

Data Quality Defining, Measuring and Improving

Hans - J. Lenz, Freie Universität Berlin September 2007

All you should know about *Data Quality ...*

- 'Good enough' is not 'good enough'
- "Even though quality cannot be defined, you know what it is" R. Rirsig
- "It is quality rather than quantity that matters" Seneca
- Quality Improvement is a never ending process
- Garbage in garbage out.

You should know the cost of 'poor data quality'...

 Erroneous prices in sales data led to annual disadvantages of clients in the USA of about 2,5 Billion \$!
 80 % of Barcode-Scan-errors negatively affected the consumers*
 [GB 1999]

 In 2004 on the average 7% of the mail could not delivered due to wrong addresses.*
 [Pierce 2004]

 In 1992 the US Treasury Dept. could not issue 100000 pay-back cheques due to erroneous addresses.
 [USA 1992]

		Data Quality	/ — E	xa	erro	rs
No.	ISBN	Title	Name	Year	ages	
1	0-201- 54329-X	An introduction to database systems	Date	1997	839	
2	0-201- 54329-X	An introduction to database systems	Date	1995	839	
mistyp	oings	 An introduction to spatial database systems	Gueting	1994	13	variations
10		An introduction to spatial database systems	Güting	1994	13	
						missing
26 0- 210 - 14456-5 27 0- 201 - 14456-5		An introduction to database systems	Date	1977	536	values
		An Introduction to Database Systems	Date	1977		
		· · · · · · · · · · · · · · · · · · ·				1
30		An introduction to database systems	Date	/		

Pogr Data Quality

- Not feasible values: Birthday = 31 Febr, 2007
- Violated constraints S = Q * P: Sales S = 100, quantity Q = 20, price P = 4
- Missing Generalisation: Business Partners = Customers \cup Suppliers \cup Banks

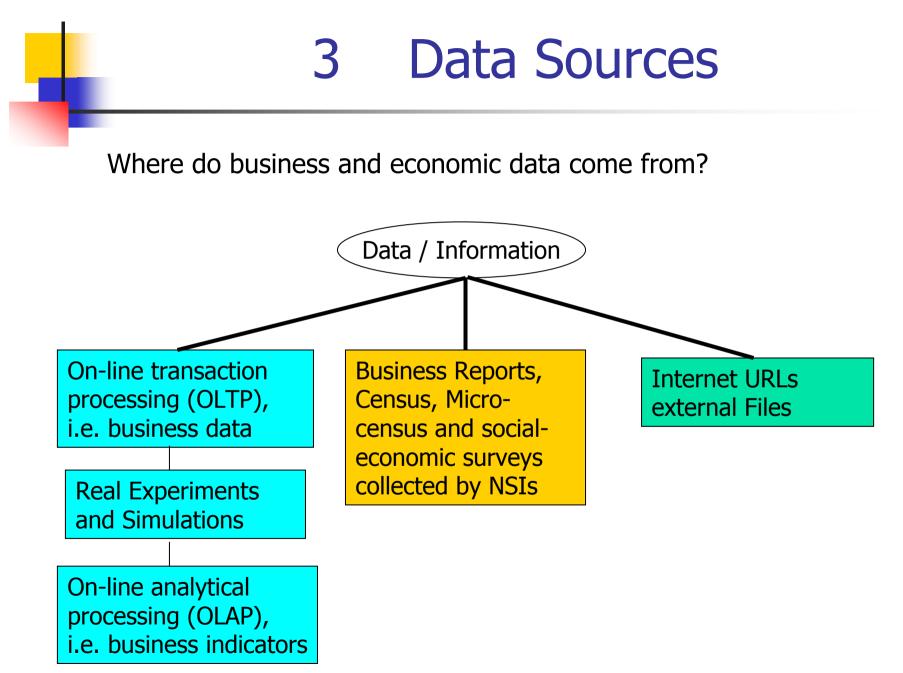
Question:

