

Semi-supervised tree learning for SOP

Jurica Levatić, Dragi Kocev, Michelangelo Ceci, Sašo Džeroski

September 4th, 2016, Ohrid, Macedonia

- Introduction
- Predictive clustering trees
- Distance-based SSL
- Conclusions

Supervised learning

- Classification
- Regression

Unsupervised learning

- Clustering
- Dimensionality reduction

07.9.2016

		Target space			
Example 1	1	TRUE	0.49	0.69	Yes
Example 2	2	FALSE	0.08	0.07	?
Example 3	1	FALSE	0.08	0.07	?
Example 4	2	TRUE	0.49	0.69	Yes
Example 5	3	TRUE	0.49	0.69	No
Example 6	4	FALSE	0.08	0.07	?
•••		•••			

		Target space			
Example 1	1	TRUE	0.49	0.69	0.84
Example 2	2	FALSE	0.08	0.07	?
Example 3	1	FALSE	0.08	0.07	0.11
Example 4	2	TRUE	0.49	0.69	?
Example 5	3	TRUE	0.49	0.69	?
Example 6	4	FALSE	0.08	0.07	0.78
•••		•••			

SSL for multi-label classification

		Descrip	tive space	Т	arget space	е	
Example 1	1	TRUE	0.49	0.69	?	?	?
Example 2	2	FALSE	0.08	0.07	0	1	1
Example 3	1	FALSE	0.08	0.07	?	?	?
Example 4	2	TRUE	0.49	0.69	1	0	1
Example 5	3	TRUE	0.49	0.69	?	?	?
Example 6	4	FALSE	0.08	0.07	1	0	0
•••	•••				•••	•••	

SSL for multi-target regression

		Descrip	tive space	Target space			
Example 1	1	TRUE	0.49	0.69	?	?	?
Example 2	2	FALSE	0.08	0.07	0.56	0.99	7.59
Example 3	1	FALSE	0.08	0.07	?	?	?
Example 4	2	TRUE	0.49	0.69	0.08	0.77	8.86
Example 5	3	TRUE	0.49	0.69	?	?	?
Example 6	4	FALSE	0.08	0.07	0.43	2.10	8.09
•••	•••				•••	•••	•••

SSL underlying mechanism

Unlabeled data is a complementary way to "smooth" the prediction function

Semi-supervised smoothness assumption

"If two points x_i and x_j in a high density region are close, then also their outputs y_i and y_j should be close"

MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data

Semi-supervised learning

- Majority of work is dealing with classical (unstructured) classification tasks
- SSL for SOP largely unexplored

Kernel based approaches (semi-supervised support vector machines):

• (Xu and Schuurmans, 2005; Altun et al., 2006; Zien et al., 2007; Brefeld et al., 2008)

Graph based SSL methods for SOP:

• (Zha et al., 2009; Subramanya et al., 2010)

Other approaches: Hidden Markov Models with Latent Dirichlet Allocation (*Li and McCallum, 2005*), Conditional Random Fields (*Jiao et al., 2006; Wang et al., 2009*), Hybrid generative/discriminative approach for sequence labeling (*Dhillon et al., 2011*), Weight space based graph regularization (*Dhillon et al., 2012*)

Existing approaches: Issues

1) High computational complexity

• Not applicable to large datasets and problems with large-size outputs

2) Un-interpretable models

• Majority are kernel based methods

3) Focus only on a specific type of structured output

• e.g., sequence learning

4) Methods are applied and evaluated only on specific domains

• Text-mining and related domains

MAESTRA: Extend PCT framework towards SSL

Predictive Clustering framework

- Efficiently solving various SOP tasks: multi-target prediction, hierarchical multi-label classification, and time-series prediction
- Several possibilities for extension towards semi-supervised learning

Goals:

- Develop SSL methods within the PC framework efficient in terms of predictive power 1) and computational complexity
- Retain current **interpretability** of models in the PC framework 2)
- 3) Develop SSL methods that can handle **various types of SOP** tasks
- Evaluate methods in various domains (eco. modeling, comp. sys. Biology, 4) chemoinformatics, etc.) 07.9.2016

Introduction

Predictive clustering trees

• Distance-based SSL

Conclusions

Predictive clustering trees

- Implemented in the CLUS system (KU Leuven & JSI)
- The tree is a hierarchy of clusters
- Heuristic score: minimize intra-cluster variance
- Instantiation of the variance for different tasks

procedure PCT(E) returns tree 1: $(t^*, h^*, \mathcal{P}^*) = BestTest(E)$ 2: if $t^* \neq none$ then 3: for each $E_i \in \mathcal{P}^*$ do 4: $tree_i = PCT(E_i)$ 5: return $node(t^*, \bigcup_i \{tree_i\})$ 6: else 7: return leaf(Prototype(E)) procedure BestTest(E)

1:
$$(t^*, h^*, \mathcal{P}^*) = (none, 0, \emptyset)$$

- 2: for each possible test t do
- 3: $\mathcal{P} = \text{partition induced by } t \text{ on } E$

4:
$$h = Var(E) - \sum_{E_i \in \mathcal{P}} \frac{|E_i|}{|E|} Var(E_i)$$

5: if
$$(h > h^*) \land Acceptable(t, \mathcal{P})$$
 then

6:
$$(t^*, h^*, \mathcal{P}^*) = (t, h, \mathcal{P})$$

7: return (t^*, h^*, P^*)

Predictive clustering trees

- Implemented in the CLUS system (KU Leuven & JSI)
- The tree is a hierarchy of clusters
- Heuristic score: minimize intra-cluster variance
- Instantiation of the variance for different tasks

procedure
$$PCT(E)$$
 returns tree1: $(t^*, h^*, \mathcal{P}^*) = BestTest(E)$ 2: if $t^* \neq$ none then3: for each $E_i \in \mathcal{P}^*$ do4: $tree_i = PCT(E_i)$ 5: return $node(t^*, \bigcup_i \{tree_i\})$ 6else7return leaf(Prototype(E))

procedure BestTest(*E*) 1: $(t^*, h^*, \mathcal{P}^*) = (none, 0, \emptyset)$ 2: for each possible test *t* do 3: \mathcal{P} = partition induced by *t* on *E* 4: $h = Var(E) - \sum_{E_i \in \mathcal{P}} \frac{|E_i|}{|E|} Var(E_i)$ 5: If $(n > n) \land Acceptable(t, \mathcal{P})$ then 6: $(t^*, h^*, \mathcal{P}^*) = (t, h, \mathcal{P})$ 7: return $(t^*, h^*, \mathcal{P}^*)$

PCTs instantiations

- Multi-target regression
 - Prototype: Average
 - Variance: $Var(E) = \sum_{i=1}^{T}$

$$Var(E) = \sum_{i=1}^{n} Var(Y_i)$$

- Multi-target classification/Multi-label classification
 - Prototype: Probability distribution and Majority vote T
 - Variance: $Var(E) = \sum_{i=1}^{I} Gini(E, Y_i)$ or $Var(E) = \sum_{i=1}^{I} Entropy(E, Y_i)$
- Hierarchical multi-label classification
 - Prototype: Average with a threshold for class membership
 - Hierarchy type: tree or DAG

• Variance:
$$Var(E) = \frac{1}{|E|} \cdot \sum_{E_i \in E} d(L_i, \overline{L})^2$$

$$d(L_1, L_2) = \sqrt{\sum_{i=1}^{|L|} \omega(c_i) \cdot (L_{1,i} - L_{2,i})^2}, \ \omega(c_i) = \omega_0 \cdot \omega(par(c_i))$$

