• define P(A|B) is the probability to jump from B to A if we

assume that the random walk starts in the stationary
distribution.

• Then: Ncut(A, B) = P(A|B) + P(B|A)

• Interpretation: Spectral clustering tries to construct groups such
that a random walk stays as long as possible within the same
group
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Random walk explanations (2)
Commute distance: c(Xi , Xj) is the expected time a random walk
needs to travel from Xi to Xj and back

Can be expressed in terms of the pseudo-inverse of the
unnormalized graph Laplacian: cij = (ei − ej)

′L†(ei − ej)

Commute time embedding:

• decompose L† = V ′Λ†V

• choose Zi as rows of (Λ†)1/2V .

• Then ‖Zi − Zj‖2 = cij .

Hand-waiving argument: spectral embedding ≈ commute time
embedding =⇒ spectral clustering is based on commute distance
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The perturbation theory explanation

Ideal case: between-cluster similarities are exactly 0. Then:

S =

(
S1 0...
0 S2...

)
eig(Lrw) =


1 0 ...
1 0 ...
0 1 ...
0 1 ...


eig(Lsym) =


d1 0 ...
d3 0 ...
0 d4 ...
0 d6 ...


• For L or Lrw: all points of the same cluster are mapped on the

identical point in Rk

• Then spectral clustering finds the ideal solution.
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The perturbation theory explanation (2)
Perturbation theory: “nearly” ideal case
=⇒ nearly ideal eigenvectors
=⇒ points of the same cluster are mapped on close points in Rk

=⇒ spectral clustering identifies clusters
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The perturbation theory explanation – caveats

Any block matrix leads to block eigenvectors
• But what is important is the order of eigenvectors: the first k

eigenvectors need to contain a representative of each cluster

• This works out great for all Laplacians

• But this might not work for other matrices, e.g. S directly

In ideal case, entries of eigenvectors should be “safely bounded
away” from 0
• Otherwise, perturbing them leads to ambigous situations

• This might go wrong for Lsym if we have vertices with very small
degrees
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Implementation – similarity graph

vertices: data points Xi

edges: connect Xi and Xj if similarity sij is “high”

• k-nearest neighbor graph (mutual or symmetric),

• ε-neighborhood graph,

• completely connected graph for certain similarity functions

• ...
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Implementation – similarity graph (2)
matlab demo: demo neighborhood graphs(epsilon,k)

demo_neighborhood_graphs(epsilon,k)
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Implementation – similarity graph (3)
k-nearest neighbor graph: Should be first choice.

• is sparse, can model data on different scales

ε-neighborhood graph:

• only use it if data similarities are “on same scale”

Completely connected graph:

• together with Gaussian kernel sij = exp(−‖xi − xj‖2/σ2)

• only use it if data is “on same scale”

• disadvantage: not sparse!

Choosing the parameter: points should be connected to their k-th
nearest neighbors, where k ∼ log n

• sparse graphs

• graphs tend to be connected
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Implementation – how many clusters?

• In general, all standard heuristics can be used (will discuss this
later: gap statistic; stability methods)

• A special heuristic for spectral clustering: maximize the eigengap

0 2 4 6 8 10
0

5

10
Histogram of the sample

0 2 4 6 8 10
0

5

10
Histogram of the sample

0 2 4 6 8 10
0

2

4

6
Histogram of the sample

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

Eigenvalues

1 2 3 4 5 6 7 8 9 10

0.02

0.04

0.06

0.08

Eigenvalues

1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

Eigenvalues

Theoretical reasons: can bound Ncut-value by second eigenvalue
(; spectral graph theory)
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Implementation – normalized or unnormalized?

First argument for normalized: clustering objectives
RatioCut(A, B) := cut(A, B)( 1

|A| + 1
|B|) ; unnormalized

Ncut(A, B) := cut(A, B)( 1
vol(A)

+ 1
vol(B)

) ; normalized

• between-similarity:
∑

i∈A,j∈B sij = cut(A, B), minimized by both

• within-similarity is only maximized by Ncut, but not by Ratiocut:∑
ij∈A sij =

∑
i∈A,j∈V sij −

∑
i∈A,j∈B sij = vol(A)− cut(A, B)

Second argument for normalized: Statistical consistency

• Unnormalized spectral clustering is statistically not consistent
and can lead to artifacts!

• Normalized spectral clustering is always statistically consistent!

; always use normalized spectral clustering!!!
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The modularity approach

Pretty new and pretty popular algorithm for community detection in
networks, ends in an algorithm very similar to spectral clustering:

• So far we simply “counted” whether there are few or many edges
between two groups of vertices.

• If there are few edges between the groups, we tend to believe
that the groups are clusters.

• But now assume we have a very large graph. Just by random
chance there will be some groups between which there will be
few edges. Having “few edges” is not meaningful enough.

• Idea is thus: only consider groups clusters if there are
significantly fewer edges than expected.

M. Newman: Finding community structure in networks using the eigenvectors of matrices.

2006.
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The modularity approach (2)
In fact, the modularity approach works with within-cluster similarity.
Want to have significantly more edges within a cluster than we
would just expect by mere chance:

maxA

∑
i ,j∈A sij − E (sij)

To define “E (sij)” need random graph model. Simplest choice:
• put an edge between vertex i and j with probability

pij := didj/ vol(G ) for all pairs i , j

• then E (sij) = pij

• expected degrees in the model graphs coincide with given
degrees in our graph:
E (degree i in model) =

∑
j pij = di

∑
j dj/ vol(G ) = di

• matlab demo: demo modularity newman.m

demo_modularity_newman.m


U
lr
ik

e
vo

n
L
u
xb

u
rg

:
C
lu

st
er

in
g

J
u
ly

2
0
0
7

71

The modularity approach (3)
Have optimization problem:
maxA

∑
i ,j∈A sij − E (sij)

maxA

∑
i ,j∈A sij − didj/vol(G )

Can also relax this to an eigenvector problem:

• Set indicator vector f = (f1, ..., fn)
′ with fi =

{
1 if Xi ∈ A

−1 if Xi 6∈ A

• Define matrix B = D̄ − S where D̄ij = didj/ vol(G )

• Can write:∑
i ,j∈A sij − E (sij) =

∑n
i ,j=1(sij − E (sij))(fi fj + 1)

=
∑n

i ,j=1(sij − E (sij))fi fj + const.

= −f ′Bf + const.
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The modularity approach (4)
Then optimization problem becomes:

minf f ′Bf s.t. fi = ±1

Relax to fi ∈ R ; use first eigenvector of B

Note the similarity of B to the Laplace matrix L = D − S!
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The modularity approach (5)
Properties:
• B usually has positive and negative eigenvalues, and always

eigenvalue 0 with eigenvector 1

• Interpretation: if smallest eigenvalue is 0, then the graph does
not contain any community as the cluster indicator vector is 1

• Hence can detect absence of clusters!