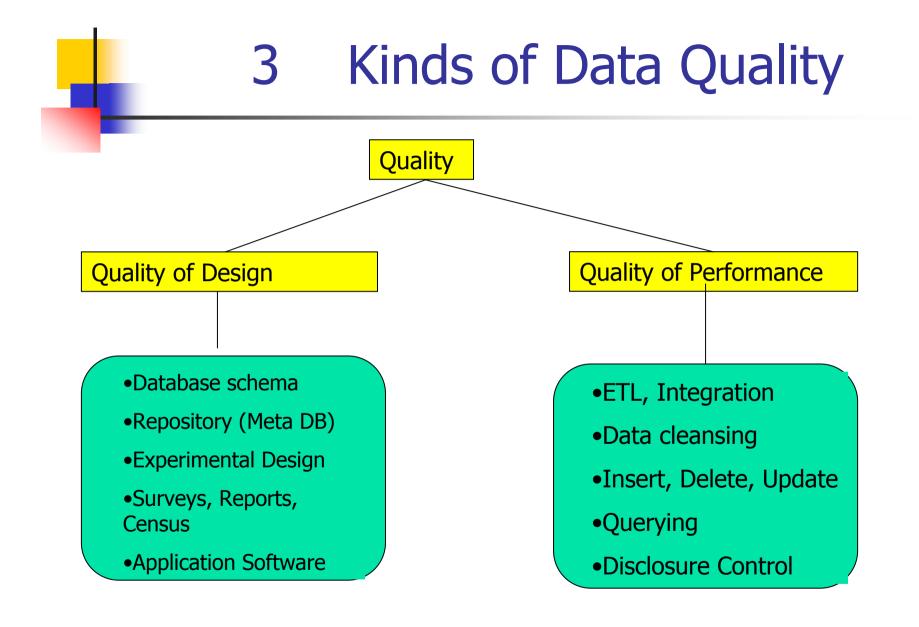
Can we strucuture the

various kinds of poor

- Wrong measurement units, i.e. *l* /100 km. ead of mi/gal
- Missing Values: FamilyName = 'XXXXXXXXX'
- Ambiguity of aggregation: German GDP with / with
- Missing definition of an attribute: Age, i.
- Ignoring scale: avg(street_number)
- pretended precision omitting error range data quality using an appropriate taxonomy?
 German GDP Cools in 2nd Quarter
 Europe's biggest economy had expanded 0.5 percent in the first three months of this year and 1 percent in last year's final quarter.
 By GEIR MOULSON Associated Press Writer
 © 2007 The Associated Press