- Introduction
- Predictive clustering trees
- Distance-based SSL
- Conclusions

Variance of a parent node Sum of variances of child nodes $h = Var(E) - \sum_{E_i \in \mathcal{P}} \frac{|E_i|}{|E|} Var(E_i)$

$$h = Var(E) - \sum_{E_i \in \mathcal{P}} \frac{|E_i|}{|E|} Var(E_i)$$

 $Var(E) = \frac{1}{T} \cdot \sum_{i=1}^{I} Var(Y_i)$ Average of the variances of the *target variables*

Variance function of semi-supervised PCTs:

$$Var(E) = \frac{1}{T+D} \cdot \left(w \cdot \sum_{i=1}^{T} Var(Y_i) + (1-w) \cdot \sum_{j=1}^{D} Var(X_j) \right)$$

T =#target attributes, D = #descriptive attributes, w = weight parameter

Variance is calculated on both target and descriptive side

Semi-supervised PCTs: mixed attributes

Extended variance function:

$$Var(E) = \frac{w}{T_{nu} + T_{no}} \cdot \left(\sum_{i=1}^{T_{nu}} Var(Y_i) + \sum_{i=1}^{T_{no}} gini(Y_i) \right)$$
$$+ \frac{(1 - w)}{D_{nu} + D_{no}} \cdot \left(\sum_{j=1}^{D_{nu}} Var(X_j) + \sum_{j=1}^{D_{no}} gini(X_j) \right)$$

 T_{nu} = #numerical target attributes, T_{no} = #nominal target attributes D_{nu} = #numerical descriptive attributes, D_{no} = #nominal descriptive attributes

Semi-supervised PCTs: mixed attributes

Extended variance function:

$$Var(E) = \frac{w}{T_{nu} + T_{no}} \cdot \left(\sum_{i=1}^{T_{nu}} Var(Y_i) + \sum_{i=1}^{T_{no}} gini(Y_i) \right)$$

+ $\frac{(1 - w)}{D_{nu} + D_{no}} \cdot \left(\sum_{j=1}^{D_{nu}} Var(X_j) + \sum_{j=1}^{D_{no}} gini(X_j) \right)$
We are (potentially)
mixing apples and
oranges

 T_{nu} = #numerical target attributes, T_{no} = #nominal target attributes D_{nu} = #numerical descriptive attributes, D_{no} = #nominal descriptive attributes Semi-supervised PCTs for SOP

Extended variance function:

$$Var(E) = \frac{w}{T_{nu} + T_{no}} \cdot \left(\sum_{i=1}^{T_{nu}} \frac{Var(Y_i)}{Var_{train}(Y_i)} + \sum_{i=1}^{T_{no}} \frac{gini(Y_i)}{gini_{train}(Y_i)} \right) + \frac{(1-w)}{D_{nu} + D_{no}} \cdot \left(\sum_{j=1}^{D_{nu}} \frac{Var(X_j)}{Var_{train}(X_j)} + \sum_{j=1}^{D_{no}} \frac{gini(X_j)}{gini_{train}(X_j)} \right)$$

 T_{nu} = #numerical target attributes, T_{no} = #nominal target attributes D_{nu} = #numerical descriptive attributes, D_{no} = #nominal descriptive attributes

SSL PCTs: Smoothness in the target space

- Multi-target regression
- Binary classification
- Multi-class classification
- Multi-label classification

Semi-supervised PCTs for MTR

Variances of individual target (Y_i) and descriptive (X_i) attributes:

$$Var(Y_i) = \frac{\frac{N-1}{K_i - 1} \cdot \sum_{j=1}^{N} \left(y_{i_j}\right)^2 - N \cdot \left(\frac{1}{K_i} \cdot \sum_{j=1}^{N} y_{i_j}\right)^2}{N}$$

N = number of examples, $K_i =$ number of examples with **non missing values**

Semi-supervised PCTs for MTR

Variances of individual target (Y_i) and descriptive (X_i) attributes:

$$Var(Y_i) = \frac{\frac{N-1}{K_i - 1} \cdot \sum_{j=1}^{N} \left(y_{i_j}\right)^2 - N \cdot \left(\frac{1}{K_i} \cdot \sum_{j=1}^{N} y_{i_j}\right)^2}{N}$$

N = number of examples, $K_i =$ number of examples with **non missing values**

Extreme cases (*K*= 0):

- (1) leafs of the decision tree may contain only unlabeled examples
- (2) the calculation of variance for attribute which has only missing values

How we handle extreme cases?