• Even better: number of clusters = number of negative
eigenvalues of B .

• We need no balancing condition (as we look at individual
communities).

• Random graph model chosen such that graphs are similar to the
given graph. Thus take into account at least some features of
the geometry of the current graph
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Spectral clustering – pros and cons

Why is spectral clustering useful?
• Does not make strong assumptions on cluster shape

• Is simple to implement (solving an eigenproblem)

• Spectral clustering objective does not have local optima

• Is statistically consistent (normalized only!)

• Has several different derivations

• Successful in many applications

What are potential problems?
• Can be sensitive to choice of parameters (k in kNN-graph).

• Computational expensive on large non-sparse graphs

• Not really clear what it does on non-regular graphs (e.g. power
law graphs)
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Some selected literature on spectral clustering
Of course I recommend the following ,
• U.von Luxburg. A tutorial on spectral clustering. Statistics and Computing, to appear.

On my homepage.

The three articles which are most cited:

I Meila, M. and Shi, J. (2001). A random walks view of spectral segmentation.
AISTATS.

I Ng, A., Jordan, M., and Weiss, Y. (2002). On spectral clustering: analysis and an
algorithm. NIPS 14.

I Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888 - 905.

Nice historical overview on spectral clustering; and how relaxation can go wrong:
• Spielman, D. and Teng, S. (1996). Spectral partitioning works: planar graphs and finite

element meshes. In FOCS, 1996

The modularity approach:

• M. Newman: Finding community structure in networks using the eigenvectors of
matrices. 2006.
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Even more clustering algorithms
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K -means

• Given data points X1, ..., Xn ∈ R
d .

• Want to cluster them based on Euclidean distances.

Main idea of the K -means algorithm:
• Start with randomly chosen centers.

• Assign all points to their closest center.

• This leads to preliminary clusters.

• Now move the starting centers to the true centers of the current
clusters.

• Repeat this until convergence.
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K -means (2)
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K -means (3)
The K -means algorithm:
Input: Data points X1, ..., Xn ∈ R

d , number K of clusters to
construct.

1. Randomly initialize the centers m
(0)
1 , ..., m

(0)
K .

2. Iterate until convergence:

2.1 Assign each data point to the closest cluster center, that is

define the clusters C
(i+1)
1 , ...,C

(i+1)
K by

Xs ∈ C
(i+1)
k ⇐⇒ ‖Xs −m

(i)
k ‖2 ≤ ‖X −m

(i)
l ‖2, l = 1, ...,K

2.2 Compute the new cluster centers by

m
(i+1)
k =

1

|C (i+1)
k |

∑
s∈Ck

Xs

Output: Clusters C1, ..., CK



U
lr
ik

e
vo

n
L
u
xb

u
rg

:
C
lu

st
er

in
g

J
u
ly

2
0
0
7

80

K -means (4)

matlab demo: demo kmeans()

demo_kmeans()
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Linkage algorithms for hierarchical clustering

Goal: obtain a complete hierarchy of clusters and sub-clusters in
form of a dendrogram

Horse

WhiteRhino

HarborSeal

GreySeal

Cat

BlueWhale

Cow

FinbackWhale

Gibbon

Gorilla

Human

PygmyChimpanzee

Chimpanzee

Orangutan

SumatranOrangutan

HouseMouse

Rat

Opossum

Wallaroo

Platypus

Figure 2: The evolutionary tree built from complete
mammalian mtDNA sequences using block size k = 7
and d′.

each of the positions in the DNA sequence, and take out
the k bases covered by the 1s to form a length-k word. The
number of those distinct words is then used to define the
distances d′ and d∗ in Formula (6.2) and (6.2).

We applied the new defined distances to the 20 mam-
mal data. The performance is slightly bettern than the per-
formance of the distances defined in (6.2) and (6.2). The
modified d′ and d∗ can correctly construct the mammal tree
when 7 ≤ k ≤ 13 and 6 ≤ k ≤ 13, respectively.

Compression: To achieve the best approximation of
Kolmogorov complexity, and hence most confidence in the
approximation of ds and d, we use a new version of the Gen-
Compress program, [9], which achieves the currently best
compression ratios for benchmark DNA sequences. Gen-
Compress finds approximate matches (hence edit distance
becomes a special case), approximate reverse complements,
among other things, with arithmetic encoding when neces-
sary. Online service of GenCompress is at UCSB Bioin-
formatics Lab website: http://cytosine.cs.ucsb.edu:8080/.
We computed d(x, y) between each pair of mtDNA x and
y, using GenCompress to heuristically approximate K(x|y),
K(x), and K(x, y), and constructed a tree (Figure 3) using
the neighbor joining [32] program in the MOLPHY package
[1]. The tree is identical to the maximum likelihood tree of
Cao, et al. [8]. For comparison, we used the hypercleaning
program [7] and obtained the same result. The phylogeny in
Figure 3 re-confirms the hypothesis of (Rodents, (Primates,
Ferungulates)). Using the ds measure gives the same result.

To further assure our results, we have extracted only
the coding regions from the mtDNAs of the above species,
and performed the same computation. This resulted in the
same tree.

Evaluation: This new method for whole genome com-
parison and phylogeny does not require gene identification
nor any human intervention, in fact, it is totally automatic.

Platypus

Wallaroo

Opossum

Rat

HouseMouse

Cat

HarborSeal

GreySeal

WhiteRhino

Horse

FinbackWhale

BlueWhale

Cow

Gibbon

Gorilla

Human

PygmyChimpanzee

Chimpanzee

Orangutan

SumatranOrangutan

Rodents

Ferungulates

Primates

Marsupials and monotremes

Figure 3: The evolutionary tree built from complete
mammalian mtDNA sequences.

It is mathematically well-founded being based on general in-
formation theoretic concepts. It works when there are no
agreed upon evolutionary models, as further demonstrated
by the successful construction of a chain letter phylogeny [5]
and when individual gene trees do not agree (Cao et al., [8])
as is the case for genomes. Next step would be to apply
this method to larger genomes such as cpDNA and bacteria
genomes.