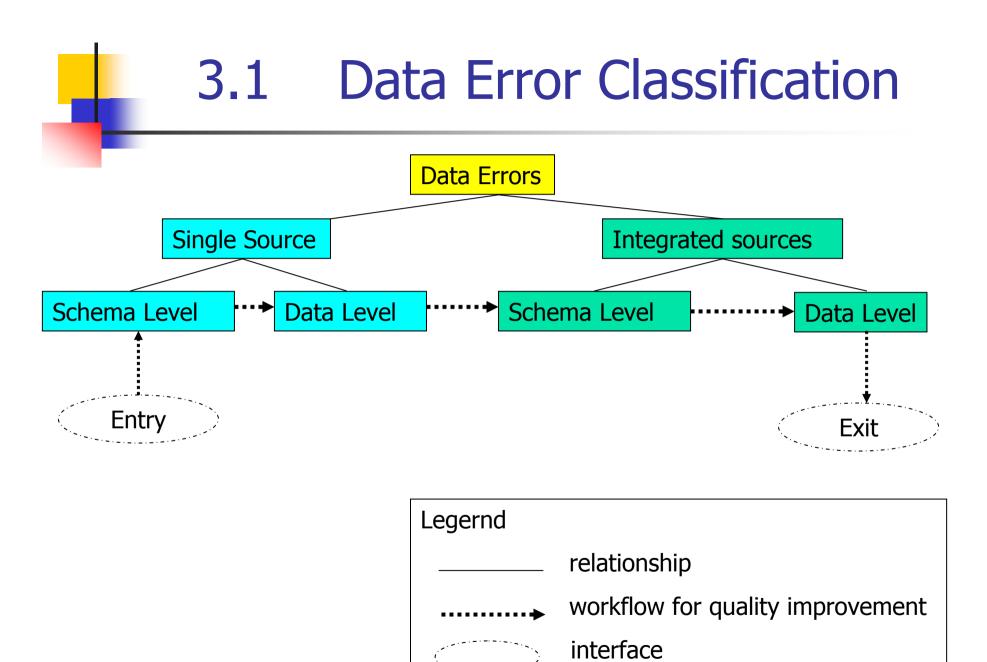
Contents

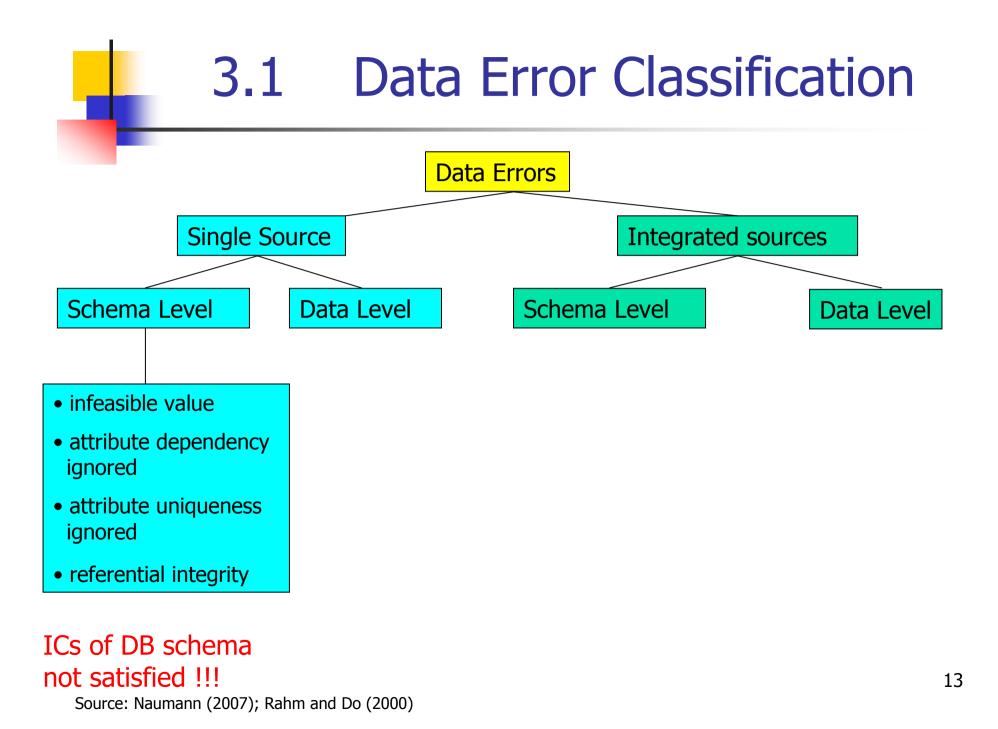

- 1. Definition of (Data) Quality
- 2. History
- 3. Poor Data Quality
- Indicators ("Measures", "Dimensions") of Data Quality
- 5. Measuring, Aggregation and Using of Data Quality