- I. estimation of variance with variance of the parent node Moderate penalization \rightarrow medium sized trees
- II. estimation of variance with variance on the entire training set Maximal penalization \rightarrow small trees
- III. ignoring such attributes

No penalization \rightarrow large trees

$$Var(E) = \frac{1}{\widehat{T} + \widehat{D}} \cdot \left(w \cdot \sum_{i=1}^{\widehat{T}} Var(Y_i) + (1 - w) \cdot \sum_{j=1}^{\widehat{D}} Var(X_j) \right)$$

 \hat{T} , $\hat{D} =$ #target/descriptive attributes with $K_i > 1$

Feature weighted semi-supervised PCTs

Problem: Irrelevant descriptive attributes may hurt performance! Solution: Weight them by feature ranks

$$Var(E) = \frac{1}{T+D} \left(w \cdot \sum_{i=1}^{T} Var(Y_i) + (1-w) \cdot \sum_{j=1}^{D} \sigma_j \cdot Var(X_j) \right)$$

 σ_i = normalized feature importance (e.g., Random forest feature ranking)

Experimental design

- 6 variants of semi-supervised PCTs
 - SSL-PCT_P, SSL-PCT_T, SSL-PCT_I
 - SSL-PCT-FR_P, SSL-PCT-FR_T, SSL-PCT-FR_I
- Comparison to two baselines on 10 MTR datasets
 - Standard supervised PCTs (Base-PCT)
 - Supervised counterpart of SSL-PCTs (SL-PCT, SL-PCT-FR)
- We explore the influence of the amount of labeled data
 - 25, 50, 100, 200 labeled examples
 - 1%, 5%, 10%, 30% labeled examples
- Transductive evaluation scenario: unlabeled examples = test examples
- 10 runs with different random initialization

Average ranks diagrams, absolute number of labeled examples

Average ranks diagrams, absolute number of labeled examples

Average ranks diagrams, relative number of labeled examples

Average ranks diagrams, relative number of labeled examples

Forestry LIDAR LandSat

Soil quality

Forestry Kras

Forestry LIDAR IRS

Forestry LIDAR Spot

Water quality

Results: Influence of the *w* parameter

- controls the amount of "supervision"
 - $w = 0 \Rightarrow$ unsupervised learning
 - $w = 1 \Rightarrow$ supervised learning

$$Var(E) = \frac{1}{T+D} \cdot \left(w \cdot \sum_{i=1}^{T} Var(Y_i) + (1-w) \cdot \sum_{j=1}^{D} Var(X_j) \right)$$

- w provides a safety mechanism to SSL-PCTs
- w is optimized via 3-fold cross-validation on labeled part

RF1

SCM1D

Water Quality

Results: Variable amount of unlabeled data

07.9.2016

MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data

(a) BASE-PCT with 50 labeled examples

(b) BASE-PCT with 9125 labeled examples

Example semi-supervised PCT

WRMSE = 0.71 # Nodes = 23

(c) SSL-PCT_P with 50 labeled examples and 9075 unlabeled examples

- Global and interpretable semi-supervised method for the task of multi-target regression
- Can improve the performance of supervised PCTs by a large degree
- The most effective in scenarios especially relevant for SSL
 - When few labeled examples are available
- Very seldom degenerates the performance of supervised PCTs
 - Mechanism to control the amount of influence of unlabeled examples
- The performance saturates after considering ~1000 unlabeled examples