7 The Language Tree
Normalized information distance is a totally general univer-
sal tool, not restricted to a particular application area. We
show that it can also be used to successfully classify nat-
ural languages. Let us borrow from biology the “nature”
(acquired by genetic mixture) versus “nurture” (acquired in
the life of the individual) terminology. Any language tree
built by only analyzing contemporary natural text corpora is
partially corrupted by historical “nurture” contaminations.
While according to Darwinism the genomes only change by
inheritance (nature), languages acquire their characteristic
by descent but also by interaction (nurture). Thus, while En-
glish is a Germanic Anglo-Saxon language, it has absorbed a
great deal of French-Latin components. Similarly, Hungar-
ian, often considered a Finn-Ugric language, which consen-
sus currently happens to be open to debate in the linguistic
community, is known to have absorbed many Turkish and
Slavic components. Thus, an automatic construction of a
language tree based on contemporary text corpora, exhibits
current linguistic relations (based on both nature and nur-
ture) which do not necessarily coincide completely with the
historic language family tree (based on nature). According
to a linguistic expert, only vocabulary is normally borrowed
between languages, and inflectional morphology is the best
indicator of linguistic descent. This may be the most im-
portant factor distorting the results. The misclassification
of English as Romance language must have something to do

cf. Chen/Li/Ma/Vitanyi (2004)
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Linkage algorithms for hierarchical clustering (2)
Linkage algorithms use an agglomerative (bottom-up) strategy:

• Start: each point is its own cluster

• Then check which points are closest and “merge” them to form
a new cluster

• Continue, always merge two “closest” clusters until we are left
with one cluster only

The original article: S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 2:241 -
254, 1967.
A complete book on the topic: N. Jardine and R. Sibson. Mathematical taxonomy. Wiley,
London, 1971.
Nice overview with application in biology: J. Kim and T. Warnow. Tutorial on phylogenetic
tree estimation. ISMB 1999.
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Linkage algorithms for hierarchical clustering (3)
To define which clusters are “closest”:

Single linkage: dist(C , C ′) = minx∈C ,y∈C ′ d(x , y)

X

X

X
X

X
X

X
X X X

X

Average linkage: dist(C , C ′) =
P

x∈C ,yinC ′ d(x ,y)

|C |·|C ′|

X

X

X
X

X
X

X
X X X

X

Complete linkage: dist(C , C ′) = maxx∈C ,y∈C ′ d(x , y)

X

X

X
X

X
X

X
X X X

X
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Linkage algorithms for hierarchical clustering (4)
Input:
• Distance matrix D between data points (size n × n)

• function dist to compute a distance between clusters (usually
takes D as input)

Initialization: Clustering C(0) = {C (0)
1 , ..., C

(0)
n } with C

(0)
i = {i}.

While the current number of clusters is > 1:

◦ find the two clusters which have the smallest distance to
each other

◦ merge them to one cluster

Output: Resulting dendrogram
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Linkage algorithms for hierarchical clustering (5)
... show matlab demos ...
demo linkage clustering by foot()

demo linkage clustering comparison()

demo_linkage_clustering_by_foot()
demo_linkage_clustering_comparison()
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Linkage algorithms for hierarchical clustering (6)
I single linkage tends to generate long “chains”

I complete linkage tends to produce “round”, compact clusters

I linkage algorithms are very vulnerable to outliers

I one cannot “undo” a bad link

I Single linkage can also be described using the minimal
spanning tree of data points (e.g., cutting the longest edge of
an MST gives the first two single linkage clusters)

I Underlying model: Clustering = estimation of densities (see
later lecture)

I Advantage of hierarchical clustering: do not need to decide on
“the right” number of clusters

I There exist many more ways of generating different trees from
a given distance matrix ...
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Model-based clustering

Generative clustering (as opposed to discriminative):

I assume that data has been generated according to some
probabilistic model

I want to estimate the parameters of the model

I Methods to do this: maximum likelihood, Bayesian approaches

I In practice: EM-algorithm

I Examples: Gaussian mixtures, hidden Markov models

I Advantage: lead to better interpretation of the clusters (as
they come with a model)

I Disadvantage: how to specify the model? What if the model
does not fit the data?

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and density
estimation. JASA, 97:611 -631, 2002.
S. Zhong and J. Ghosh. A Unified framework for model-based clustering. JMLR, 4:1001 -
1037, 2003
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Information-theoretic approaches
I Want to construct clusters such that as few “information” as

possible is lost about the data

I Minimize some distortion function

I Purely based on probability counts, no similarity or dissimilarity
needed

I Most popular approach: Information Bottleneck

N. Tishby, Fernando Pereira, and W. Bialek. The information bottleneck method. In

Proceedings of the 37th Annual Al lerton Conference on Communication, Control and

Computing, pages 368- 377, 1999.
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METIS

A coarsen-refinement algorithm for partitioning graphs:

I Given a large graph

I “Coarsen” it by merging nodes of the graph to “super-nodes”

I Cluster the coarse graph

I Uncoarsen the graph again, thereby also refining the clustering

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular

graphs. SIAM Journal on Scientific Computing, 20(1):359-392, 1999
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Ensemble methods

(also called aggregation methods, or bagging)

I Repeatedly cluster the data using different algorithms,
parameter settings, perturbations, ...

I Obtain an “ensemble” of different clusterings

I Implicitly contains the information which points might “really”
belong in the same cluster, and about which points we are
rather unsure

I Try to generate a final clustering of the ensemble.

Nice overview paper: A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse

framework for combining multiple partitions. JMLR, 3:583-617, 2002.
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Subspace clustering
I If data is very high-dimensional: different reasonable

clusterings might exist in different “subspaces”

I Example: customer data base. Can cluster customers along
shopping preferences, or along age, or along money they spend
...

I Goal is to come up with a list of subspaces and the
corresponding clusters.

Review article: L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional
data: a review. SIGKDD Explor. Newsl., 6(1):90-105, 2004.
A completely different perspective on this problem: Paper by Tishby et al at NIPS 2005
about increasing feature dimension, TO DO look up
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Co-clustering

also called bi-clustering

I Want to find clusters in different domains simultaneously

I Example: term/document co-occurrence matrix. Want to
cluster words and texts simultaneously such that I identify
groups of words which are typical for certain groups of texts

I Most approaches work iteratively: first cluster along one
dimension; then use those clusters as input to cluster along the
other dimension; repeat until convergence

Some references:
J. Hartigan. Direct clustering of a data matrix. JASA, 67(337):123- 129, 1972.
S. C. Madeira and A. Oliveira. Biclustering algorithms for biological data analysis: A survey.
IEEE transactions on computational biology and bioinformatics, 1(1): 24-45, 2004
S. Climer and W. Zhang. Rearrangement clustering: Pitfalls, remedies, and applications.
JMLR, 7:919-943, 2006
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??? Thousands of clustering algorithms ???
I Have seen: there is a huge variety of clustering algorithms

I Is there a method to compare them?

I Which one should we choose?

What is clustering, after all???



U
lr
ik

e
vo

n
L
u
xb

u
rg

:
C
lu

st
er

in
g

J
u
ly

2
0
0
7

94

What is clustering after all?
Theoretic Approaches



U
lr
ik

e
vo

n
L
u
xb

u
rg

:
C
lu

st
er

in
g

J
u
ly

2
0
0
7

95

What makes clustering so different from

classification?