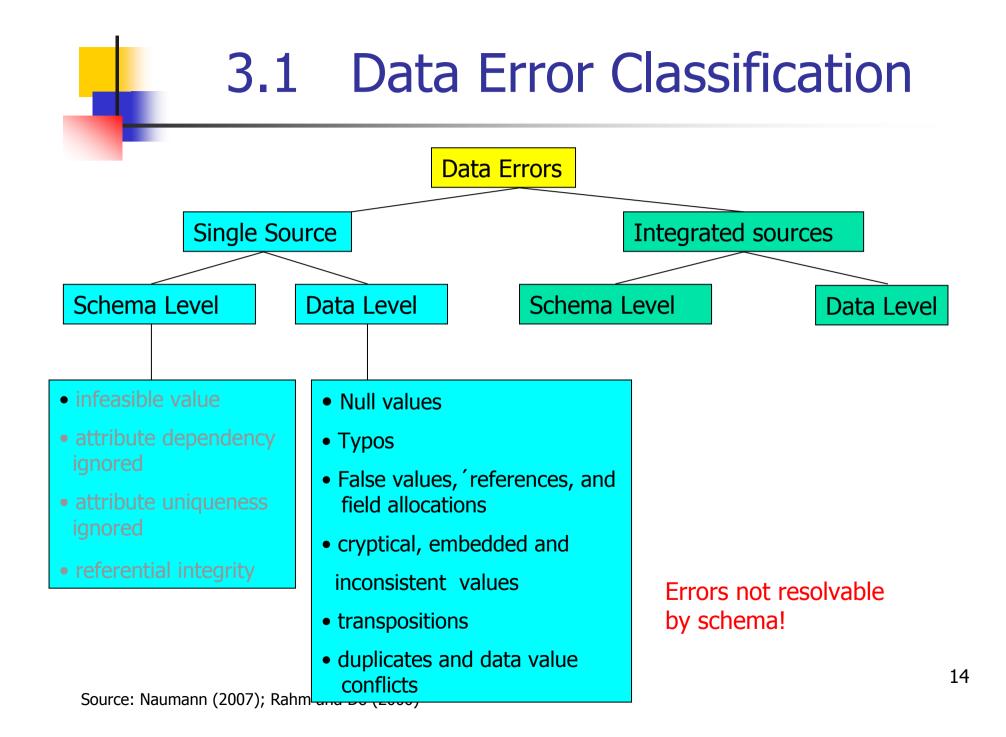

1 Definition of Quality

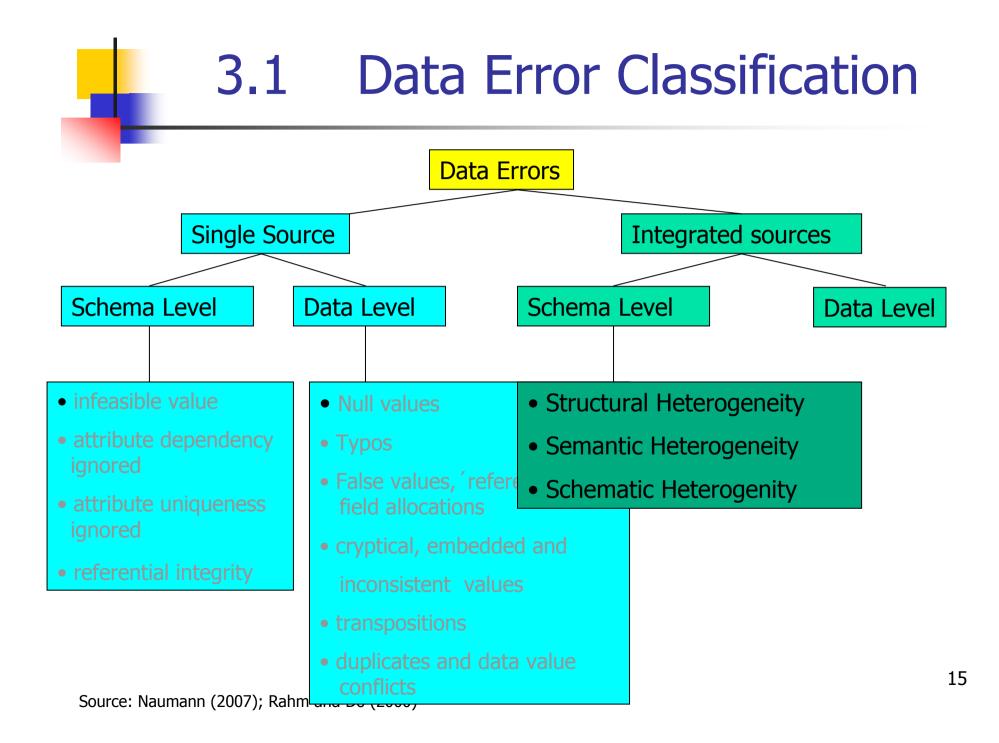
- W. Werz (1915): Quality reflects the ability of an object to meet the purpose
- ISO Norm: Suitability for use relative to a given objective of usage
- Industry: Quality is the conformance to requirements
- Computer Science: Fitness for use given a purpose