SSL PCTs for classification tasks

- Datasets
 - 12 binary classification datasets
 - 10 multi-class classification datasets
 - 14 multi-label classification datasets
- Evaluation in an ensemble setting
- We explore the influence of the amount of labeled data
 - 25, 50, 100, 200, 350 and 500 labeled examples
- Parametar w ranges from 0 (unsupervised) to 1 (supervised)
- Transductive evaluation scenario: unlabeled examples = test examples
- 10 runs with different random initialization

Binary classification results

Wilcoxon test to assess the statistical significance of different performances

Methods	25	50	100	200	350	500
PCT vs. SSL-PCT	0.009(+)	0.388(+)	0.066 (+)	0.005(+)	0.019(+)	0.019(+)
RF vs. $SSL-RF$	0.529 (+)	0.192 (+)	0.002 (+)	0.099(+)	0.093 (+)	0.012 (+)
SelfTrainingRF vs. $SSL-RF$	0.015(+)	0.072 (+)	0.005 (+)	0.005 (+)	0.015 (+)	0.016 (+)

Multi-class classification results

Wilcoxon test to assess the statistical significance of different performances

Methods	25	50	100	200	350	500
PCT vs. SSL-PCT	0.444 (+)	0.123 (+)	0.044(+)	0.019(+)	0.399(+)	0.235 (+)
RF vs. $SSL-RF$	0.918 (+)	0.022 (+)	0.019 (+)	0.006 (+)	0.005 (+)	0.03(+)
SelfTrainingRF vs. $SSL-RF$	0.012 (+)	0.008(+)	0.003(+)	0.003(+)	0.011 (+)	0.05 (+)

Binary classification: SSL PCTs example

(a) PCT, 100 labeled examples

(b) SSL-PCT, 100 labeled and 668 unlabeled examples

MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data

MC classification: SSL PCTs example

Multi-class classification (Cardiotocogramy3 Dataset) MSTV > 0.45Min > 109.5no veś no yeś Mode > 103.0b > 321.0 $|\mathrm{SUSP} > 0.5|$ LD > 0.5no vés ves $\overline{\mathrm{FM} > 4.5}$ Pathologic Suspect Pathologic no no vés vés no vés |FS > 0.5|Suspect Pathologic Normal |AC > 2.5|Normal vés no yés Suspect Pathologic Normal Normal Accuracy=92%, 9 nodes Accuracy=81%, 11 nodes

(c) PCT, 50 labeled examples (d) SSL-PCT, 50 labeled and 2076 unlabeled examples

MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data

Binary/multi-class classification summary

- Improvement usually doesn't saturate with increase in #labeled examples
 - In MTR SSL improved up to 200 labeled examples
- SSL generally does not help for *"*easy" datasets (accuracy > 95%)
- The success of SSL-RF over RF is not directly connected with the success of its base model, i.e., SSL-PCTs
- Smaller interpretable models with better predictive performance

SSL PCTs for multi-label classification

- Not fully evaluated yet
- A variety of evaluation measures
 - Example based measures: Hamming loss, Accuracy, Precision, Recall, F1, Subset Accuracy
 - Label based measures: Macro{Precision, Recall, AUC}, Micro{Precision, Recall, AUC}
 - Ranking based measures: One error, Coverage, Ranking Loss, Average Precision

Sample results: multi-label classification

Conclusions

- Global semi-supervised method for multiple tasks
 - Multi-target regression
 - Binary, Multi-class and Multi-label classification
- Can improve the performance of supervised PCTs by a large degree
 - Especially when few labeled examples are available
- Very seldom degenerates the performance of supervised PCTs
 - Mechanism to control the amount of influence of unlabeled examples
- Easily interpretable models

Further work

- Consider additional tasks
 - Hierarchical multi-label classification, time series prediction
- Unsupervised learning/clustering for datasets with mixed variables
- Learning from partially labeled data
 - Two small case studies already performed
- Feature ranking in various settings
 - Unsupervised learning
 - Semi-supervised learning
 - Partially labeled