• Unsupervised: We don’t get “hints” in form of labels. But this
alone is not the problem (there exist other unsupervised problems
which are easier to define, for example density estimation).

• There exists no ground truth. OK, that counts as a reason. This
makes it very hard to define what clustering is. But once we
came up with a definition?

• A clustering is a global property. In classification, we can
eventually just look at local neighborhoods and optimize some
function on this neighborhood, independently of what happens
at other neighborhoods. In clustering, the results at some part of
the space might affect our opinion on a completely different
region. Thus very difficult from an computational point of view.
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Defining clustering by a quality function

Most straight forward way to define a clustering of a given data set:

• Define an objective function (clustering quality function) Q

• Find the partition which minimizes Q

Examples:

• K -means; spectral clustering

There exist many such quality functions!!! Most of them look at
one or both of the following intuitive quantities:

• The within-cluster similarity (should be high)

• The between-cluster similarity (should be low)
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Defining clustering by a quality function (2)
Advantages:

• Well-defined mathematical object

• Can use standard optimization techniques

Disadvantages:

• Choice of quality function is rather heuristic

• Optimization problems are usually NP hard
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Defining clustering: high density areas

A cluster is a high density area. Different clusters are separated by
low density areas. But this is still a bit fuzzy ....

What people often do to make definition more precise:

• Clusters are density level sets (here have to choose the level)
• Clusters correspond to modes of a density (here again: problem

of scale)
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Defining clustering: high density areas (2)
Example: single linkage (implicitly)

Advantages:

• Intuitively makes sense

• Well-defined mathematical object
• Can use standard statistical techniques for estimating densities,

level sets, the support of density, modes of a density, ...

Disadvantages:

• Suggests that to perform clustering we first have to estimate the
density :-(

• At any price, avoid estimating densities ... won’t work even in
case of a moderate number of dimensions

• Hope: often don’t estimate the full density, but just some
aspects (for example for level set estimation; single linkage)
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Defining clustering: axiomatic view

A clustering is a function defined on the space of data sets which
satisfies a certain set of axioms.

Such axioms include:

• Invariance with respect to rotation and translation

• Invariance with respect to isotropic scaling
• Moving points closer together which are in the same clustering

does not change the clustering

• The class of all clusterings is “rich enough”, i.e. it can generate
many different clusterings

• ... many more ...
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Defining clustering: axiomatic view (2)
Once axioms are defined, people usually show:

• that there exists a clustering method that satisfies all axioms

• hopefully, that method can even be made explicit

• ideally, it is unique

• even more ideally, people show that their algorithm always
satisfies those axioms :-)

N. Jardine and R. Sibson. Mathematical taxonomy. Wiley, London, 1971.
W. Wright. A formalization of cluster analysis. Pattern Recognition, 5:273 - 282, 1973.
S. Ben-David. Can Clustering be Axiomatized? Rethinking Kleinberg’s Impossibility. Talk
given at the NIPS 2005 Workshop on Theoretical Foundations of Clustering, 2005.
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Defining clustering: axiomatic view (3)
A really popular negative result: Kleinberg (2003)
J. Kleinberg. An impossibility theorem for clustering. NIPS 2002.

I Clustering: maps distance matrix to partition of {1, ..., n}
I Three axioms:

I Scale invariance
I “Richness”: Any clustering of {1, .., n} is possible: for any

clustering there exists a distance matrix which induces this
clustering.

I “Consistency”: If we shrink distances between points inside a
cluster and expand distances between points in different
clusters, then the clustering result does not change.

I All axioms sound perfectly harmless.

I But: one can prove that there does not exist any clustering
function which can satisfy all three axioms!
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Defining clustering: axiomatic view (4)
Original proof is pretty complicated, but here is a nice, simple
argument:

Kleinberg’s Impossibility result

!"#$#%#&'()%*+%,-.()#$'*/%0.*,)'+*

!"##$%

&'()*+,-./

0#+1*123+'4

S. Ben-David. Can Clustering be Axiomatized? Rethinking Kleinberg’s Impossibility. Talk
given at the NIPS 2005 Workshop on Theoretical Foundations of Clustering, 2005.
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Defining clustering: axiomatic view (5)
Advantage of axiomatic approach:

• Avoids the question to define a clustering directly

• Clustering is just defined via properties

• Clean way to mathematically define clustering

Disadvantages:
• Which set of axioms??? Even though it sounds fundamental, it

is pretty ad hoc!

• In most cases, not really helpful for practice.
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Defining clustering: model based approach

We assume that the data has been generated by some probabilistic
model. Implicitly this model defines what a clustering is.

Most popular example: Gaussian mixtures

• Assume that data comes from a distribution of the form
p(x) =

∑
k πkN(µk , Σk)

• Clusters are simply mixture components: a point belongs to
cluster k if it has been generated by N(µk , Σk)

Advantages:
• Have a clear model of the data, and a clear interpretation what a

cluster is

• Can use standard techniques to estimate the parameters
(maximum likelihood, EM, Bayesian approaches, ...)
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Defining clustering: model based approach (2)
Disadvantages:
• Parameter estimation is often not so easy...

• Often makes very strong assumptions which might not be
satisfied.
Example: Gaussian mixtures on the “two moons data set”

• Often, model is not really designed towards clusters.
Example: Gaussian mixtures find two components on top of each
other, but intuitively we think this is one cluster.
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Defining clustering: information theoretic view

Clustering is a lossy compression of the information contained in
the original data set.

• Either find the optimal clustering for a given “code length”

• Or find the optimal clustering for a specified “amount of loss”
we are willing to accept.

• Often formulated in terms of rate-distortion theory.

Example: Information bottleneck approach.
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Defining clustering: information theoretic view (2)
Advantages:

• Sounds quite natural, has a nice interpretation.

Disadvantages:
• Often not so clear what “original information” we are referring

to (the coordinates of the points? Particular features? )

• Often not so easy to implement (minimize some distortion which
has many local minima, often done by some simulated annealing
scheme)
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The best definition of clustering????
I Have seen many different definitions of what “clustering” is.

I None of the definitions can cover the full range of applications
of clustering.

I For a given task, need to choose the one which fits best
(which often is also not so easy ... )

I There are some tasks where it might not be so crucial which
definition exactly one chooses (e.g., in applications where
clustering is just one preprocessing step to reduce the amount
of data)

One has to make a choice here, and no default exists!
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Theory about clustering

Once one has chosen a definition for clustering, what theoretical
statements can we make about it?

• First of all need to devise an algorithm which can implement this
kind of clustering.

• (Often, this works the other way round: you start with an
algorithm and then “define” clustering just to be the thing your
algorithm does).

Once you have an algorithm:

• Can you prove that it really does what you want?

• Under which assumptions?

• Guarantees?

• Reliability?