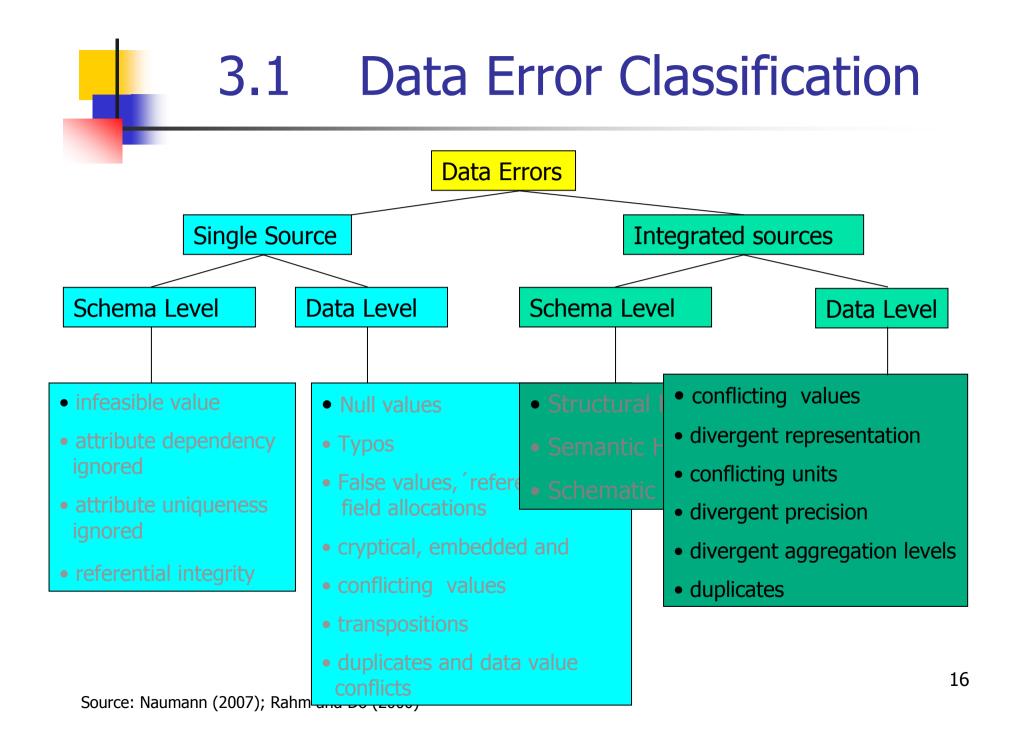
2 A short History of QC


- The quality movement can trace its roots back to guilds in the late 13th century (craftsmanship model).
- The factory system, with its emphasis on product inspection, started in Great Britain in the mid-1750s and grew into the <u>Industrial Revolution</u> in the early 1800s.
- In the <u>early 20th century</u>, manufacturers began to include quality processes in quality practices.
- <u>Walter Shewhart's</u> (1922) statistical process control techniques.
- <u>World War II</u> (1939-1945), quality became a critical component of the war effort: Bullets manufactured in one state, for example, had to work consistently in rifles made in another.
- QC Heros: Americans <u>Joseph M. Juran</u>, <u>W. Edwards Deming</u> and <u>H. Taguchi</u>
- Data Quality Control: in Statistical Offices since about 1930
 in Business since about 1990






3 Data Errors as trouble makers


Top Scorer of German Bundesliga in the last 5 years										
Jahr	Jahr Name Verein Treffer Nationalität									
2003	Elber	FC Bayern	21	Brasilien						
2003	Christiansen	VfL Bochum	21	Dänemark						
2004	Ailton	Werder Bremen	2004	Braslien						
2005	Mintál	1.FC Nürnberg	24	Slowakai						
2006	Klose	EC Bayern	25	Polen						
2007	Neumeister	VfL Bochum	20	Griechenland						

3.2 Data Quality: Focus and Dimensions

- Data Quality is not a single (scalar) quantity, but
 - Data Quality is a multivariate indicator
 - The components are called "dimensions"
- Data Quality is not only focussing on
 - entities (characteristics carriers)
 - single attributes
 - records
 - tables(relations)
 - databases, but even on
 - various data sources (internal OLTP-DB, external files or Web) and data consumers.

Taxonomy of	Data Quality by classes and dimensions
Class	Dimension
Intrinsic Data Quality	believabilitiy
	accuracy
	objectivity
	reputation
Contextual Data Quality	value-added
	relevancy
	timeliness
	completeness
	amount of data
Representational Data Quality	interpretability
	understandability
	representational consistency
	representational conciseness
Accessibility	accessibility
Source: Wand and Strong(1996), Naumann: (2007)	access security

Class	Dimension	Short Explanation	
Intrinsic Data Quality	Believabilitiy	accepted, true, , real credible	
	Accuracy	correct, error-free, reliable	
	Objectivity	not manipulated, impartial	
	Reputation	trusted w.r.t. content, source	
Contextual Data Quality	value-added	beneficial, advantageous	
	Relevancy	useful, applicable for task	
	Timeliness	data age is sufficient for task	
	Completeness	data depth, breadth, scope okay	
	Appropriate amount of data	right sized volume	
Representational Data Quality	Interpretability	language, units, DEF okay	
	Understandability	no ambiguity, comprehendable	
	representational consistency	unique fixed data format	
	representational conciseness	compactness of representation	
Accessibility	Accessibility	available, easily& quickly retrieved	
Source: Wand and Strong(1996), Naumann: (200	⁷⁾ access security	disclosure control effective	

Taxonomy of Data Quality by classes and dimensions

3.3 Single Dimension

Hard Quality Dimensions: • Accuracy

- Completeness
- Time-related Dimensions
 - Currency
 - Volatility
 - Timeliness
- Consistency ...
- Soft Quality Dimensions: (not covered here)
 - Believability
 - Objectivity
 - Reputation ...

3.3.1 Accuracy

Objective: Indicator of overall correctness of objects

• DEF.: Let $D \subseteq D$ be multi-variate domains and $\mathbf{x} \in D$ an observation or measurement and $\mu \in D$ a corresponding value.

Accuracy is defined as the closeness or similarity sim: D` x D \rightarrow R_{≥ 0}

- Ex.1: x= 'Hanz'; μ= 'Hans'
- Ex.2: x = 100; μ=95; measurement error e_μ =10%.
- Synonyms: inverse error rate, integrity, correctness.

3.3.1 Syntactic Accuracy

- DEF.: Syntactic Accuracy Let D ⊆ D' be multi-variate domains and x ∈ D' an observation or measurement and D the corresponding target domain.
 Syntactic Accuracy is the closeness of x to any y ∈ D.
- Ex.: x='Hans'; y='Haus';d_{Edit}(x,y)=1
- Syntactic Accuracy is a necessary condition for (overall) correctness.

3.3.1 Semantic Accuracy

- DEF.: Semantic Accuracy Let D be a multivariate domain and $\mathbf{x} \in D$ an observation or measurement and $\mu \in D$ the corresponding correct value. Semantic Accuracy ("correctness") is defined as the closeness or similarity sim: D x D \rightarrow $R_{\geq 0}$ with s = sim (\mathbf{x} , μ).
- Ex.: Nationality(Pélé)=Germany is semantically wrong, but syntactically okay
- Note: Object identification (= approximate joins) makes use of semantic accuracy

3.3.1 Accuracy Measures

Relation Accuracy

 Percentage of tupels (records) without data errors in table T, i.e.

acc(T) =
$$\sum_{i=1}^{|T|} \frac{\varphi(t_i)}{|T|} 100$$

where ϕ is an indicator function flagging errors in tupel $t{\in}\mathsf{T}$

Attribute Accuracy

 covariance matrix Σ_{xx} or spur(Σ_{xx}) if T has metric data space dom_T

3.3.1 Accuracy Measure(s)

Example:

Top Scorer of German Bundesliga in the last 5 years									
Jahr	Jahr Name Verein Treffer Nationalität								
2003	Elber	FC Bayern	21	Brasilien					
2003	Christiansen	VfL Bochum	21	Dänemark					
2004	Ailton	Werder Bremen	2004	Braslien					
2005	Mintál	1.FC Nürnberg	24	Slowakai					
2006	Klose	EC Bayern	25	Polen					
2007	Neumeister	VfL Bochum	20	Griechenland					

Tupel Level: acc (T) = $2/6 * 100 \approx 33 \%$ Value Level: acc_v(T) = 24/30 * 100 = 80%

3.3.2 Completeness

Objective: Indicator of coverage of set of objects Two very different kinds of completeness:

- null values (missing values)
- missing entities or tupels ("units" in Statistics)

DEF.: Completeness

Let O be an universe ("population" or reference relation) and O' \subseteq O a (not necessarily proper) subset of objects. The coverage com(O, O') = |O'|/|O| * 100 is called completeness.

Synonyms: scope, extent

cf. Naumann (2002), Batini and Scannapieco (2006)

3.3.2 Completeness of tuples, attributes, relations

• Tuple completeness com_t : Percentage of number of non-null values O'and all attribute values O of a tupel teT.