Very little is known about those questions ...
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Clustering in a statistical setting

• Assume that the data points have been sampled from some
underlying probability distribution P on some space X

• Ultimate goal: construct a partition of the underlying space X
• To this end: Define a goal of clustering on the space X ! This

takes into account P .

• Example 1: clusters are density level sets.
Example 2: minimize average distance to class centers (average
refers to P)

• Now we are only given a finite sample X1, ..., Xn

• Have to estimate what a good partition of X would be.

U. von Luxburg and S. Ben-David. Towards a statistical theory of clustering. In PASCAL

workshop on Statistics and Optimization of Clustering, London, 2005.
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Clustering in a statistical setting (2)
In the following: want to look at statistical properties of clustering
algorithms.

I Generally, we investigate whether a certain algorithm survives
some minimal “sanity checks”

I Consider this as necessary conditions, not as sufficient ones!!!

I Just tells us that a clustering algorithm is not completely
stupid. Does not guarantee anything on a particular data set.

I First property: want that the partitions converge.

I Second property: want that the “limit partition” makes sense.

I Third property: want that results on finite samples are stable
(do not vary too much).
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Consistency of clustering algorithms

Consistency, intuitively:

• The more data points I get, the more accurate can I estimate
the “true” partition.

• Those estimated partitions “converge” to the true partition.
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Convergence of Clustering Algorithms 

! Given data points X1,…,Xn ! !,   i.i.d. according to some 

underlying distribution P

! Clustering algorithm A 
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Not so easy to define ... and even more difficult to prove.

What is known on consistency of clustering algorithms? In fact,
very little!!!
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Consistency of clustering algorithms (2)
Consistency of K -means:

I On the finite sample: minimize Qn =
∑

k

∑
i∈Ck

‖Xi −mk‖2

I In the limit of n →∞, this corresponds to minimizing
Q =

∑
k

∫
1X∈Ck

‖X −mk‖2 dP(X ) .

I Assume that we can always discover the global optimum of Qn

and Q.

I Then one can prove: the centers corresponding to the
empirical global minimum of Qn converge to the centers
corresponding to the true (limit) global minimum of Q.

I Problem: the K -means algorithm does not find the global
minimum. So this theorem is nice, but does not apply to the
actual algorithm :-(

D. Pollard. Strong consistency of k-means clustering. Annals of Statistics, 9(1):135 - 140,

1981.
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Consistency of clustering algorithms (3)
Consistency of single linkage:

I Can prove some “fractional consistency”: A positive fraction of
disjoint clusters will eventually be separated

I This is not really consistency :-(

Does not hold for average or complete linkage.

Limit results: J. Hartigan. Consistency of single linkage for high-density clusters. JASA,
76(374):388 - 394, 1981.
Finite sample analysis: Dasgupta. Performance guarantees for hierarchical clustering. COLT
2002. Related literature: random geometric graphs.
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Consistency of clustering algorithms (4)
Consistency of spectral clustering:

I Normalized spectral clustering is usually consistent.

I It converges to a nice limit clustering.

I Unnormalized spectral clustering is not always consistent.

I Can converge to trivial solutions.

I It is possible to characterize the situation when this happens.

I This is an example where one can seen why consistency
analysis of algorithms is important!!!

As a consequence: use normalized spectral clustering only.

U. von Luxburg, M. Belkin, O. Bousquet. Consistency of spectral clustering. Annals of

Statistics, to appear. See also technical report.



U
lr
ik

e
vo

n
L
u
xb

u
rg

:
C
lu

st
er

in
g

J
u
ly

2
0
0
7

117

Consistency of clustering algorithms (5)
Consistency of model based clustering

I Here we can rely on the statistics literature:

I Need to estimate parameters of models.

I In principle, by using maximum likelihood or Bayesian
approaches this can often be done in a consistent way.

I In practice, we have the same problem as in K -means: the
algorithms usually don’t globally minimize their objective
function.

I Moreover, even if we have consistency: in case the data has
not been generated by the class of models under investigation,
the clustering result might not be very meaningful.
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Theoretical foundations of clustering – summary

• Cannot avoid to make choices depending on task: goal of
clustering, algorithm to achieve this, ...

• Very little theoretical guidelines in this process.

• Once we made choices, would like to have theoretical guarantees
on the behavior of the algorithm. Often do not exist ...

• My point of view: instead of making guarantees, make sanity
checks. Does the algorithm at least behave correctly for some
theoretical properties (convergence, stability, complexity, ...)?

• Lots of research waiting to be done :-)
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Selecting the number of clusters:
practice

and some destructive theory
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How many clusters are there?
I Most flat clustering algorithms need to get the number K of

clusters as input

I No matter what the structure in the data is, they will return K
clusters as output

I But what if we don’t know how many clusters we are looking
for???
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Answer depends on application...

Example: Using clustering for image segmentation

• Clusters should represent “meaningful” (parts of) objects in the
image.

• Ultimate goal is to obtain a correct segmentation.

• So far, this can only be judged by a human, and I don’t see a
clear mathematical way to do it.

• Use heuristics, need experience to do this ...
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Answer depends on application... (2)
If clustering is just used as a preprocessing step to reduce the
complexity of the data, for example in a classification task:

• Choose K pretty large (in order not to loose too much
information about your data)

• but only as large as you can afford later on (trade-off between
computational costs of next steps and number of clusters)

• might also be a trade-off between number of clusters and
overfitting, once K is too large.

• Try to evaluate the clustering parameters with cross-validation
over your final classification result.
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Answer depends on application... (3)
In a statistical setting (we will focus on this in the following):

• Assume that data has been drawn according to some probability
distribution

• How can we find out what “the true number of clusters” is?

• Note: ultimate goal is to learn a partition of the underlying space

• But have to do this based on finite amount of samples.

• Often can assume a statistical setting: bioinformatics, social
networks, customers, astronomy, ...

• Here clustering is not just a preprocessing step, we really want to
evaluate the result!
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First attempt to define “the correct K”

Define: Given the distribution P, what is the correct clustering?

I Sometimes this already implies what “the true K” is.

I Example: “Clusters are disconnected components of the
density.”

I Here K is uniquely defined.

I In most cases, have a parameter which directly or indirectly
controls the number of clusters.

I Example: “Clusters are disconnected components of level sets
of the density.” Here depending on the level t, different
number of K possible.

I Example: K -means
I Then we need a second definition: Given P, what is the

“correct” number of clusters?

Given a finite sample, now want to estimate K by some Kn.
Have to prove that estimator converges to the correct one.



U
lr
ik

e
vo

n
L
u
xb

u
rg

:
C
lu

st
er

in
g

J
u
ly

2
0
0
7

125

Choosing K using an objective function

First idea: use an objective function such as K -means.

• For each k in a reasonable range, let Qk be the value of the
objective function of K -means with k clusters.