• Attribute competeness com_A : Percentage of number of non-null values O'and all tupels O given an attribute a $\in A$ from schema of T.

 Relation completeness com_T: Percentage of number of non-null values O´in T and size of T (=#rows_{*}colums).

Note:

• We ignore "value completeness" as an indicator function whether or not a value is missing (null value).

 $\bullet\ \text{com}_{\text{Schema}}$ can be defined in an analogue way

3.3.2 Completeness

StudentID	Name	Surname	Vote	ExaminationDate
6754	Mike	Collins	29	07/17/2004
8907	Anne	Herbert	18	07/17/2004
6578	Julianne	Merrals	NULL	07/17/2004
0987	Robert	Archer	NULL	NULL
1243	Mark	Taylor	26	09/30/2004
2134	Bridget	Abbott	30	09/30/2004
6784	John	Miller	30	NULL
0098	Carl	Adams	25	09/30/2004
1111	John	Smith	28	09/30/2004
2564	Edward	Monroe	NULL	NULL
8976	Anthony	White	21	NULL
8973	Marianne	Collins	30	10/15/2004

- Tupels: $com_{t1} = com_{t2} = 100\%$; $com_{t3} = 80\%$
- Attributes: $com_{Name} = 100\%$; $com_{ExamDate} \approx 33\%$
- Table: $com_{Student} = 100*53/60 \approx 88\%$

Objective: Defining and measuring how up-to-date, stable, slowly or frequently changing data are.

- Currency (Promptness): Indicator of how promptly data are updated.
- Volatility (Valid Period, Change Frequency): Indicator for the length of time data remain valid, or of the frequency with which data vary over time.
- Timeliness (Freshness, Age): Indicator of how delayed, old or current data are at a user's disposal

Objective: Defining and measuring how up-to-date, stable, slowly or frequently changing data are.

- Currency (Promptness): Indicator of how promptly data are updated.
- DEF.: Currency =

Age + Dwell_for_useTime = Age + (Time_{Use} - Time_{Disseminate})

• Timeliness (Freshness, Age): Indicator of how delayed, old or current data are at a user's disposal

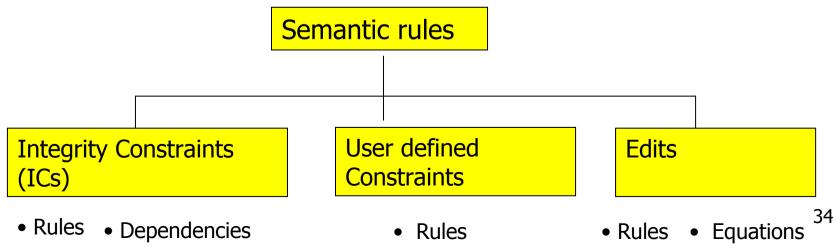
Objective: Defining and measuring how up-to-date, stable, slowly or frequently changing data are.

- Currency (Promptness): Indicator of how promptly data are updated.
- Volatility (Valid Period, Change Frequency): Indicator for the length of time data remain valid, or of the frequency with which data vary over time.
- DEF.: Volatility = time_{next-change} time_{last-update}
 Change Frequency = 1 / Volatility

Objective: Defining and measuring how up-to-date, stable, slowly or frequently changing data are.

- Currency (Promptness): Indicator of how promptly data are updated.
- Volatility (Valid Period, Change Frequency): Indicator for the length of time data remain valid, or of the frequency with which data vary over time.
- Timeliness (Freshness, Age): Indicator of how delayed, old or current data are at a user's disposal

DEF.: Timeliness = max{0, 1- currency / volatility}


```
bad Timeliness = 0; good Timeliness = 1
```

3.3.3 Time-Related Dimensions (Example)

- Annual GDP computation; Time measured in months:
- Case A:
 - Currency = Age + (Time_{Use} Time_{Disseminate}) = 3 + (15th April 1 April) = 3.5 month
 - Volatility = time_{next-change} time_{last-update} = 6 months
 - Timeliness = max{0, 1- currency / volatility} = max{0, 1- 3.5/6} = 0.42 quite bad !
- Case B:
 - Currency = 3,5
 - Volatility = 12
 - Timeliness = 0.7 not bad !