• Choose K = argminkQk

This has a big problem: which one?
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Choosing K using an objective function (2)
The values Qk usually scale with k .
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Need to correct (normalize) the values Qk !!!
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Choosing K using an objective function (3)
Normalizing the value Qk : compare to unclustered “uniform” data.

I Generate “unclustered” reference data on the same domain

I Use uniform distribution on data domain (Problematic, in
particular in high dimensions. Why? )

I Scramble the data: permute each feature randomly (also
problematic, see next slide)

I Then cluster reference data for different values of k and
compute Qk,uniform

I Then consider the curve of Qk/Qk,uniform and take the
minimum ; K

This is called the gap statistics.

Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a dataset via the
gap statistic. J. Royal. Statist. Soc. B, 63(2):411-423, 2001.
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Choosing K using an objective function (4)
Example 1: gap statistics
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Choosing K using an objective function (5)
Example 2: gap statistics
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How many clusters – stability approach

Scientific results should be reproducible!
Thus necessary requirement: use algorithms which are “stable”.

Idea: evaluate clusterings indirectly using stability.

• Want that our results are stable.

• Hence, choose parameter for which the result is most stable.

• In practice, this often “works”
• However, it is not really clear what it really does.
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Stabilty – the general principle
I Given a data set X1, ..., Xn, a clustering algorithm A
I For different values of k (=number of clusters):

I draw subsamples of the given data
I cluster them in k clusters using A

I compare the resulting “bootstrap” clusterings

I define some distance between clusterings
I compute some notion of “stability” depending on how much

the clustering distances vary

I choose the parameter k which gives the “best” stability (where
“best” is defined in different ways)
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The toy figure in favor of stability

How many clusters?
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Example: how many clusters? 

Sample 1                          Sample 2

k = 2:

k = 5: 
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Distances between clusterings: same data set

Want to define a distance between two clusterings f (1) and f (2) of
the same data set.

For i , j ∈ {0, 1} define Nij = number of pairs of points for which
f (1)(X , Y ) = i and f (2)(X , Y ) = j

Many possible distance or similarity functions functions:

• Rand index: (N00 + N11)/(n(n − 1))

• Jacard index: N11/(N11 + N01 + N10)

• Hamming distance (L1-distance on pairs):
(N01 + N10)/(n(n − 1))
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Distances between clusterings: same data set (2)
• Variation of information distance: information theoretic distance,

measures how much we know about clustering2 if we already
know clustering1:

Entropy(clust1) + entropy(clust2) - MutInf(clust1,clust2)

M. Meila. Comparing clusterings: an axiomatic view. In Proceedings of the International
Conference of Machine Learning (ICML), pages 577-584, 2005.

Can see: Many distances/similarities are possible ...
The actual choice is often not sooo important!
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Distances between clusterings: different data sets

More general:

I have a clustering C1 of the first data set X1, ..., Xn

I and a second clustering C2 of a second data set X ′
1, ..., X

′
m

I and we assume that both data sets come from the same
domain

Two ways to define a distance between the clusterings: using
restriction or extension operator.
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Distances between clusterings: different data sets

(2)
Restriction operator:

I compute the joint domain S = {X1, ..., Xn} ∩ {X ′
1, ..., X

′
m} of

both clusterings

I Restrict both clusterings to S ; C ′1, C ′2
I Compute distance between C ′1 and C ′2 (easy as now defined on

same domain)

I Note that this only makes sense if the two domain have a
reasonable overlap.
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Distances between clusterings: different data sets

(3)
Extension operator:

I Extend both clusterings from their domain to the domain of
the other clustering (or even to the whole underlying space)

I Then compute a distance between the resulting clusterings
(easy as now defined on same domain)

I For some algorithms there exist natural extensions:
I K -means (just assign new points to the closest cluster center)
I single linkage (assign new points to the same cluster as the

closest data point belongs to)
I spectral clustering (using theory of integral operators, not

trivial)

I If one only needs to extend to a few new points: greedy
heuristic.

I Otherwise: use a classifier as extension operator!
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Stability approaches in the literature

• Stability is used in many different flavors.

• Want to introduce the most common ones.
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Stability: Levine and Domany (2001)

For each value of k in some reasonable range:

I Cluster the full data set

I Repeatedly (for r = 1, . . . , rmax):
I Draw a subsample and cluster it
I Compute a distance dr between the clustering of the full set

and the one of the subset using restriction operator

I Compute stability stab(k) = meanr (dr )

Choose the parameter k for which stab(k) is minimal

(apparently do not normalize the values stabk ;
this is problematic as stabk always scales with k )

E. Levine and E. Domany. Resampling Method for Unsupervised Estimation of Cluster

Validity. Neural Computation 13 (11), 2001.
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Stability: Ben-Hur, Elisseeff and Guyon (2002)

For each value of k in some reasonable range:

I Repeatedly (for r = 1, . . . , rmax):
I Draw subsamples S1 and S2 and cluster them
I Compute a similarity sr using restriction operator.

I Generate histogram of the similarities sr between the
clusterings.

Choose the parameter k for which histogram is most concentrated
(by looking for jumps in area under cumulative distribution).
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Figure 3: Left: Scatter plot of a mixture of 4 Gaussians. Center: Histogram of the correlation similarity

measure; right: overlay of the cumulative distributions for increasing values of .

As a clustering algorithm we use the average link hierarchical clustering algorithm .

The advantage of using a hierarchical clustering method, is that the same set of trees

can be used for all values of , by looking at different level of the tree each time. To

tackle the problem of outliers, we cut the tree such that there are clusters, each of

them not a singleton (thus the total number of clusters can be higher than ).

We begin with the data depicted in Figure 1, which is a mixture of four Gaussians.

The histogram of the score for varying values of is plotted in figure 3. We make

several observations regarding the histogram. At it has a peak at 1, since

almost all the runs discriminated between the two upper and two lower clusters. At

most runs separated the two lower clusters, and at most runs found the

“correct” clustering as is reflected in the distribution of scores that is still close to 1.0.

At there is no longer one preferred solution, as is seen by the wide spectrum of

similarities. We remark that if the clusters were well separated, or the centers arranged

more symmetrically, there wouldn’t have been a preferred way of clustering into 2 or

3 clusters as is the case here; in that case the similarity for would have been

low, and increased for .