3.3.4 Consistency

- **Objectivity**: Asserting semantic rules to be true with respect to a database (or file).
- DEF.: Consistency Semantic constraints are used to ensure coherency of data and application domain knowledge (metadata).
- Using a DBMS metadata can be used as part of a repository or triggers to prohibit a violation of the semantic rules.

3.3.4 Consistency ICs

IC activation events:

- on insert
- on delete
- on update
- IC Types:
 - single attribute ICs (Domain constraints)
 - multi attribute Ics
 - cross-table constraints

3.3.4 Consistency IC Types - Examples

Employee	Έ)		sing	gle IC: $0 \le $ Years ≤ 60		
Emp#	Dep#	Name	Years	Saia	ry	
001	A	Adam	2	3500		lti IC: if Years \leq 3 then ary \leq 35000
005	С	Parker	17	4600		
007	A	Maier	31	520()()	Cross IC: D.Budget ≤ E.sum(Salary) where
IC T	vpes:	 		E.Dep#=D.Dep#		

- single attribute ICs (Domain constraints)
- Multi attribute ICs
- Cross-table constraints

Department (D)

<u>Dep#</u>	Budget
А	470000
В	125000
С	360000

3.3.4 Consistency Dependencies in DBs

• Key Dependency: A key dependency holds in relation (table) T if no two tupels $t_1, t_2 \in T$ have the same value of the primary key or a candiate key.

 t_1 .key = t_2 .key $\Rightarrow t_1 \equiv t_2$ (duplicates not allowed)

• Inclusion Dependency: Let T₁, T₂ be tables and **A**, **B** nonempty subsets of the corresponding attributes. Inclusion dependency holds if T₁.**A** is contained in T₁.**B** or, alternatively, T₂.**B**.

Ex.: Referential Integrity like \exists Employee.Dep# \Rightarrow Department.Dep#

• Functional Dependency (FD): Let A, B be nonempty subsets of the attributes in table T. FD is satisfied in T (A -> B) if for all tupels $t_1, t_2 \in T$

 $t_1.\textbf{A} = t_2.\textbf{A} \Longrightarrow t_1.\textbf{B} = t_2.\textbf{B}$

• **Multivalued Dependency** (MVD): Let **A**, **B**, **C** be nonempty subsets of the attributes in table T. MVD is satisfied in T if **A** ->> **B** / **C** or, equivalently, conditional independence exists: $\mathbf{B} \perp \mathbf{C} \mid \mathbf{A}$.

Note: Simpson Paradox may happen if MVD is ignored!

Incorrect Dicing (Marginalisation) if MVD C->> MIY ignored

Proposition : Slice, dice and roll-up are incorrect if MVD constraints Z->> X|Y are not preserved

color	blue		color blue white blue		ue	white		ALL	
year	90	91	90	91	90	91	90	91	ALL
count	255	156	88	82	174	102	222	175	1254

Source: Gray et a. (1997)

$$p(\text{chevy}|\text{blue}, 90) \approx 59\%, \ p(\text{chevy}|\text{blue}, 91) \approx 60\%$$

 $p(\text{chevy}|\text{white}, 90) \approx 28\%, \ p(\text{chevy}|\text{white}, 91) \approx 32\%$
 $p(\text{chevy}|90) \approx 46\%, \ p(\text{chevy}|91) \approx 46\%$

DEF.: Added-on Rules to ensure the semantic integrity (mostly) of files or part of a data entry system.

Synonym: Sematic integrity constraints

Main Types:

- simple edits
- logical edits
- numerical edits
- probabilistic edits
- statistical edits
- fuzzy edits

Quality remains long after the price is forgotten.

H.G. Selfridge

4. References

- 1. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methods and Techniques. Heidelberg: Springer Verlag (2006)
- 2. Dombrowski, Erik und Lechtenböger, Jens: Evaluation objektorientierter Ansätze zur Data-Warehouse-Modellierung, Datenbank-Spektrum 15/2005
- 3. Naumann, Felix: Datenqualität, Informatik-Spektrum_30_1_2007
- **4.** Naumann, Felix: Quality-driven Query Answering for Integrated Information systems, LNCS 2261, Springer, Heidelberg et.c, 2002
- 5. www. Information-quality.com