The next dataset we considered was the yeast DNA microarray data of Eisen

et. al. . We have used the MYGD functional annotation as labels. We chose the 5

functional classes that were most learnable by SVMs , and noted by Eisen et. al.

to cluster well . We looked at the genes that belong uniquely to these 5 functional

classes. This gave a dataset with 208 genes and 79 features (experiments) in the

following classes:

1. Tricarboxylic acid cycle or Krebs cycle (14 genes)

6

A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based method for discovering structure in
clustered data. In Pacific Symposium on Biocomputing, pages 6 - 17, 2002.
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Stability: Fridlyand and Dudoit (2001)

For each value of k in some reasonable range:

I Repeatedly (for r = 1, . . . , rmax)

I Randomly split the given data set into two halves.
I Cluster both halves independently.
I Extend both clusterings from “their” half to the other half

using a classification algorithm.
I Compute distance dr between both clusterings

I Compute stability stab(k) = meanr (dr )

I For normalization:
I Randomly generate bmax reference data sets under a suitable

null hypothesis (e.g., uniform distribution).
I Repeat the procedure outlined above for those data sets and

compute the stability values stabb(k).
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Stability: Fridlyand and Dudoit (2001) (2)
With a bootstrap test: choose k for which the difference of stab(k)
to meanb(stabb(k)) is most significant.

J.Fridlyand and S.Dudoit. Applications of resampling methods to estimate the number of
clusters and to improve the accuracy of a clustering method. Technical Report 600, 2001.
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Stability: Lange, Roth, Braun, Buhmann (2004)

For each value of k in some reasonable range:

I Repeatedly (for r = 1, . . . , rmax)
I Randomly split the given data set into two halves.
I Cluster both halves independently.
I Extend both clusterings from “their” half to the other half

using a classification algorithm.
I Compute distance dr between both clusterings

I Compute the stability stab(k) = meanr (dr ).

I For normalization:
I Consider the same splits as above
I Instead of clustering each split, assign random labels to points
I Extend both “random clusterings” as above, compute

distances, and evaluate stability: ; stabrand(k)

Choose the parameter k such that stab(k)/stabrand(k) is minimal.
LanRotBraBuh04T. Lange, V. Roth, M. Braun, and J. Buhmann. Stability-based validation
of clustering solutions. Neural Computation, 16(6):1299 - 1323, 2004.
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matlab demo on gap statistics and stability
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Theoretical statements?

Under certain assumptions on the distribution P ,
and for certain basis algorithms A,

I ... what can we prove about the parameter K chosen with
stability?

I Is it reasonable?

I In simple examples, does it select “the right” K?

I How large does the sample need to be?

I Does it “converge”? Confidence statements?

I Are there any fundamental differences between the approaches
of the literature?
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Critical view on the stability approach

Formalize what we mean by stability:

• Consider a clustering algorithm A which minimizes some
empirical cluster quality function Qemp.

• Assume that the algorithm always finds a global minimum of
Qemp (no convergence issues).

• Denote by Sn, S̃n two independent samples of size n drawn i.i.d.
according to probability distribution P.

• Let d be a distance function between clusterings.

• Define stability of algorithm A with respect to sample size n:

stab(A, n) := ES ,S̃ d(A(Sn),A(S̃n))
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Critical view on the stability approach (2)
Theorem:
• Assume that Q has a unique global minimum. Then any

clustering algorithm A which minimizes Qemp in some consistent
way is stable for large n, that is lim supn→∞ stab(A, n) = 0.

• Assume that the global minimum of Q is not unique. Then A is
not stable.
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Stability for large n

Let A be a convergent clustering algorithm which minimizes 

a quality function q. Then: 

! If q has a unique global minimum, then A is stable.  

! If q has several global minima, then A is instable!  

For large n it is the number of global minima which 

decides on the stability of a clustering algorithm! 

clusterings
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clusterings
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Ben-David, Luxburg, Pal. A sober look at clustering stability. COLT 2006.

Pal, Ben-David, Simon: Stability of K -means clustering. COLT 2007.
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Critical view on the stability approach (3)
The counter-stability toy figures: stability even for “wrong” k

• Non-symmetric distribution: stability even for “wrong” k

Fig. 1. The left two panels show situations where the constructed clustering (depicted
by the dashed line) is highly instable, either because the chosen number of clusters is
too small or too large. Note that both figures depict very symmetric situations. The
right two panels show situations where clustering algorithms return stable results even
though they construct a wrong number of clusters. Note that those two figures are not
symmetric.

case by considering the set of ε-minimizers of the objective function (Rakhlin
and Caponnetto, 2005). The set of ε-minimizers of a function is the set of all
clusterings for which the quality function is at most ε from the minimal value. If
we now know that we only have enough sample points to estimate the objective
function up to precision ε, then the instability in the algorithm consists in “ran-
domly” picking one of the clusterings in the set of ε-minimizers. In this paper
we mainly focus on the first kind of stability. Therefore, we mainly consider the
asymptotic behavior of stability as sample sizes grow to infinity.

In this work we analyze the behavior of stability of a large abstract family of
clustering algorithms - algorithms that are driven by an objective function (or
’risk’) that they aim to minimize. We postulate some basic abstract requirements
on such algorithms (such as convergence in probability to a minimum risk solu-
tions as cluster sizes grow to infinity), and show that for algorithms satisfying
these requirements, stability is fully determined by the symmetry structure of
the underlying data distribution. Specifically, if the risk has a unique minimizer
the algorithm is stable, and if there exist a non-trivial symmetry of the set of
risk-minimizing solutions, stability fails. Since these symmetry parameters are
independent of the number of clusters, we can easily prove that in many cases
stability fails to indicate the correct (or even a reasonable) number of clusterings.
Our results apply in particular to two large families of clustering algorithms, cen-
ter based clustering and spectral clustering.

We would like to stress that our findings do not contradict the stability results
for supervised learning. The main difference between classification and clustering
is that in classification we are only interested in some function which minimizes
the risk, but we never explicitly look at this function. In clustering however,
we do distinguish between functions even though they have the same risk. It is
exactly this fundamental difference which makes clustering so difficult to analyze.

• Uniform distribution on [0, 1]: k-means is stable for all k



U
lr
ik

e
vo

n
L
u
xb

u
rg

:
C
lu

st
er

in
g

J
u
ly

2
0
0
7

149

Critical view on the stability approach (4)
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Large n – stability for every k! 

! Several global minima are often induced by symmetry

! Natural distributions are usually not perfeclty symmetric 

! In this case for large n: every k is stable! 

Ben-David/Luxburg/Pal 2006 
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For large n we usually have stability for every k!!!
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Critical view on the stability approach (5)
• Stability just tells us whether we can reliably find the global

optimum

• In the results are instable, this can have many different reasons
(e.g., symmetry).

• Those reasons are not necessarily related to the number of
clusters.
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Summary gap statistics and stability
I both try to determine the unique “correct” K

I in practice, both of them “kind of work”

I both are heuristics

I both have no theoretical guarantees whatsoever

I for lack of better alternatives: reasonable to use them

I but don’t be surprised if weird things happen

I never do this as a black box without looking at the results ...
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The “correct” K , second approach
I Even if we know P , we can justify different numbers of

clusters, depending on the “the scale” or “the resolution” we
use to look at the distribution.
Example: “Clusters correspond to modes of the density.”

I We can even have infinitely many clusters of P .

I Now goal is different: On the finite sample, construct as many
reliable clusters as possible

I If n is small, only look for major clusters.
I The larger n, the more clusters should be constructed.
I But always make sure that the clusters are not just sampling

artifacts.
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The “correct” K , second approach (2)
• Hierarchical clustering is a standard tool in this context

• Avoids the question what the “correct” clustering is, just
outputs a complete hierarchy.

• Only issue might be: want to know at which level in the
hierarchy clusters are reliable and at which level we are just
fitting noise ...
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Figure 2: The evolutionary tree built from complete
mammalian mtDNA sequences using block size k = 7
and d′.

each of the positions in the DNA sequence, and take out
the k bases covered by the 1s to form a length-k word. The
number of those distinct words is then used to define the
distances d′ and d∗ in Formula (6.2) and (6.2).

We applied the new defined distances to the 20 mam-
mal data. The performance is slightly bettern than the per-
formance of the distances defined in (6.2) and (6.2). The
modified d′ and d∗ can correctly construct the mammal tree
when 7 ≤ k ≤ 13 and 6 ≤ k ≤ 13, respectively.

Compression: To achieve the best approximation of
Kolmogorov complexity, and hence most confidence in the
approximation of ds and d, we use a new version of the Gen-
Compress program, [9], which achieves the currently best
compression ratios for benchmark DNA sequences. Gen-
Compress finds approximate matches (hence edit distance
becomes a special case), approximate reverse complements,
among other things, with arithmetic encoding when neces-
sary. Online service of GenCompress is at UCSB Bioin-
formatics Lab website: http://cytosine.cs.ucsb.edu:8080/.
We computed d(x, y) between each pair of mtDNA x and
y, using GenCompress to heuristically approximate K(x|y),
K(x), and K(x, y), and constructed a tree (Figure 3) using
the neighbor joining [32] program in the MOLPHY package
[1]. The tree is identical to the maximum likelihood tree of
Cao, et al. [8]. For comparison, we used the hypercleaning
program [7] and obtained the same result. The phylogeny in
Figure 3 re-confirms the hypothesis of (Rodents, (Primates,
Ferungulates)). Using the ds measure gives the same result.

To further assure our results, we have extracted only
the coding regions from the mtDNAs of the above species,
and performed the same computation. This resulted in the
same tree.

Evaluation: This new method for whole genome com-
parison and phylogeny does not require gene identification
nor any human intervention, in fact, it is totally automatic.
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Figure 3: The evolutionary tree built from complete
mammalian mtDNA sequences.

It is mathematically well-founded being based on general in-
formation theoretic concepts. It works when there are no
agreed upon evolutionary models, as further demonstrated
by the successful construction of a chain letter phylogeny [5]
and when individual gene trees do not agree (Cao et al., [8])
as is the case for genomes. Next step would be to apply
this method to larger genomes such as cpDNA and bacteria
genomes.

7 The Language Tree
Normalized information distance is a totally general univer-
sal tool, not restricted to a particular application area. We
show that it can also be used to successfully classify nat-
ural languages. Let us borrow from biology the “nature”
(acquired by genetic mixture) versus “nurture” (acquired in
the life of the individual) terminology. Any language tree
built by only analyzing contemporary natural text corpora is
partially corrupted by historical “nurture” contaminations.
While according to Darwinism the genomes only change by
inheritance (nature), languages acquire their characteristic
by descent but also by interaction (nurture). Thus, while En-
glish is a Germanic Anglo-Saxon language, it has absorbed a
great deal of French-Latin components. Similarly, Hungar-
ian, often considered a Finn-Ugric language, which consen-
sus currently happens to be open to debate in the linguistic
community, is known to have absorbed many Turkish and
Slavic components. Thus, an automatic construction of a
language tree based on contemporary text corpora, exhibits
current linguistic relations (based on both nature and nur-
ture) which do not necessarily coincide completely with the
historic language family tree (based on nature). According
to a linguistic expert, only vocabulary is normally borrowed
between languages, and inflectional morphology is the best
indicator of linguistic descent. This may be the most im-
portant factor distorting the results. The misclassification
of English as Romance language must have something to do
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The “correct” K , second approach (3)
I Example for a way to find out: Still and Bialek (2004):

I Clustering = data compression
I Want to minimize some distortion function

dist(clustering , data)
I Distortion depends on the underlying distribution, and is

usually minimized by K = ∞.
I Now take into account uncertainty when estimating distortion

function on finite sample.
I Minimize something like “empirical distortion” + “safety

term”
I Turns out: is minimized for a particular K

S. Still and W. Bialek. How many clusters? an information-theoretic perspective. Neural

Comput., 16(12):2483 - 2506, 2004.
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The “correct” K , second approach (4)
I I believe that stability is a good tool for this second approach

I intuitively, stability just measures whether we are fitting noise

I then one would say: any number of clusters is reasonable, as
long as the results do not get really unstable

I but of course we need some theory

That is a topic I am working on right now ...
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How many clusters? Summary
I Well, it is really not simple!!!

I Depending on your goal:

I Might be very hard to define mathematically (eg image
segmentation)

I Want to find a fixed K
I Want to look at clusters at different resolutions

I There exist methods which work sometimes (often? in clear
cases?): gap statistic, stability

I Other than that: play around ...
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Wrapping up
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Wrapping up

What I didn’t talk about:

• Choosing the similarity function between the data points: is
crucial, but of course not simple ...

• Issues in high-dimensional data: distances can become
meaningless; density estimation is impossible; can find many
clusters when looking at different dimensions; ...

• Efficient implementations: exist for most algorithms, see
literature ...

• Online algorithms, algorithms for treating data streams,
clustering “moving targets”, ...
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Wrapping up (2)
There are lots of clustering algorithms out there!
There are not much theoretical guidelines out there!

If you use clustering for exploratory data analysis:

• Play around with different algorithms, parameters, ...
• Try not to use algorithms which make too strong assumptions –

unless you know that those assumptions hold in your case.

• Go for the more powerful algorithms (kernel K -means, spectral
clustering, ... )

• You always need to check manually whether your results make
sense.

• Playing around cannot really be automated.
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Wrapping up (3)
If you use clustering as a pre-processing step:

• Usually one wants to find a rather high number of clusters

• In this case, use simple algorithms (eg K -means)
• Sometimes the choice of parameters can be evaluated using

cross-validation, e.g. on the final classification result

• But often sub-optimal parameters do not completely kill your
application.
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Wrapping up (4)
Finally:

• Clustering as a field of research is really fun to work on!

• There is not much theory done yet.

• You still have the freedom to make “your theory”, as no
standards exist.

Actually, we are looking for PhD students and postdocs ;-)


